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Abstract: Renewable energy technologies are essential contributors to sustainable energy including
renewable energy sources. Wind energy is one of the important renewable energy resources.
Therefore, efficient and consistent utilization of wind energy has been an important issue. The wind
speed has the characteristics of intermittence and instability. If the wind power is directly connected
to the grid, it will impact the voltage and frequency of the power system. Short-term wind power
prediction can reduce the impact of wind power on the power grid and the stability of power system
operation is guaranteed. In this study, the improved chicken swarm algorithm optimization support
vector machine (ICSO-SVM) model is proposed to predict the wind power. The traditional chicken
swarm optimization algorithm (CSO) easily falls into a local optimum when solving high-dimensional
problems due to its own characteristics. So the CSO algorithm is improved and the ICSO algorithm
is developed. In order to verify the validity of the ICSO-SVM model, the following work has been
done. (1) The particle swarm optimization (PSO), ICSO, CSO and differential evolution algorithm
(DE) are tested respectively by four standard testing functions, and the results are compared. (2) The
ICSO-SVM and CSO-SVM models are tested respectively by two sets of wind power data. This study
draws the following conclusions: (1) the PSO, CSO, DE and ICSO algorithms are tested by the
four standard test functions and the test data are analyzed. By comparing it with the other three
optimization algorithms, the ICSO algorithm has the best convergence effect. (2) The number
of training samples has an obvious impact on the prediction results. The average relative error
percentage and root mean square error (RMSE) values of the ICSO model are smaller than those
of CSO-SVM model. Therefore, the ICSO-SVM model can efficiently provide credible short-term
predictions for wind power forecasting.

Keywords: sustainable energy; wind speed; improved chicken swarm algorithm; support vector
machine; short-term wind power prediction

1. Introduction

The problems of environmental pollution, ecological damage, conventional energy depletion and
haze weather have become increasingly serious. Countries around the world attach great importance
to the development and utilization of green energy, especially where there is serious environmental
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pollution. As clean energy power generation technology becomes mature, the proportion of clean
energy power generation in the world power supply is increasing year by year. Wind power generation
and photovoltaic power generation account for the largest proportion of new energy generation [1–4].
From 1980 to the 1990s, wind power technology was rapidly developed and gradually matured.
Wind power generation has brought great convenience to people due to its advantages of renewable,
clean and environmental protection. Wind power installations are commercially available in more
than 70 countries around the world, with 22 countries having installed capacity exceeding 1 GW. It is
estimated that by 2030, European wind power installations will reach 30 billion watts, which can
meet 20% of Europe’s electricity demand. But wind power has its own limitations, and the biggest
influence on wind power output is weather changes [5–7]. Because of the intermittent characteristics of
wind power generation, wind power generation will impact the power grid. If wind power is directly
connected to the grid, it will affect the voltage and frequency of the power system, thus affecting the
stable operation of the power system [8,9]. By forecasting wind power, the power generation plan
can be reasonably arranged, which can avoid large fluctuations in the power system. The support
vector machine (SVM) has better robustness, can avoid dimension disaster, and has strong non-linear
mapping ability. So this study uses the SVM to predict short-term wind power.

Naik et al. [10] used a new method to predict short-term wind power. This method combines
variational mode decomposition (VMD) and low rank multi-kernel ridge regression (MKRR).
The parameters of the model are optimized by the mutated firefly algorithm with global optima
concept (MFAGO) optimization algorithm. Hong et al. [11] proposed a prediction model to forecast
ultra-short-term wind power. In the method, the time series is decomposed into two components
by morphological high frequency filter. The double similarity search algorithm is used to predict
high frequency component. Finally, each component is predicted by the least-squares support-vector
machines (LSSVM). And The final prediction results are synthesized. The wind power was predicted
by the support vector machine (SVM), as in [9]. The parameters of SVM are optimized by the
enhanced particle swarm optimization algorithm in this method to improve the prediction accuracy.
Bhaskar et al. [12] used a feed-forward neural network (FFNN) to predict wind power. Firstly, the wind
signal is decomposed by wavelet transform, and each decomposed signal is regressed by adaptive
wavelet neural network (AWNN). Then, the non-linear mapping relationship between wind speed and
wind output is constructed by FFNN. Wang et al. [13] used the sparse Bayesian-based robust functional
regression model to predict wind speed. This method reduces the adverse effects of redundant function
variables on prediction results. The robustness of the model is improved by assuming multiple mixture
Gaussian priors of prediction errors. Wang et al. [14] used a deep belief network model to predict wind
power. In this method, the k-means clustering algorithm was used to deal with the numerical weather
prediction data, which can improve the prediction accuracy. Liu et al. [9] used a hybrid support vector
machine to predict wind power. This method combines wavelet transform and feature extraction.

Short-term wind power was predicted by using an improved support vector machine method,
as in [15]. In the method, invalid data in the original data is first removed. The high-frequency
component of the original signal is removed by the wavelet transform. Finally, the support vector
machine is used to predict the wind power. The short-term wind power was predicted by the improved
random forest model, as in [16]. Firstly, the data is preprocessed to remove the redundant items from
the original data, and a new external verification index related to wind speed in numerical weather
prediction is proposed. A framework based on the bandwidth selection concept was proposed for new
flexible kernel density estimation in [17]. This method uses diffusion-based nuclear density estimator
to achieve high-quality interval prediction of non-stationary wind power time series. Zheng et al. [18]
presented a comprehensive hybrid method to predict the short-term wind power. Three algorithms
are combined in this method.

In this study, the parameters of the SVM are optimized by the improved chicken swarm
optimization algorithm (ICSO). Shi et al. [19] introduced two strategies in the chicken swarm algorithm
and propose the modified parallel cat swarm optimization (MPCSO) algorithm. The two strategies are
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monomers turbulence in rooster (MTR) and particle renovation in hen (PRH). It can be found that the
MPCSO algorithm is better than other algorithms. Wu et al. [20] used a chaotic sequence to initialize
chicken position. This method improves the update strategy of hen position and chicken position.
Adaptive inertia weight is added to the hen position updating equation. The following coefficient is
added to the chick position updating equation. Through the above improvements, the local search
ability and global search ability of the chicken swarm optimization algorithm (CSO) algorithm can be
improved. The crossover operation was introduced in ICSO algorithm, as in [21]. After the crossover
operation, two new offspring replace the two hens with poor fitness values. This study has made
the following improvements to the CSO algorithm. Firstly, the self-learning factor is introduced in
the hen position update equation. Secondly, when the fitness values of hen are updated, the flock
particles are sorted. Some cock particles with good fitness replace hen particles with poor fitness.
Finally, the optimal individual learning part is introduced in the chick position update equation.

2. Wind Power Prediction Model Materials and Methods

2.1. Support Vector Machine (SVM) Regression

SVM is a machine learning method based on statistical learning theory, which belongs to the
supervised learning method. The generalization ability of the learning machine is improved by seeking
structural risk minimization. Moreover, the minimization of experience risk and confidence range is
realized [22,23]. SVM is widely used in forecasting fields due to its high generalization ability, strong
non-linear mapping ability and small sample size, such as photovoltaic power prediction, battery life
prediction, insulated gate bipolar transistor (IGBT) life prediction and wind power prediction [24,25].
The specific regression principle of SVM is as follows.

Suppose the sample set is P = {(xi, yi), i = 1, 2, · · · , u}. xi ∈ Rm represents the input vector of
the ith sample. yi ∈ R represents the output vector of the ith sample [26,27]. The regression function is
obtained by mapping data to high-dimensional space:

B(x) = r ∗ z(x) + l (1)

where r is the weight coefficient; z(·) is the mapping function, which maps data to high-dimensional
space and regression function is constructed in high-dimensional space; l is the threshold vector.

The problem of upper solution is transformed into the problem of minimizing the target of the
following equation:

min 1
2 rTr

s.t.

{
y− rz(x)− l ≤ q
y− rz(x)− l ≥ −q

(2)

where q is the insensitive loss parameter. The smaller the value is, the better the effect of regression is.
The slack variable is introduced to the above equation due to the error between the regression

value and the original value:

min 1
2 rTr + C

u
∑

i=1
(βi + β∗i )

yi − rz(xi)− l ≤ q + βi
yi − rz(xi)− l ≥ −q− β∗i
βi ≥ 0, β∗i ≥ 0

(3)

where βi is the slack factor; C is the penalty coefficient. The greater the penalty factor is, the greater the
penalty for exceeding the error phase is.
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The Lagrangian function is introduced to solve the above minimum value problem.

L = 1
2 rTr + C

u
∑

i=1
(βi + β∗i )−

u
∑

i=1
ρi(q + βi − yi + rz(xi) + l)−

u
∑

i=1
ρ∗i (−q− βi − yi + rz(xi) + l)−

n
∑

i=1
(λiβi − λ∗i β∗i )

(4)

where ρ = [ρ1, ρ2, · · · , ρu] is the Lagrange multiplier.
According to the Karush–Kuhn–Tucher (KKT) condition, the above equation is expressed

as follows:
min 1

2

u
∑

i=1,j=1
ρiρjyiyj(xixj)−

u
∑

i=1
ρi

s.t.


0 ≤ ρi ≤ C
0 ≤ ρj ≤ C
u
∑

i=1
yiρi = 0

(5)

The regression function obtained is as follows:

B(x) =
n

∑
i=1

(ρi − ρ∗i )T(xix) + l (6)

where T(·) is the kernel function.
The radial basis kernel function with strong generalization ability is used in this paper and its

equation is as follows:

T(xi, x) = exp(−‖xi − x‖2

2σ2 ) (7)

If the values of the penalty coefficient C and kernel function parameter are not appropriate, the
prediction results will be worse. Therefore, in order to obtain appropriate parameters, the parameters
of SVM should be optimized to improve the prediction effect of the model.

2.2. Chicken Swarm Optimization (CSO)

Meng et al. [28] put forward the chicken swarm optimization algorithm (CSO). A new swarm
intelligence optimization algorithm is proposed to simulate the hierarchy and foraging behaviour of
chickens. The population is divided into several subgroups. Every subgroup contains chicks, hens and
cocks. The chicken swarm optimization algorithm obeys the following rules:

(1) The entire population includes several sub-populations, each of which includes a cock, a number
of hens and several chicks.

(2) The fitness value of each particle in the population is calculated. The particles are classified based
on the fitness values. A few particles with good fitness values are selected as cocks, a few particles
with poor fitness values are selected as chickens, and the rest of the particles are selected as hens.

(3) Under a certain hierarchy, the dominance relationship and mother child relationship remain
unchanged. However, as the chicks grow, the population relationship will change. The hierarchy,
dominance relationship, and maternal relationship of the chicken swarm will change once every
G time.

(4) The cock dominates the flock, the hens follow the cock in their own population, and the chicks
feed around the hen. Hens randomly join a subpopulation. The relationship between mother and
child in the flock is randomly established. The cock with the largest foraging range and the best
foraging ability is dominant in the flock. The chick particles have the worst foraging ability and
the smallest foraging range. The foraging ability and foraging range of hen particles are between
cock particles and chick particles.
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In CSO, there are N particles in the whole chicken flock. The number of roosters is defined as
Nr. The number of hens is defined as Nh, and the number of chicks is Nc. Different kinds of chickens
have different location updating equations when they are finding food [29,30]. Roosters are the most
adaptable individuals in chickens and also the most likely to find food in the whole population.

The equation of the position update of cock particles is shown in Equation (8):

Pj
i (t + 1) = Pj

i (t) ∗ (1 + Randn(0, σ2))

σ2 =

{
1 Wi < Wk

exp( (Wk−Wi)
|Wi |+ε

) others
(8)

where the k ∈ [1, cn], and k 6= i. Randn(0, σ2) is the gauss distribution with the mean value of 0 and
the standard deviation of σ2. The individual position of Pj

i (t) is the value of the jth dimension of the
ith individual at the tth iteration. ε is any small constant; k is an arbitrary cock in all cocks except the
ith cock; Wi is the fitness value corresponding to the ith cock; Wk is the fitness value corresponding to
the kth cock. Hens are the largest proportion of individuals in the whole chicken population. And its
location update formula is shown in formula 9.

Pj
i (t + 1) = Pj

i (t) + K1 ∗ Random ∗ (Pj
r1(t)− Pj

i (t))
+K2 ∗ Random ∗ (Pj

r2(t)− Pj
i (t))

K1 =
exp(Wi−Wr1 )

|Wi |+ε

K2 = exp(Wr2 −Wi)

(9)

where Random is a random number between 0 and 1, which obeys the standard normal distribution.
r1 means the cock in the group where the ith hen is located. r2 represents any cock except the cock in
the group of the ith hen. So r1 is different from r2. The chick follows the hens’ foraging and the chick’s
position update formula is shown in formula 10.

Pj
i (t + 1) = Pj

i (t) + FL ∗ [Pj
m

(
t)−Pj

i (t)] (10)

where FL is the average number of evenly distributed in [0, 2]. Pj
m(t) is the hen position corresponding

to the ith chick.

2.3. Improved Chicken Swarm Optimization (ICSO)

In the flock, because the chicks have the worst foraging ability, the smallest foraging range.
So the chicks have the worst global search ability. The traditional CSO is prone to premature
convergence when solving high-dimensional problems, the improved chicken swarm optimization
(ICSO) is introduced in this study. In the traditional CSO algorithm, the number of hens is the largest.
Therefore, the search ability of hen particles affects the convergence of CSO algorithm. In Equation
(9), hen particles can learn from cock particles in their own population and can learn from cock
particles in other populations. However, hen particles have no self-learning ability. In the later stage of
convergence, the search range of the whole population decreases. The cock particles tend to fall into
the local optimum, which results in the hen particles falling into the local optimum and affects the
convergence effect of the whole algorithm.

In this study, the position update equation of hen particles is improved, and a self-learning factor
is introduced in the equation. It can be found from Equation (11) that the value of the learning factor is
large at the beginning of the iteration, and the hen particles have better global search ability. As the
number of iterations increases, the value of learning factor decreases gradually, and the hen particles
have better local search ability. The convergence performance of CSO algorithm is also enhanced by
improving the local and global search ability of hen particles.
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w(t) = wmax − exp (
M− t

M
)

3
∗ (wmax − wmin) (11)

where t is current iterations; M is maximum iterations; wmax = 0.9, wmin = 0.4. The improved hen
position update formula is shown in Equation (12):

Pj
i (t + 1) = w(t) ∗ Pj

i (t) + H1 ∗ Random ∗ (Pj
r1(t)− Pj

i (t))
+H2 ∗ Random ∗ (Pj

r2(t)− Pj
i (t))

(12)

It can be seen from Equation (12) that the hen particles cannot learn from the cock particles with
good fitness value, and can learn by themselves. The improved hen particles have a more flexible
foraging strategy than the hen particles before the improvement. When the hen leading the chick falls
into the local optimum, the chick can only learn from the following hen, so it will fall into the local
optimum, eventually leading to the whole algorithm into the local optimum. The fitness values of
hens are calculated and the hen particles are sorted according to the fitness values. The hen particles
with poor fitness values are replaced with 80% of the cock particles to ensure the competitiveness of
the population. By replacing hen particles with poor fitness values by cock particles with good fitness
values, the superiority of hen particles can be guaranteed and the global search ability of chicken flocks
can be strengthened.

From Equation (10), it can be found that chicken particles can only learn from hen particles, and
the foraging strategy is single. In this regard, the update equation for chicks is improved in two aspects.
Firstly, the part of learning from the global optimum individual is added to the chicken position update
equation. By learning from the best particles in the chicken flock, the ability of chick particles to jump
out of the local optimum can be enhanced. Secondly, At the later stage of the iteration, the population
is simplified. In order to increase the diversity of population particles, chick particles are mutated in
the late iteration period.

The position update equation of improved chick position is shown in Equation (13).

Pj
i (t + 1) = Pj

i (t) + FL ∗ [Pj
m(t)−Pj

i (t)] + H ∗ [Pj
best(t)−Pj

i (t)]
H = exp(Wbest −Wi)

(13)

where the Pj
best(t) is optimal individual of chicken swarm; Wbest is fitness value of the Pj

best(t).
The process of improved chicken swarm algorithm is as follows.

(1) The parameters of the flock are initialized, such as the maximum iterations M, the number of
cocks rn, hens hn and chicks cn, update time G and other parameters.

(2) Initialize chicken particles. The fitness value of each particle is calculated. The fitness values are
sorted to find the local optimum and global optimum.

(3) Start iteration. Determine whether the update time G is reached. If the update time is reached,
the flock hierarchy, dominance relationship and parent-child relationship are updated; if the
update time is not reached, the positions of the cocks, hens and chicks are calculated according to
Equations (9), (12) and (13). The fitness value of each particle is calculated.

(4) The optimal individual and the location of the optimal individual are updated.
(5) Determine whether to terminate the procedure. If the closure condition is met, the result is output.

If the termination condition is not reached, the program continues to run.

The flow chart of ICSO is shown in Figure 1.
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Figure 1. Flow chart of improved chicken swarm optimization algorithm (ICSO).

This study uses four standard test functions to test the convergence accuracy of ICSO, CSO,
differential evolution algorithm (DE), and particle swarm optimization (PSO) algorithms. Four
optimization algorithms are tested 10 times for each test function in 20 and 80 dimensions respectively.

The calculation equation, the value range and the optimal value of the test function are presented
in Table 1.
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Table 1. Test function.

Function Range Optimum

f1 =
d
∑

i=1
x2

i [−100, 100] 0

f2 =
d
∏
i=1
|xi|+

d
∑

i=1
|xi| [−10, 10] 0

f3 =
d
∑

i=1
(x2

i − 10 cos(2πxi) + 10) [−5.12, 5.12] 0

f4 = −20 exp(− 1
5

√
1
n

d
∑

i=1
x2

i )− exp( 1
n

d
∑

i=1
cos 2πxi)

+20 + exp(1)
[−32, 32] 0

The algorithm parameters are set as shown in Table 2.

Table 2. Parameters setting.

Algorithms Parameters

PSO M = 500, N = 10 × d, c1 = c2 = 1.5, w = 0.729
DE M = 500, N = 10 × d, K = 0.5, C = 0.9

CSO M = 500, N = 10 × d, Nr = 0.3 × N, Nh = 0.5 × N, Nc = 0.2 × N, G = 5
ICSO M = 500, N = 10 × d, Nr = 0.3 × N, Nh = 0.5 × N, Nc = 0.2 × N, G = 5

It can be seen from Table 2 that the number of population N is 10 × d (d is the test dimension). M
is the number of iterations for the four algorithms, which is 500 in this study. The PSO algorithm has
the inertia weight w of 100 and the acceleration factor c1 of 1.5. The scale factor K and crossover factor
C of the differential evolution algorithm (DE) are 0.5 and 0.9, respectively. The basic parameters of the
CSO and ICSO algorithms are consistent.

In order to obtain more objective test results, the test uses a unified platform device. The test
platform uses A8-4500M processor and MATLAB R2014a software.

As shown in Table 3, the convergence accuracy of ICSO and CSO algorithms is obviously better
than PSO and DE algorithms. The DE algorithm has the worst convergence accuracy compared to
the other three optimization algorithms. For standard test functions f 1, f 2 and f 4, compared with
the convergence accuracy of each algorithm in the 20th dimension, the convergence accuracy of each
algorithm decreases in the 80th dimension. This shows that with the increase of test dimension,
search difficulty increases and convergence accuracy decreases. The convergence accuracy of the
ICSO algorithm in both 20th dimension and 80th dimension is significantly better than the other
three optimization algorithms. For the function f 3, PSO, DE and CSO algorithms do not converge
to the optimal value, but ICSO converges to the optimal value 0 in both the 20th dimension and
80th dimension. By comparing the data in the table, it is found that ICSO algorithm achieves
better optimization results. Compared with CSO algorithm, ICSO algorithm has better convergence
performance, whether in the 20th or 80th dimension of the standard test functions.

Through the analysis of the test result data, it can be found that the convergence precision of ICSO
algorithm is better than PSO, DE and CSO algorithms. By adding dynamic inertia weights w in the hen
update equation of the ICSO algorithm, the hen’s early local search ability and the late global search
ability are strengthened. The chicks with poor fitness values learn from the best individual, which
can expand the search range of chick particles. Moreover, by replacing hen particles with poor fitness
values with a certain number of cock particles with good fitness values, the population maintains a
good competition.

The convergence curves of the four optimization algorithms in 20th dimension are shown in
Figure 2.
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Table 3. The performance test results.

FunctionAlgorithm Worst Value 20d/80d Optimum 20d/80d Average Value 20d/80d

f 1

CSO 8.81 × 10−42/1.25 7.97 × 10−44/2.61 × 10−2 2.45 × 10−42/0.31
PSO 4.25 × 10−7/14.77 1.90 × 10−14/3.05 4.35 × 10−8/7.26
DE 3.78/4.82 × 104 2.24/3.84 × 104 2.90/4.35 × 104

ICSO 1.00 × 10−59/1.59 × 10−10 2.18 × 10−65/9.39 × 10−16 1.13 × 10−60/2.69 × 10−11

f 2

CSO 1.13 × 10−27/4.06 × 10−10 4.00 × 10−29/2.83 × 10−14 3.28 × 10−28/2.01 × 10−10

PSO 0.80/6.26 0.09/4.61 0.31/5.53
DE 0.44/82.91 0.29/70.63 0.35/79.50

ICSO 1.61 × 10−38/1.52 × 10−21 2.09 × 10−43/1.10 × 10−25 2.53 × 10−39/1.59 × 10−22

f 3

CSO 0/1.09 × 10−4 0/9.93 × 10−7 0/3.61 × 10−5

PSO 65.66/361.19 32.83/145.08 46.48/221.11
DE 140.18/1.28 × 103 104.80/1.14 × 103 126.06/1.22 × 103

ICSO 0/0 0/0 0/0

f 4

CSO 4.44 × 10−15/0.21 4.44 × 10−15/0.01 4.44 × 10−15/0.04
PSO 5.46/6.95 1.47/5.07 2.57/5.87
DE 0.79/17.69 0.45/16.75 0.64/17.19

ICSO 8.88 × 10−16/4.38 × 10−8 8.88 × 10−16/5.06 × 10−12 8.88 × 10−16/4.44 × 10−9
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Figure 2. The convergence curves: (a) the convergence curves of f 1; (b) the convergence curves of f 2;
(c) the convergence curves of f 3; (d) the convergence curves of f 4.

In Figure 2, the blue line indicates the convergence curve of the ICSO algorithm, the red line
indicates the convergence curve of the CSO algorithm. The blue line falls the fastest and is below
the other three colour lines. The convergence performance of the PSO and DE algorithms are similar.
The convergence performance of ICSO and CSO algorithms is significantly better than that of PSO and
DE algorithms. Comprehensive comparison shows that the convergence effect of ICSO algorithm is
the best. Therefore, the parameters of SVM are optimized by the ICSO algorithm in this study.

3. Simulation Experiment and Data Analysis

The basic idea of short-term wind power forecasting is as follows: firstly, the training samples
and test samples are determined and normalized; secondly, the model is trained by using the training
samples; finally, the test samples are predicted by the model and the evaluation indicators are used to
evaluate the prediction effect of the model.

The la haute borne data provided by ENGIE Renewable Energy are used as experimental data in
this study. The wind turbine name is R80711. The manufacturer of the wind turbine is the company
SENVION, the rated power of the wind turbine is 2050 kw, the rotor diameter of the wind turbine is
82 m, and the hub height of the wind turbine is 80 m. A total of 540 sets of wind power data from
27 January to 30 January 2017 are selected as experimental data.

Table 4 presents the input and output of the prediction model.

Table 4. The input and output of the prediction model.

Input Output

Wind speed
Powerwind direction

Temperature

In Table 4, the wind speed, temperature and wind direction are selected as the input of the
prediction model. The power is selected as output. The ICSO algorithm uses the mean square error of
the training samples as the fitness function of. The calculation equation of fitness function is as follows:

Fit =
1
n

n

∑
i=1

(qi − q∗i )
2

(14)

There are n training samples in total. qi is the true value of training samples. q∗i is the prediction
value of training samples.
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In this study, the root mean square error (RMSE) and relative error (RE) are used to evaluate the
prediction effect of the model:

RMSE =

√√√√ 1
N

N

∑
i=1

(oi − o∗i )
2 (15)

RE =
o∗i − oi

oi
× 100 (16)

where oi is the true value of test samples, o∗i is the prediction value of test samples.
The specific steps to predict short-term power using the ICSO-SVM model are as follows:

(1) Determine the input samples and test samples.
(2) Normalize input and output samples.
(3) Initialize chicken parameters and population, and calculate the fitness value of each particle.
(4) Optimize SVM parameters with ICSO.
(5) Input optimized parameters into the SVM model and predict the test samples.
(6) Denormalize the predicted results and compare them with real values.

The prediction process of short-term power by the ICSO-SVM model is shown in Figure 3.
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In order to compare the effects of the number of training samples on the prediction accuracy,
two sets of wind power data are selected to test the model. The first set of wind power data consists
of 540 samples, 500 samples are used to train the model, and 40 samples are used to test the model.
The second set of wind power data consists of 440 samples, 400 samples are used to train the model,
and 40 samples are used to test the model.

Firstly, the ICSO-SVM model and CSO-SVM model are tested with the first set of wind power
data. The predicted results of the two models are shown in Figure 4.
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Figure 4. The predicted results of the two models for 500 training samples and 40 test samples.

As shown in Figure 4, the black line indicates the true value curve, the green line indicates
the predicted curve of the CSO-SVM model, and the blue line indicates the predicted curve of the
ICSO-SVM model. On the whole, the fluctuation trend of the blue line is closer to the fluctuation trend
of the black line, especially between the 30th sample and the 40th sample. In particular in the later
stage of prediction, the trend of blue line is more in line with the trend of black line than that of green
line. The relative error percentage curves of the two models are shown in Figure 5.
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Figure 5. The relative error percentage for 500 training samples and 40 test samples.

As shown in Figure 5, the fluctuation of the blue line is stable, while the green line is more volatile.
The maximum relative error percentage of CSO-SVM model is nearly 30%, which is obviously higher
than that of ICSO-SVM model.

Secondly, ICSO-SVM model and CSO-SVM model are tested with the second set of wind power
data. The predicted results of the two models are shown in Figure 6.

As shown in Figure 6, as the number of training samples decreases and the number of test samples
increases. Compared with Figure 4, it can be found that the prediction errors of the two models are
obviously increased. The predictive effect of ICSO model for the second set of wind power data is
better than CSO-SVM model. The relative error percentage curves of the two models are shown in
Figure 7.

Compared with Figure 5, it can be seen from Figure 7 that the maximum predicted relative
error percentage of CSO-SVM exceeds 60%, and the maximum predicted relative error percentage
of ICSO-SVM is close to 50%, indicating that the training sample has a greater impact on the
prediction results.
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Figure 6. The predicted results of the two models for 400 training samples and 40 test samples.
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For 500 training samples and 400 training samples, the maximum relative error percentages,
minimum relative error percentages, average relative error percentages and root mean square errors of
ICSO-SVM and CSO-SVM models are shown in Table 5.

Table 5. Analysis of test results.

Number of Training Samples Model Maximum Relative
Error Percentage %

Minimum Relative
Error Percentage %

Average Relative Error
Percentage % RMSE

500
CSO-SVM 28.97 −13.65 9.30 40.53
ICSO-SVM 15.75 −21.14 6.96 30.89

400
CSO-SVM 69.67 −9.63 18.29 51.52
ICSO-SVM 57.71 −21.61 16.14 46.91

It can be seen from Table 5 that as the training samples decrease, the average relative error and
the RMSE value increase significantly. For the first set of wind power data, the average relative error
percentage of the CSO-SVM model is 9.30%. For the second set of wind power data, the average
relative error percentage is 18.29%, which is nearly 2 times larger. The RMSE value of the CSO-SVM
model increases from 40.53 to 51.52. The RMSE value of the ICSO-SVM model increases from 30.89 to
46.91. Through data analysis, it is found that the number of training samples has an obvious impact on
the prediction effect of the model.

The test results show that the prediction errors of CSO-LSSVM and ICSO-SVM models
increase relatively with the decrease of training samples. Whether the training samples are 500
or 400, the average relative error and RMSE value of the ICSO-SVM model are smaller than the
CSO-SVM model.

4. Conclusions

The problems of air pollution and excessive exploitation of traditional fossil energy are becoming
increasingly serious. It is imperative to develop clean energy. Because of its renewable, clean
and environmental advantages, wind power generation receives attention from all over the world,
especially in countries with energy shortages. The installed capacity of wind turbines has increased
year by year. However, wind power has its own limitations and is greatly affected by the weather.
If the electricity generated by the wind is directly integrated into the power grid, it will impact the
quality of voltage and frequency of the power grid. The stable operation of the power grid is destroyed.
Therefore, it is of practical significance to make predictions on short-term wind power and improve the
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stability of power system operation. The SVM has better robustness, can avoid dimension disaster and
has strong non-linear mapping ability. So short-term wind power is predicted by SVM in this study.

In this study, the traditional CSO algorithm is improved. Wind power is predicted by the
ICSO-SVM model. This study draws the following conclusions:

(1) Because of the limitations of traditional CSO algorithm, both local search ability and global
search ability need to be improved. So the ICSO algorithm is introduced in this study. In the
ICSO algorithm, the position update equation of hens and chicks is improved. The self-learning
factor is introduced into the hen position updating equation to improve search ability. The role
of learning from the optimum particle is introduced into the chick position updating equation.
So the local search ability and global search ability of the algorithm are improved.

(2) The PSO, CSO, DE and ICSO algorithms are tested by the four standard test functions and the
test data are analysed. By comparing with the other three optimization algorithms, the ICSO
algorithm has the best convergence accuracy, whether in the 20th or 80th dimension of the
standard test functions.

(3) When the number of training samples is reduced from 500 to 400, the predicted average relative
error percentage and RMSE values of the CSO-SVM and ICSO-SVM models are obviously
increased. The results indicate that the number of training samples has a significant impact
on the prediction effect, and show that ICSO-SVM has better prediction accuracy than the
CSO-SVM model.
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