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Abstract: Hybrid energy storage systems (HESS) are an effective way to improve the output
stability for a large-scale photovoltaic (PV) power generation systems. This paper presents a sizing
method for HESS-equipped large-scale centralized PV power stations. The method consists of two
parts: determining the power capacity by a statistical method considering the effects of multiple
weather conditions and calculating the optimal energy capacity by employing a mathematical model.
The method fully considers the characteristics of PV output and multiple kinds of energy storage
combinations. Additionally, a pre-storage strategy that can further improve stability of output is
proposed. All of the above methods were verified through a case study application to an 850 MW
centralized PV power station in the upstream of the Yellow river. The optimal hybrid energy storage
combination and its optimization results were obtained by this method. The results show that the
optimal capacity configuration can significantly improve the stability of PV output and the pre-storage
strategy can further improve the target output satisfaction rate by 8.28%.
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Highlights

• Generic multi-objective sizing methodology for hybrid energy storage systems.
• Selection of energy storage systems by comparing multiple energy storage combinations.
• Optimal life cycle solutions considering the effects of multiple weather conditions.
• Concept of pre-storage strategy for higher satisfaction is proposed and presented.

1. Introduction

To improve the energy supply and reduce carbon emission, accelerating the development and
utilization of renewable energy has become the focus of energy development [1]. In recent years, solar
energy has been one of the fastest growing energy sources among renewable energy sources [2,3].
In 2017, the global installed capacity of PV increased by 97 GW with 403 GW as the total installed
capacity. However, power output fluctuations of large-scale PV power stations result into a decline in
power quality. Consequently, power output fluctuations may pose a threat to the grid security for
large penetration of PV in power systems. The other disadvantage is the unavoidable energy loss from
power curtailment or unacceptable lower power quality due to output variations [4]. To mitigate the
above issues, operation limits for grid-connected PV/wind plants were implemented. For example,
output fluctuations per minute should be limited to 10% of the rated power of the plant in China [5].
In Puerto Rico and Mexico, the corresponding value were 10% and 1–5% of the rated power [6,7].
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In recent years, with the improvement of energy storage technology and cost reduction, equipping
energy storage systems (ESS) for PV power generation system has become one of the economical
and effective ways to smoothen PV output fluctuations and mitigate their impact [8,9]. ESS can
suppress the unstable PV output through charging and discharging, and can also realize energy storage
at different time scales [10]. To date, there have been many kinds of energy storage technologies
developed, including mechanical energy storage, chemical energy storage, electrochemical energy
storage, superconducting magnetic energy storage, thermal energy storage, etc. The characteristics of
these ESS, such as power density, energy density and cycle lifetime, are different [11]. None of these
energy storage devices has advantages in all aspects [12]. However, PV output fluctuations consist
of high- and low frequency fluctuations that require an energy storage system with both high power
density and high energy density for securing large-scale penetration [13,14]. Therefore, equipping
HESS for PV power generation systems remains an economical and viable solution for maximizing the
benefits of different energy storage technologies [15–17].

HESS includes high power storage (HPS) and high energy storage (HES) [18]. HPS responds
quickly and can provide short bursts of power injection or absorption. It is suitable for smoothing
out high frequency fluctuations. However, the high cost of HPS restricts their large-scale application.
HES with relative lower cost has large storage capacity and is suitable for smoothing out low frequency
fluctuations. HPS mainly includes supercapacitors (SC), flywheels, superconducting magnetic energy
storage (SMES), etc.; while HES mainly includes pumped hydro, compressed air, vanadium redox flow
batteries (VRB), sodium-sulfur cells, lead-acid cells (PbAc), fuel cells (FC), etc. [19]. Some studies have
reported various combinations of energy storage, for example, Hajiaghasi et al. [18] presented a large
variety of energy storage combinations for HESS. Moreover, Zhao et al. [20] designed an improved
coordinated control strategy of Flywheel/Battery HESS in PV power smoothing to extend the life
expectancy of the battery and reduce operating costs. Aktas et al. [21] proposed a new Smart Energy
Management Algorithm (SEMA) for SC/Battery HESS supplied from 3-phase 4-wire grid connected
PV power system. Furthermore, Li et al. [22] developed a stand-alone micro-grid model including
Battery/Hydrogen HESS and obtained the optimal size and operation strategy. Li et al. [23] proposed a
HESS using battery energy storage and SMES to mitigate battery cycling while smoothing power flow.
Destro et al. [24] studied the optimal design and management strategy of a tri-generation system with
batteries and pumped hydro energy storage. To the authors’ knowledge, HESS has been an important
part of improving power quality in renewable energy systems.

The capacity configuration of energy storage system affects total cost of the system and stability of
the output. Several scholars have studied the ESS capacity allocation methods that are mainly classified
as probabilistic, analytical and directed search-based methods [25]. Thus, probabilistic methods use the
stochastic nature of renewable resources to optimize the size of ESS. For instance, Jia et al. [26] proposed
a capacity statistical model composed of statistical analysis, time-domain simulation and a capacity
determination algorithm. The capacity distribution of ESS was obtained by Monte Carlo simulation.
Abbassi et al. [27] studied the capacity distribution of ESS in an autonomous PV/Wind power generation
system. The statistical analysis of solar irradiance and wind speed cumulative levels was performed
to determine the optimal size. However, analytical methods based on power system configuration
analysis usually demand a lot of repeated calculations or simulations for their implementation.
Additionally, Jacob et al. [28] proposed a sizing methodology using pinch analysis and design space
for HESS in a PV-based micro-grid. The authors analyzed four different practical cases to illustrate
the methodology. Esfahani et al. [29] studied capacity distribution of battery/hydrogen storages in
PV-wind-biomass hybrid system. The authors used extended-power pinch analysis to determine the
minimum required external electricity source, wasted electricity sources, and appropriate hydrogen
storage system capacity. Directed search-based methods include mathematical optimization methods
and heuristic methods. Compared to analytical methods, simulations in the entire configuration
space may be unnecessary for obtaining the optimum solution in a computationally efficient manner.
The optimization objectives among these directed search-based methods mainly include economic
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indicators [30–33] and stability indicators [31,33]. Berrueta et al. [30] designed a battery capacity
optimization model with the objective of economic revenue maximization and solved it by employing
dynamic programing and a region-elimination technique algorithm. Xu et al. [31] proposed a capacity
optimization model for battery/supercapacitor system to maximize annual profit and minimize wind
curtailment rate. Liu et al. [32] discussed the optimal sizing of SC/Battery HESS based on optimal energy
management strategy for load-haul-dump vehicles (LHDs), which considered energy consumption
and the total cost of HESS. Nojavan et al. [33] proposed bi-objective optimization model for optimal
siting and sizing of an energy storage system in a microgrid, in which the total minimization cost and
minimization of loss of load expectation (LOLE) were objectives.

There are significant differences in the daily output processes of PV power stations under different
weather conditions, such as daily average output, fluctuation range and frequency, etc. In addition, the
time ratios of multiple types of weather are different. Therefore, the impact of weather factors should
be considered in the HESS configuration of PV power stations to improve applicability. Based on
this, a hybrid method employing a statistical method to determine the power capacity of HESS and a
mathematical model designed to determine the energy capacity of HESS considering system economy
and output stability are proposed in this paper. The method considers the PV output characteristics and
time ratios of four weather conditions (sunny, cloudy, rainy, snowy). Moreover, six HESS combinations
consisting of two HPS (SC, Flywheel) and three HES (VRB, Li-ion, PbAc) were compared to determine
the optimal energy storage combination. The Qinghai Gonghe PV power station was taken as a case
study. The rest of the paper is structured as follows: Section 2 explains the sizing method of HESS;
Section 3 presents a case study, including analysis of output characteristics and configuration result of
HESS; Section 4 shows the concept of pre-storage and a sensitivity analysis; lastly, the conclusions are
drawn in Section 5.

2. Methods of HESS Capacity Configuration

A statistical method was proposed to determine the power capacity of HESS and a mathematical
model was developed to determine the energy capacity of HESS. As depicted in Figure 1, the framework
of the method is as follows: Step1, the PV output of each typical weather condition was decomposed
into target output curve, high frequency fluctuation and low frequency fluctuation; Step2, the high
frequency fluctuation and low frequency fluctuation were analyzed considering the time ratio of
each typical weather condition to determine the power capacity of HESS; Step3, a multi-objective
mathematical model has been proposed considering system economy and output stability for the
optimal sizing of the energy capacity of HESS.
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2.1. Decomposition of PV Outputs

Wavelet decomposition method was used to decompose the PV output into three parts: high
frequency fluctuation signal, low frequency fluctuation signal and approximate signal, respectively.
The first two signals have contrasting frequency and amplitude characteristics. However, the
approximate signal is a smooth curve that reflects the overall trend of the original output. In addition,
it is used as the target output delivered to the grid for a PV power station. Consequently, HESS in
this study only needs to smoothen deviation fluctuations from the approximate signal. As shown in
Figure 2, Ph and Pl are the power values of high and low frequency fluctuation signal, respectively.
HPS and HES can eliminate fluctuations by tracking the power command from Ph and Pl respectively,
thus bringing the PV-HESS output close to the approximate signal.
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2.2. Determination of Power Capacity of HESS

For the determination of power capacities of HPS and HES, high/low frequency fluctuation data
of typical weather conditions from decomposition was expanded to Dh/Dl by duplication with the time
ratio of each weather condition as weighting factors, as shown in Equation (1). Then t Location-Scale
distribution with good fitting effect [34] was used to fit the probability density curve to Dh and Dl,
respectively, and the probability density function is shown in Equation (2). Thereby, the confidence
intervals at different confidence levels can be calculated, and the maximum absolute value of boundary
value at the selected confidence level was obtained as the power capacity, as shown in Equation (3).
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confidence value for high frequency fluctuation; Ble f t
l,α and Bright

l,α are the left and right boundary value at
α confidence level for low frequency fluctuation.

2.3. Optimal Energy Capacity Configuration Model

In this section, a multi-objective optimization model is proposed to determine the energy capacity
of HESS. Objective functions, decision variables, constraints and Energy storage device control strategy
have been described as follows. The standard genetic algorithm (GA) was selected to solve the
model. The number of individuals in the initial population was 200 and the number of evolutions
was 100. The selection probability, crossover probability and mutation probability were 0.05, 0.40 and
0.03, respectively.

(1) Objectives

The first objective is to minimize the life cycle cost of HESS including the installation cost and
replacement cost, as expressed in Equation (4).

f1 = minimize
2∑

i=1

Ps
i ·Ci·(1 + λ·Ni) (4)

where Ps
i is the system cost of the ith energy storage device, CNY/kWh; Ci is the energy capacity of the

ith energy storage device, kWh; λ is the ratio of replacement cost to installation cost, λ = 60% in this
paper; Ni is the replacement times of the ith energy storage device in the life cycle of PV power station
and can be calculated by Equation (5):

Ni =
4∑

j=1

Si, j·w j·Op·365

DODi·Ci·cyi
− 1 (5)

where Si,j is the stored electric quantity of the ith energy storage device under the jth typical weather
condition, kWh; wj is the time ratio of the jth typical weather condition in a year; Op is the operation
period of the PV power station, year; DODi is the depth of discharge of the ith energy storage device,
%; cyi is the whole life cycle number of the ith energy storage device.

The second objective function is to maximize target output satisfaction rate, given by Equation (6):

f2 = maximize

∑4
j=1

[(∑n j

k=1 δ j,k
)
·w j

]
T·60

(6)

where nj is the minute number of power generation under the jth typical weather condition; δj,k is a
coefficient that determines whether the PV-HESS output value is equal to target output value in the kth
minute under the jth typical weather condition determined by Equation (7); T is daily mean output
duration, h.

δ j,k =

 1 i f p j,k = pt
j,k

0 i f p j,k , pt
j,k

(7)

where pj,k is the PV-HESS output value in the kth minute under the jth typical weather condition, kW;
pt

j,k is the target output value in the kth minute under the jth typical weather condition, kW.

(2) Constraints

The two main constraints in this model are the electric quantity balance constraint, given by
Equation (8), and the maximum charging and discharging power constraint, given by Equation (9).

Ei, j,k = ηi·Si, j,k (8)
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where Ei,j,k is the generated energy of the ith energy storage device in the kth minute under the jth
typical weather condition, kWh; ηi is the conversion efficiency of the ith energy storage device, %; Si,j,k
is the consumed energy of the ith energy storage device in the kth minute under the jth typical weather
condition, kWh.

Pi, j,k ≤ Pri (9)

where Pi,j,k is the output value of the ith energy storage device in the kth minute under the jth typical
weather condition, kW; Pri is the rated power of the ith energy storage device determined in Section 2.2.

(3) Energy storage device control strategy

To model the energy storage system, the authors propose a control strategy applied to both HPS
and HES, presented by Figure 3. Thus, the input is the power of high/low frequency fluctuation.
Therefore, when p > 0, it means there is excess power and the excess electric quantity needs to be
charged into energy storage device. In charging process, it is necessary to consider whether p exceeds
the rated power and/or if the residual capacity of the energy storage device is sufficient. Conversely,
p < 0 represents power shortage and the energy storage device must be discharged to compensate for
the shortage of electric quantity. In the discharging process, the limits of the rated power and residual
electric quantity are considered.
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In Figure 3, p is the power of high/low frequency fluctuation, kW; Pr is the rated power of energy
storage device; Pc is the charging power of energy storage device, kW; Pd is the discharging power
of the energy storage device, kW; Cr is the residual capacity of energy storage device, kWh; Q is the
residual electric quantity of energy storage device, kWh; t is the time step, h.

3. Case Study

3.1. Characteristics of PV Output

The Gonghe PV power station in Qinghai province, China, was adopted as a case study to illustrate
the design procedure of HESS. The total installed capacity of Gonghe PV power station is 850 MW.
To reduce the simulation time, a few representative days were used instead of all 365 days. Thus,
from the 1-min photovoltaic output data for one year, the most volatile output curve of each weather
type was selected as the typical output through statistical analysis of the probability distribution of
each day’s output fluctuation, which improved the adjustment ability of HESS. It can be observed
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from Figure 4 that weather has a significant impact on PV outputs, with a relatively stable sunny PV
output as compared to the other outputs, which fluctuate frequently. The probability distributions of
PV power and fluctuation of the four typical outputs that can reflect PV output characteristic under
different weather conditions are presented in Figure 5. As shown in Figure 5a, there is great variation
in PV power range in different weather conditions, and PV output is reduced significantly on rainy
and snowy days. Figure 5b shows that PV output fluctuates considerably in cloudy days. To consider
the impact of weather factors accurately, the time ratio of the four weather conditions was computed
based on one-year meteorological data, given by Table 1.Sustainability 2019, 11, x FOR PEER REVIEW 7 of 16 
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Table 1. Time ratio of typical weather conditions.

Weather Sunny Cloudy Rainy Snowy

Time ratio 39% 36% 22% 3%

3.2. Decomposition of PV Outputs

By using the db6 wavelet function in Matlab, the PV outputs of the four typical weather conditions
were decomposed into three parts: target output, high frequency fluctuation and low frequency
fluctuation, respectively. As an example, the decomposition result of the cloudy day is shown in
Figure 6. As depicted in Figure 6, the target output is a smooth curve and is more stable than the
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original output between 11:00–18:00, while a large number of fluctuations with short amplitude can be
observed for the high frequency fluctuation analysis with contrasting results being obtained in the low
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3.3. Determination of Power Capacity

By using the method described in Section 2.2, the statistics for high and low frequency fluctuation
data were obtained, as shown in Figure 7. According to the probability density curves in Figure 7,
the power capacities, the maximum absolute values of boundary values, of HPS and HES at different
confidence levels are shown in Figure 8. It can be observed from Figure 8 that both power capacities of
HPS and HES surged after 95%, due to a small number of large fluctuations in both the high and low
frequency fluctuations. In this study, the 95% confidence level was selected.
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3.4. Energy Storage Combinations of HESS

To equip a more suitable HESS for PV power station, several commonly used energy storage
devices were selected in this paper, including two HPS (SC, Flywheel) and three HES (VRB, Li-ion,
PbAc), thus forming six different HESS combination schemes. In addition, the parameters of the energy
storages involved in the optimal energy capacity configuration model are listed in Table 2.

Table 2. Parameters of energy storages.

Parameter SC Flywheel VRB Li-ion PbAc

System cost (CNY/kWh) 12,000 6500 3500 2300 1300
Cycle life (cycles) 100,000 20,000 16,000 5000 1500

Round trip efficiency 95% 96% 80% 95% 85%
Depth of discharge 100% 100% 90% 95% 65%

3.5. Optimization Results

Based on the obtained data and results, the optimal energy capacity configurations of the six
combination schemes were calculated by the multi-objective optimization model proposed in Section 2.3,
and the results are shown in Table 3. The target output satisfaction rate of the six combination schemes
was similar, with a difference of less than 3.5%. However, the replacement times and life cycle cost
varied greatly. Comparing two types of HPS, no difference in their energy capacities can be observed,
but the replacement times of Flywheel is 6 times more than SC due to its short life cycle. Comparing
three types of HES, because of the shallow depth of discharge and the short life cycle of PbAc, both
replacement times and life cycle cost are the largest; the Li-ion has high round trip efficiency, with
highest target output satisfaction rate; VRB’s target output satisfaction is the lowest, but both the
replacement times and the life cycle cost are the lowest. In general, there is a slight difference in target
output satisfaction rate of each combination, hence the SC-VRB was selected as the final solution
due to its lowest replacement times and life cycle cost. Therefore, the optimal HESS configuration
scheme is “SC (5.56 MW/0.57 MWh) + VRB (112.85 MW/40.61 MWh)”. As shown in Figure 9, adopting
SC-VRB can reduce the output fluctuations significantly and obtain the expected stable output process.
Furthermore, the number of PV output fluctuations decreased by 81.55% in sunny day, 68.97% in
cloudy day, 61.29% in rainy day and 71.43% in snowy day for the SC-VRB scheme.
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Some local parts of the optimization output curves still have fluctuations because of insufficient
power resulting from excessive fluctuations and insufficient electric quantity due to the 0 daily initial
storage and energy loss of HESS. As shown in Figure 10, low frequency fluctuations on sunny, rainy
and snowy days are below VRB-rated power most of the time; thus, the fluctuations not tracked
by VRB are mainly caused by the lack of energy in contrast to a cloudy day. As such, numerous
excessive fluctuations that exceed the rated power of the VRB, which is due to the high power and high
fluctuation frequency of PV output can be observed during cloudy days. As a remedy, two methods
can be used to alleviate the effects of these excessive fluctuations: one is to limit the power exceeding
the rated power by power curtailment [35], but this method cannot solve the power shortage of the
fluctuation; the other method is to increase the power capacity of the energy storage device, which will
significantly increase the cost. In the future, the improvement of energy storage technology and the
further reduction of costs will alleviate this problem.
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Table 3. Optimization results.

Index SC-VRB SC-Li SC-PbAc Flywheel-VRB Flywheel-Li Flywheel-PbAc

HPS energy capacity (MWh) 0.57 0.57 0.57 0.57 0.57 0.57
HES energy capacity (MWh) 40.61 41.04 52.13 40.61 41.04 52.13

HPS replacement times (Times) 1 1 1 7 7 7
HES replacement times (Times) 2 6 23 2 6 23

Life cycle cost (CNY) 3.24 × 108 4.45 × 108 1.01 × 109 3.32 × 108 4.53 × 108 1.02 × 109

Target output satisfaction rate 87.8% 91.3% 89.1% 87.8% 91.3% 89.2%

4. Discussion

4.1. Pre-Storage Strategy

Energy loss during operation of energy storage devices can lead to energy shortage of the system.
Furthermore, if the daily initial storage of the energy storage device is 0, the system regulation ability
during the daily initial operation period will be reduced. A solution to these limitations is to set a
certain amount of daily initial storage for the energy storage device. Therefore, a pre-storage operation
strategy was proposed and discussed in this paper.

The strategy was proposed to reduce the fluctuation duration such that the determination of the
daily initial storage of HES and HPS should use the minimum number of daily fluctuation minutes
as the objective. In addition, the variable was daily initial storage ratio, which is the ratio of the
daily initial storage to the total energy capacity of energy storage device. After calculating the daily
fluctuation minutes under different daily initial storage ratios (Figure 11), the optimal intervals of daily
initial electric quantity ratios with minimum number of daily fluctuation minutes can be obtained.Sustainability 2019, 11, x FOR PEER REVIEW 12 of 16 
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As illustrated in Figure 11, the daily fluctuation minutes were mainly affected by the change of
the initial storage ratio of the VRB, and were less affected by SC. Therefore, the daily initial storage was
only set for VRB in this study. The optimal ranges of the daily initial storage ratio of VRB under the
four weather conditions were obtained (Table 4). In cases where the daily fluctuation minutes is the
same, the daily initial storage should remain as low as possible. At this point, the minimum values of
the intervals were selected as the optimal daily initial storage ratio.

Table 4. Optimal intervals of daily initial storage ratio of VRB.

Weather Optimal Interval

Sunny [0.620, 0.839]
Cloudy [0.479, 0.591]
Rainy [0.651, 0.661]
Snowy [0.636, 0.872]

The pre-storage strategy was incorporated into optimization model and the results are shown
in Figure 12. Compared to the previous optimization results, fluctuations in the new optimization
outputs were significantly reduced, except a small number of large power fluctuations on cloudy days.
The target output satisfaction rate increased from 87.8% to 96.0%.Sustainability 2019, 11, x FOR PEER REVIEW 13 of 16 
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4.2. Sensitivity Analysis of Power Capacity Configuration

The effect of power capacities at different confidence levels on the two objectives are shown in
Figure 13. It can be observed that the life cycle cost and target output satisfaction rate grow steadily
with the increase of confidence level less than 90%. Furthermore, a sharp increase can be observed
for both the life cycle cost and target output satisfaction rate between 90% to 95% confidence levels.
After 95%, the life cycle cost is surged while the target output satisfaction rate grows small, indicating
that the increase in power capacity has not improved satisfaction. Therefore, the 95% confidence level
is the best choice considering higher satisfaction rate and lower cost.
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5. Conclusions

This paper proposed a methodology for determining the capacity of HESS equipped for large-scale
PV power stations that can aid in the planning of energy storage for PV power stations. The main
conclusions are summarized as follows.

1. A statistical method for determining the power capacity was proposed in which the PV output
characteristics and the weather factor were considered.

2. A multi-objective optimization model was established, in which the energy capacity of HESS
was determined with the objectives of life cycle cost minimization and target output satisfaction
rate maximization.

3. In the case study, all above established methods were applied to Qinghai Gonghe PV power
station, and the optimal HESS combination and capacity configuration were obtained. The results
showed that the optimal capacity configuration of HESS obtained by these methods can improve
the stability of output significantly and the target output satisfaction rate is 87.8%.

4. A pre-storage strategy which can further improve the stability of PV output was discussed in
which the optimal solution of the initial electric quantity of HESS was determined and the target
output satisfaction rate increased by 8.28% compared with previous result.

5. A sensitivity analysis of power capacity configuration was conducted which demonstrated that
the confidence level has a significant effect on life cycle cost and target output satisfaction rate.
The power capacity at 95% confidence level was the best choice, considering it higher satisfaction
rate and minimum cost.

The strength of the methodology is in fully considering the PV output characteristics, weather
factor and multiple energy storage combinations. Due to its good performance in the case study, this
methodology can be considered to be a useful tool or reference for sizing of hybrid energy storage
systems equipped for large-scale PV power stations. Finally, a real-time control strategy for PV-HESS
will be the next study.
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