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Abstract: The urban growth boundary (UGB) plays an important role in the regulation of urban
sprawl and the conservation of natural ecosystems. The delineation of UGBs is a common strategy
in urban planning, especially in metropolitan areas undergoing fast expansion. However, reliable
tools for the delineation of informed UGBs are still not widely available for planners. In this study,
a patch-based cellular automaton (CA) model was applied to build UGBs, in which urban expansions
were represented as organic and spontaneous patch growing processes. The proposed CA model
enables the modeler to build various spatial and socio-economic scenarios for UGB delineation.
Parameters that control the patch size and shape, along with the spatial compactness of an urban
growth pattern, were optimized using a genetic algorithm. A random forest model was employed
to estimate the probability of urban development. Six scenarios in terms of the demand and the
spatial pattern of urban land allocation were constructed to generate UGB alternatives based on
the simulated urban land maps from the CA model. Application of the proposed model in Ezhou,
China from 2004 to 2030 reveals that the model proposed in this study can help urban planners make
informed decisions on the delineation of UGBs under different scenarios.

Keywords: urban growth boundary; cellular automata; patch growing; random forest; genetic algorithm

1. Introduction

Future urban sprawl is estimated to cause a more than 3.7% decrease of global grain production
by 2030, which will significantly aggravate food shortages in many developing countries [1].
Moreover, the intactness of biodiversity, in many biomes, has been pushed beyond the safe boundary
due to uncontrolled urban growth [2]. Therefore, several strategies, such as green belts, urban service
boundaries (USBs), and urban growth boundaries (UGBs), are applied worldwide to effectively
regulate urban growth into a sustainable pathway [3], among which the UGB is attested to be the
most successful one. A UGB is a demarcation line that distinguishes regions for urban development
and areas for natural conservation and agricultural production [4]. Both practitioners and researchers
have confirmed the effectiveness of UGBs in suppressing unplanned urban expansion, in promoting
the efficiency of urban infrastructures, and in conserving natural ecosystems [4,5]. Many cities in
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the United States (such as Maryland, Florida, Minnesota, and Oregon) established UGB in the 20th
century to direct sustainable urban growth [6]. Cities in other countries, such as Australia [7], Korea [8],
Canada [9], and India [10], also adopted UGB. Notably, the Chinese government recently adapted its
traditional strategies (which often failed in forbidding the uncontrolled urban expansion) of urban
development management to a universal policy of delineating UGBs in more than 3000 cities and
towns [11]. However, many of these UGBs were established based on empirical knowledge without
quantitative and scientific support [3], due to the lack of appropriate tools. This deficiency highlights
the necessities of appropriate and feasible means to delineate UGBs under different scenarios of
urban development.

Approaches regarding the delineation of UGB generally fall into two groups. The first group
directly simulates the radial expansion of UGB along different azimuths. Radial growth for UGBs
is estimated based on the relationships between the driving factors and the distance from the city
centers to the intersection points in the existing UGBs with the straight lines in different directions.
The spatial relationship is usually estimated utilizing spatial logistic regression or artificial neural
networks [12-14]. These radial-based UGB models were first put forward by Tayyebi, Pijanowski,
and Pekin [13], and were later advanced by integrating natural obstacles and more driving factors
and temporal periods to increase reliability and reduce uncertainty [11]. The major limitation of
these radial-based UGB models is that they cannot reveal the spatial details of urban growth (for
example, the spatial pattern and interactions between urban parcels). Moreover, it is inconvenient to
conduct what-if analysis using these models. Additionally, these models do not sufficiently consider
the constraints of wild space conservation on UGB delineation.

The other group of approaches delineate UGBs by identifying the outlines of the mosaics of
future urban landscapes, which are usually simulated utilizing land change models, such as cellular
automata (CA) and agent-based models (ABMs). The advantage of ABMs lies in its ability to represent
the behaviors of decisionmakers (such as landowners and developers) and their interactions with
each other and with the environment [15]. However, development, calibration, and validation of the
structure, process, and output of ABMs for urban simulation require large volumes of spatial-temporal
individual data, which are often challenging to collect [16]. These limitations have imposed a
knowing-doing gap for urban planners looking to use ABMs in their practice of UGB delineation.
Comparatively, CA is a more popular simulation tool that is easier to implement, because of its
flexibility in model structure and seamless integration with Geographic Information Systems [17].
Many researchers have used the CA model since the 1990s to support urban planning design, to explain
the mechanisms of urban sprawl, and to identify the potentially adverse effects raised from urban
expansion. Additionally, several CA-based UGB models have been developed in combination with
other techniques in recent years [18-20].

However, conventional CA models for UGB delineation usually utilize a cell-based simulation
engine in which urban expansion is expressed as the state transition of individual pixels, while, in reality,
urban developments are typically implemented in parcels. To alleviate this biased representation of
the urban development procedure, an alternative form of CA model, which is patch-based CA, is used.
In a patch-based CA, urban land parcels are represented by irregular raster patches. A raster patchis a
collection of regular lattices that have the same state and are spatially connected. Researches have
validated the superiority of patch-based CA models over cell-based ones in the simulation of urban
growth [21-25], as well as the UGB delineation [26].

A major limitation in the delineation of UGBs using patch-based CA models lies in the disability
of allowing the scenario builders to carefully control the spatial pattern of the future urban landscape,
which is of importance for urban planners to understand the potential impacts of their spatial
preferences on the resulting UGBs. For instance, some urban planners may want to conduct what-if
analysis by simultaneously tuning the patch size, shape, and the spatial compactness of urban patch
allocation when demarcating UGBs. Although several studies have tried to generate UGB under a



Sustainability 2019, 11, 6159 3of 27

single scenario [11-13,20], scenarios that simultaneously consider the urban development demand and
spatial pattern of urban growth allocation have not yet been adequately explored for UGB generation.

Therefore, the purpose of this study was to build a patch-based CA model that allows for the
establishment of spatial scenarios for the delineation of UGBs. The CA model uses two parameterized
and self-organized patch growing functions to represent two different spatial progress of urban
development: organic urban growth, which dedicates the expansion of existing urban patches,
and spontaneous urban growth, which depicts the initialization and self-growing of isolated urban
patches. These two spatial progressions of urban development occur and agglomerate to generate
various urban landscapes. Parameters were designed in the proposed CA model for urban planners
to control the patch size, shape, and compactness of urban growth when delineating UGBs. In this
study, we focused on the following two research questions: first, we attempted to assess the reliability
and feasibility of the proposed patch-based CA model in a simulation of realistic urban growth;
second, we showcased how spatial compactness of patch layout impacts the outputs of scenario-based
delineation of UGBs. The application of the UGB delineation framework was conducted in a rapidly
growing city in central China, where various policies have been implemented to direct sustainable
urban growth and to protect farmlands and open spaces.

2. Study Area and Data

2.1. Study Area

The study area is a satellite city of the capital of Hubei province, China (see Figure 1). The total area
of this region is 1593 km? and was inhabited by around 1.3 million people in 2016, with more than half
living in the urban areas. The study area has various ecosystems and natural habitats for biodiversity
conservation. Notably, the wetland system in Ezhou is essential in the local freshwater provision
and the preservation of migratory birds. Additionally, Ezhou is a major grain-producing region in
central China and a national pilot city of urban-rural integration development. Therefore, many
land use policies are initially implemented and evaluated here before they are applied across the
country. These policies have vastly provoked the economic and population explosion in this region.
Consequently, rapid urban expansion has been observed in recent years (see Figure 2) and has exerted
considerable pressure on the sustainable grain production and conservation of natural habitats for
wildlife, especially palmipeds [27,28]. Therefore, the local government has launched a series of land
use policies [29,30] to shape urban growth by conserving largely-undeveloped wildland around towns,
such as the permanent farmland zone, the ecological red line strategy [31], and the urban-rural linked
construction policy [32]. Among these policies, the UGB delineation strategy plays an indispensable
role in guiding urban growth to a more sustainable pathway. However, the current UGBs in the
study area were mainly drawn empirically by urban planners. Thus, sophisticated tools that support
informed delineation of UGBs are in urgent need.
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Figure 2. Land use/cover maps. (a) 2004, (b) 2009, and (c) 2016. Land use/cover maps were produced
by the local government using a human-computer interaction method based on the Landsat and SPOT

satellite images.
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2.2. Data

Vector-based land use and land cover maps in 2004, 2009, and 2016 were obtained from the
local government to calibrate and validate the patch-based CA model. These LULC maps were
produced using a human—computer interaction method based on the Landsat and SPOT satellite
images. Essential pre-processing steps, such as radiometric and geometric correction, orthorectification,
projection, and coordinate transformation were applied by the local Department of Land Surveying to
eliminate or reduce the errors in these images before interpretation. Then, the department officers
classified different land use/cover types using visual interpretation and field investigation methods.
The overall accuracy of the interpreted LULC maps is over 90% [33]. The original LULC maps consist
of multiple thematic land use/cover types, including (i) irrigated and rainfed farmland; (ii) forest and
grassland with different canopy densities; (iii) wetlands, such as rivers, lakes, and shoals; (iv) rural
construction land; (v) urban land, such as residential, industrial, commercial, and transport land;
and (vi) other lands, such as bare, mines, and other open space. In this study, the urban-related LULC
categories were aggregated as the urban land type, and all the other LULC categories were dissolved
as non-urban types. Figure 2 presents the land use/cover maps.

A bevy of factors was prepared to evaluate the probability of urban development in the study
area. These factors included elevation, slope, soil quality, kernel density of points-of-interest (POI),
and other distance-based variables. The digital elevation model (DEM) data with a 30 m x 30 m
spatial resolution was from NASA Shuttle Radar Topography Mission (SRTM) data and was provided
by the Geospatial Data Cloud (http://www.gscloud.cn). The slope was derived from the DEM data.
The local department of soil surveying provided the soil quality data. The POI data was retrieved
from the Baidu web map [34], which shows the spatial distribution of various public infrastructures,
such as shopping malls, restaurants, and schools in 2010. The spatial clustering pattern of these POls
was estimated using the kernel density function in which the bandwidth was determined following
Silverman’s rule of thumb [35]. The cost-based distance of each cell to the selected spatial entities (i.e.,
city center, town center, railway station, highway entrance, and major water body) was calculated to
represent the attractiveness of these locations. The transportation layers that show the major road,
local road, highways, and railways were obtained from the Department of Transportation in the study
area (http://www.ezgl.cn/). All variables were prepared and processed in ESRI ArcMap 10.4.1 [36]
and rescaled to the interval (0, 1) for estimation of urban development probability. All the spatial
data were resampled to a 60 m X 60 m spatial resolution given the substantial computation burden
during the auto-calibration of model parameters using an optimization algorithm (see Section 3.5).
Besides, the urban population data from 1978 to 2016 in the study area were collected from the Bureau
of Statistics to estimate the future demand of urban development.

A important role of UGBs is to preserve ecologically-important areas that provide valuable
eco-services for human beings. Thus, regions that play an indispensable role in eco-services’ provision
should be identified and preserved before delineating UGBs. In this study, these ecologically protected
areas were directly derived from the land use plan that was released by the local government.
The land use planners identified these protected areas using a multi-criteria evaluation and analytical
hierarchy process, based on factors such as vegetation type, soil property, land use, topography,
and soil erosion [37]. The protected areas identified involve natural reserves, public parks, wetlands,
natural forests with dense canopies, a source area of drinking water, and regions that are undergoing
or very likely to suffer from severe soil erosion due to the rapid urbanization process in the study area
(as presented in Figure 3). These areas were treated as constraints of future urban growth, and thus,
were filtered out from the UGBs.
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Figure 3. Ecologically protected areas in the study area.
3. Methodology

3.1. General Procedure

The UGB delineation framework proposed in this study involves several modules, as shown in
Figure 4. First, the total urban land demands were projected based on linear extrapolations of historical
observations in different time intervals and the per-capita urban land requirement (Section 3.2).
Second, a patch-based CA model was constructed to simulate urban growth (Section 3.4), in which the
urban development probability was estimated using a random forest algorithm (Section 3.3), and the
key model parameters were optimized utilizing a genetic algorithm (Section 3.5). The proposed
CA model represents urban growth using two processes: organic and spontaneous urban growth.
During the simulation process, a specific percentage of the urban demand was allocated through the
organic growth process, and the spontaneous growth process spatialized the remaining urban land.
Third, urban growth under multiple spatial and socio-economic scenarios (Section 3.7) was simulated
using the patch-based CA model. Finally, urban land maps from multiple model runs were aggregated,
morphologically modified, and vectorized to generate UGB alternatives.
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Figure 4. The framework of urban growth boundaries” delineation (UGB: urban growth boundary).
3.2. Projection of Urban Development Demand

In this study, we applied a simple approach to estimate the demand for future urban development.
This approach bases its calculation of urban demand on the projection of future population and the
estimation of per capita requirements of urban land [25], as described below:

D; = Py Xd;. (1)

where D is the required urban land at year t. P; represents the projected population at year t. d; depicts
the per capita urban land at year ¢.

3.3. The Estimation of Urban Development Probability Using a Random Forest Algorithm

RF is a reliable, non-parametric ensemble model that ranks on the top of the classifier hierarchy.
It uses the “bootstrap” sampling strategy to create a “forest” that consists of many individual decision
trees [38]. Each tree makes independent decisions based on a subset of the feature variables (i.e.,
determinant factors) and a random selection of the observations (i.e., training data). The final outputs
of the RF model are generated by averaging the decisions of the individual trees or through a voting
strategy, as shown in Figure 5. Due to the sampling strategy utilized to select the subset of variables
and observations, the individual trees are constructed independently, which gives RF the merit of



Sustainability 2019, 11, 6159 8 of 27

being insensitive to outliers, noise, and overfitting [39]. Readers are referred to Breiman [40] for more
details about the RF model.

Datasets

e T

Random subset 1 Random subset 2 Random subset 3 Random subset 4

Tree 1 Tree 2 Tree 3 Tree 4

Class 1 Class 2 Class 1 Class 1

Voting

Outcome: Class 1

Figure 5. Workflow of the random forest algorithm.

In this study, we randomly drew 12,000 points from the binary urban land change maps between
2004 and 2009 in the study area as the observations using a stratified sampling strategy. This binary
variable, in which value 0 denotes “urban persistence” and value 1 depicts “non-urban to urban
changes,” serves as the dependent variable in the RF model, and the independent variables were
derived from the same locations in the driving factor maps. These randomly-sampled observations
were used to train the RF model, which was implemented using the “Scikit-learn” package in Python
3.6 [41]. The two primary hyperparameters in the RF model, whifh are the number of features for
splitting and the number of trees in the “forest,” were calibrated through a trial-and-error process in
this study [42]. Finally, the number of variables for tree splitting was 5 (half of the candidate variables),
and the size of the forest was 100. Then, we used the calibrated RF model to estimate the urban
development probabilities for the periods of 2004-2009 and 2009-2016, respectively. The performance
of the RF model was evaluated using the relative operating characteristic (ROC) curve, from which
the area under the curve (AUC) was calculated to indicate the model accuracy. A value of 0.5 for the
AUC value means equal performance with a random model, and a larger value indicates higher model
accuracy [43].

3.4. Simulating Urban Growth Using a Patch-Based CA Model

Urban growth can be categorized into three basic types of spatial pattern; i.e., infilling,
edge-expansion, and outlying (as described by Liu, et al. [44]). These three patterns were simulated
using two complementary procedures in the proposed CA model: organic and spontaneous growth [23].
The organic growth process (including the infill and edge-expansion pattern) is dedicated to
developing new urban patches by spreading from the inner or outer edges of an existing urban
patch. Meanwhile, the spontaneous growth process (i.e., the outlying pattern) was designed to generate
new urban patches that are isolated from the old ones. Both patch growing functions generate new
patches following two consecutive steps: seeding and self-growing [45,46].

The seeding procedure first ranks all cells in order of their development probabilities and then
keeps only a subset of cells with the highest probabilities. The expected quantity of urban development
defines the number of cells that will be retained during this patch seeding process. The preserved cells
then serve as candidates where new patches initialize growth. Following the pruning operation was
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a testing procedure to select the patch seed. To be specific, this testing operation randomly selects
a cell from the pool of the candidates. If the development probability of this cell is larger than a
random number that was generated from a uniform distribution in the interval of [0, 1], the cell is
accepted as a seed to start a new patch. Otherwise, this testing process iterates until one seed survives.
Notably, only cells that are spatially connected to existing urban patches can serve as candidates
during the organic patch-growing process, and they are excluded from the alternative seeds for the
spontaneous growing process. The patch self-growing procedure starts after the seeding process by
centrally placing a scanning window (3 X 3 cells) on the selected seed. All neighboring cells that
are available for development within this window are put into a pool, members of which serve as
candidates for the self-growing of new patches. Then, another cell in this pool is selected using
the same survival-testing operation. This cell is added to form the new patch if it survives the test,
and the scanning window will center on this cell to add its feasible neighbors to the patch-growing
pool, as shown in Figure 6. Moreover, if neighboring cells that are newly collected by this scanning
window are already in the pool, their urban development probabilities are scaled down or up by
multiplying a parameter termed as isometry. Then, another cell is picked and added if it survives
from the test, and its neighbors are collected. The patch’s self-growing procedure continues until the
expected number of cells for this new patch is reached. The isometry parameter varies from 0 to 2.
Increasing this parameter will lead to a more compact patch. Specifically, the isometry parameter with
a value smaller than 1 will elongate the patch, and a value larger than 1 will increase the roundness of
the new patch. The sizes of a new patch are assumed to follow a normal distribution defined by the
mean and variance of patch size. Another parameter designed in the patch-based CA model is the
area-proportion of new patches that are generated by the organic urban growth procedure (hereafter
termed as organic proportion). The organic proportion parameter impacts the spatial compactness of
the simulated urban landscape. The patch growing engine keeps running until the specified urban
land demand is satisfied. The organic proportion parameter, the isometry parameter, the mean, and the
variance of patch size for the organic and spontaneous growing procedures can be tuned through a
trial-and-error process or using heuristic optimizing approaches. In this study, we leveraged a genetic
algorithm to automatically calibrate those parameters.
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Figure 6. Patch generation function based on seeding and self-growing (adapted from [47]; this figure
shows the procedure of generating an urban patch with a size of 3 cells).

3.5. Calibration of the CA Parameters Using a Genetic Algorithm

The genetic algorithm (GA) is a machine learning algorithm that was inspired by the mechanism of
natural evolution, and which is well suited to global optimization [48]. In the GA tool, the parameters
to be optimized are encoded into an individual chromosome in a population which evolves based
on the use of three stochastic operators: selection, crossover, and mutation [49-51]. The individual
chromosome is comprised of several genes corresponding to the set of model parameters to be
optimized [52]. The GA first randomly generates a number of individual chromosomes that constitute
the initial population [53]. Then, the three stochastic operators are used to create new populations
with the purpose of minimizing or maximizing the fitness function. The crossover operator combines
two parent chromosomes to generate new individuals. The parents are selected based on a fitness
maximization criterion, and individuals with fitness scores lower than a predefined threshold are
removed from the population. The mutation operator moderately perturbs a chromosome by randomly
changing some of the genes to avoid homogeneity among chromosomes in the population [54].
The parent chromosomes are selected using the one-to-one deterministic tournament procedure [55].
Through this heuristic searching process, a new population is assumed to inherit individuals with
higher fitness from the previous generations; thus, having a larger potential to find optimal solutions
for a problem [56]. The core mechanism of the GA tool used in this study was adapted from the
evolving objects (EO) computation library [57]. The individuals in a new generation in the proposed
GA tool generally consist of three parts: the crossover operation creates 70% of the new individuals,
the mutation operation generates 1% using parent chromosomes that do not take part in the crossover
procedure, and the remaining 29% are directly inherited from the original chromosomes in the previous
generation [58]. Our GA kept evolving the populations until the differences among the best fitness
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scores in several consecutive generations were less than 5%. The individual chromosome with the
highest fitness score determined the final model parameters to be applied in the subsequent validation
and simulation process.

Additionally, a surrogate modeling approach [59] is applied in the GA tool to reduce the number
of fitness/function evaluations during model implementation, decreasing the computational cost [60].
The surrogate approach uses a k-nearest neighbors (KNN) classifier [61] to approximate the fitness
scores of some individual chromosomes based on their distance to the remaining chromosomes
whose fitness scores are exactly evaluated by executing the fitness function. In this study, the fitness
score of an unknown individual is assigned with the value of its nearest known individual [62].
For each generation, the fitness function of 70% of the individual chromosomes in a generation are
precisely calculated, and the fitness scores of the remaining chromosomes are approximated using the
surrogate model. For this remaining group, the fitness function of 70% of the individuals that have the
highest fitness scores are executed by the GA tool to get their actual fitness values. These individual
chromosomes are then subsequently used to update the next generation.

Moreover, to reduce the risk of overfitting in the GA tool, the variation range of each gene/parameter
is limited in an envelope around the initial value of that parameter during the reproduction
of new generations [58]. In this context, the initial value of model parameters is important to
improve model performance. These initial values can be defined based on empirical knowledge or
historical observations. More details about the GA tool are referred to in Soares-Filho, Rodrigues,
and Follador [58].

We used the landscape expansion index proposed by Liu, Li, Chen, Tan, Li, and Ai [44] to evaluate
the initial values for the mean and variance of patch size for the organic and spontaneous patch growth
processes, and the initial value for the organic proportion parameter. The landscape expansion index
categorized the new urban patches that emerged during the urban development periods of 2004-2009,
2009-2016, and 2004-2016 as infilling, edge-expansion, and outlying patterns, which could be further
grouped into the two patch growing processes. For technical details about the landscape expansion
index, please refer to [44]. Afterwards, we defined the initial value of the mean patch size for the two
patch growing processes by correspondingly averaging the minimum and maximum values of the
mean sizes of the patches for the two urban growth processes in those periods. The initial values for
the variance of patch size and the organic proportion parameter were determined in the same way.
The value ranges for these parameters were defined by the corresponding minimum and maximum
values observed, except that the scope of the organic proportion parameter was limited to within
[0, 1]. The initial values of the isometry parameter for both patch growth processes were assigned the
value 1, which means no preference on patch shapes were considered, and their range was in [0, 2],
as mentioned above.

The fitness function in the GA tool is represented by an index that measures the similarity between
the simulated urban landscape from the CA model and the observed one. Researchers have shown that
the similarity between different urban land patterns should be estimated from a neighborhood-based
perspective instead of through a cell-to-cell comparison manner [63]. So far, many neighborhood-based
approaches have been developed to measure pattern similarities between urban maps [64-66]. In this
study, we adopted the reciprocal similarity comparison index proposed by AlexHagen [67] and
Almeida, et al. [68] to evaluate the spatial agreement between two urban landscape patterns. This index
was also used to indicate the performance of the patch-based CA model during the validation
period. Notably, the index considers only the simulated changes when measuring pattern similarity;
thus, avoiding biased estimation of similarity caused by the large quantity of persistence in the
simulated urban maps. The size of the neighborhood window is 5 x 5 cells. Moreover, an exponential,
distance-decayed function is applied to differentiate the influence of neighbors on the similarity.
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3.6. Validation of the CA Model

The model parameters calibrated during the period of 2004-2009 by the GA tool may have been
overfitted for the projection of future urban changes, and thus, we went through further validation.
The validation process was conducted by comparing the simulated urban changes with the observed
changes in a different period, 2009-2016. We used the observed area of urban development as the
expected urban demand during the validation period, and the urban development probability was
re-estimated with training data from urban changes in this period as well. Then, we ran the CA
model multiple times with the calibrated parameters from the GA tool, and the reciprocal similarity
comparison indices of the resulting urban land maps were calculated to prove the validity of the
CA model.

3.7. UGB Delineation under Different Spatial Scenarios

3.7.1. Scenario Building

In this study, we built six scenarios based on demand and allocation of urban development in
terms of future population growth and the spatial compactness of urban land layout. First, three
projections were made for future population based on the analysis of historical demography data
(see Figure 7). Then, two situations in terms of the spatial compactness of urban land allocation were
introduced by varying the organic proportion parameter in the CA model. The combination of the
three population projections and the two situations of urban compactness generated six scenarios.

130 e
2 120 mEC,
= - s
= -~ == A 1978-1999
— L - RS E 2
= e e e gttt - * 2000-2016
2 100 e i anaand -
- L S - — — = Fitted line for 1978-2016
2 o b= Ak -~ - . .
g 9 F = — — = Fitted line for 1978-1999
g0 Lok = == Fitted line for 2000-2016
= ’rr
x©
70 t

1978 1983 1988 1993 1998 2003 2008 2013 2018
Year

Figure 7. Population and the fitted trend lines at different time intervals from 1978 to 2016.

Figure 7 shows the population growth from 1978 to 2016, which can be divided into two intervals:
the fast-growing period from 1978 to 1999 and the slowly-increasing period from 2000 to 2016.
Accordingly, three population growth projections were designed for future urban demand calculations.
(1) Slow urban growth: Many researchers have reported that China has entered an era of low
population growth, which will lead to various socio-economic problems [69]. Therefore, this scenario
was designed to inspect future urban growth if the study area were to continue its low population
growth tendency. In this context, the future population was linearly extrapolated from the historical
populating growth trajectory between 2000 and 2016. (2) Moderate urban growth: In 2015, the Chinese
government changed its childbearing policy from one-child policy [70] to a universal two-child
policy [71], which should to increase the population growth rate. However, the effectiveness of this
policy remains to be examined [72]. In this scenario, we assumed that the two-child policy would
moderately promote future population growth. Therefore, we projected the future population in
this scenario through linear extrapolation based on the population-changing trajectory between 1978
and 2016. (3) Fast urban growth: This scenario assumed that the universal two-child policy would
significantly promote the future population growth rate, and thus, enlarges the demand for future
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urban development. To that end, we extrapolated the future population according to the historical
population growth from 1978 to 1999.

The two spatial situations of urban development compactness—compact and spontaneous, are
described as follows. (1) Compact urban growth: The CA model prefers the urban expansion pattern
of infilling and edge-expansion, which reflects the principle of compact development in smart growth.
This scenario can be realized by increasing the percentage of urban expansion that would be allocated
through the organic urban growth process, which meant that the organic proportion parameter in
the CA model was assigned a larger value. (2) Spontaneous urban growth: The CA model prefers
the pattern of outlying urban expansion, which tends to generate a more dispersed urban pattern.
This scenario was realized by increasing the percentage of urban expansion that would be allocated
through the spontaneous urban growth process; thus, the organic proportion parameter in the CA
model was assigned a smaller value.

Finally, six urban growth scenarios were defined as follows. Scenario 1: slow urban growth with
a compact spatial pattern; Scenario 2: slow urban growth with a dispersed spatial pattern; Scenario 3:
moderate urban growth with a compact spatial pattern; Scenario 4: moderate urban growth with a
dispersed spatial pattern; Scenario 5: fast urban growth with a compact spatial pattern; Scenario 6:
fast urban growth with a dispersed spatial pattern.

3.7.2. UGB Delineation Using Morphological Functions

We delineated UGBs based on the projections of future urban landscapes under the six scenarios.
In each scenario, the CA model ran multiple replications using the calibrated model parameters (except
for the organic proportion parameter), and the output urban land maps were stacked to generate an
aggregated urbanization map in which the development frequency of each cell was recorded [73].
Then, the aggregated urban map was pruned according to the development frequency of cells to
generate the final urban land map for UGB delineation. Specifically, we ranked the cells in the
aggregated map in descending order of their simulated urbanization frequency and cut off cells in cases
where the cumulative number of developed cells equaled the expected quantity of urban demand under
each scenario. Afterward, two image morphology operators termed opening and closing (as detailed
by Narayanan [74]) were applied to the pruned urban maps to bridge narrow gaps between urban
patches and eliminate small and dispersed urban blocks [18]. The window size of the morphological
operators was 3 X 3 in this study. The resulting urban land maps generated by the image morphology
operators were converted to vector polygons in the ERSI ArcGIS 10.4.1 software. These polygons were
then merged and dissolved to generate the UGBs, and polygons with areas smaller than 0.1 km? were
eliminated. The UGBs delineated by this process may consist of multiple parts, which is common in
many Chinese cities, as reported by other researchers [75].

4. Implementation and Results

4.1. Projection of Urban Demand under Different Scenarios

The fitted extrapolation functions and the projected populations in 2030 are shown in Table 1.
It can be seen that the extrapolation functions fit well with the historical trends of population growth.
The goodness-of-fit (R?) values for these functions are all above 0.90. The projected population in
the fast growth scenario is 1,541,260.66, which is 235,042.74 and 353,155.25 larger than those of the
moderate and low population growth scenarios. Table 2 shows the projected urban land demand in
2030 if we respectively refer to the historical observations in 2004, 2009, and 2016 as the per-capita
urban land requirement in 2030. We can see from Table 2 that the urban land demands in 2030 are even
smaller than the actual urban area in 2016 (154.94 km?) if we take the per-capita urban land requirement
in 2004 or 2009 as the reference. Comparatively, the projected urban land demand is more reasonable
when the observed per capita urban requirement in 2016 was the reference. Therefore, in this study,
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we set the urban land demand in 2030 under the low, moderate, and the fast population growth
scenarios as 165.56, 182.02, or 214.77 km?, respectively.

Table 1. Fitted extrapolation functions and the projected population in 2030.

Population Growth Scenario  Fitted Extrapolation Function =~ Goodness-Of-Fit (R?) Population in 2030

Low y =5,313.62x + 9,598,543.39 0.97 1,188,105.41
Moderate y =10,292.59x + 19,587,739.78 0.93 1,306,217.92
Fast y =15,796.83x + 30,526,304.24 0.99 1,541,260.66

Table 2. Per-capita urban land requirement and the projected total urban demands in 2030 under

different scenarios.

. . Per Capita Urban Demand 2 2 2
Population Growth Scenario (The Reference Year) 55.49 m~ (2004)  96.23 m~ (2009)  139.35 m“ (2016)
Low . 65.92 114.33 165.56
Moderate Pr‘gi;:ii;‘;tz‘i;r};an 72.48 125.69 182.02
High 85.52 148.31 214.77

4.2. Calibration and Validation of the Patch-Based CA Model

4.2.1. Performance of the Random Forest Algorithm

The ROC curves and corresponding AUCs for urban development probabilities during 20042009
and 2009-2016 are shown in Figure 8. The AUC values for these two periods are 0.87 and 0.88,
revealing acceptable performance of the RF model in the representation of the local relationship
between the driving factors and the urban development probability.
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Figure 8. Relative operating characteristics (ROCs) and areas under the curves (AUCs) for the random
forest models. (a) 2004-2009; (b) 2009-2016.

4.2.2. Calibrated Parameters for the Patch-Based CA Model

Table 3 shows the observed mean and variance of patch size for different urban expansion patterns
and their corresponding percentages from 2004 to 2016 via 2009. It can be seen that more urban
patches were generated through the organic urban development process between 2004 and 2016.
Generally, the spontaneous growth process tends to produce smaller urban patches than the organic
growth process.
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Table 3. Observed mean and variance of patch size for different urban expansion patterns and their
percentages (cells).

Urban Growth Process Organic Spontaneous
Urban Expansion Pattern Infilling and Edge-Expansion Outlying
Percentage 0.66 0.34
2004-2009 Mean 11.73 2.13
Variance 66.92 3.12
Percentage 0.61 0.39
urban development Period  2009-2016 Mean 7.54 7.63
Variance 4524 26.16
Percentage 0.76 0.24
2004-2016 Mean 25.58 4.84
Variance 196.56 19.99

The GA tool tuned the model parameters from the initial values and the solution space was
constrained by the defined ranges (as shown in Table 4). The population size of GA was set to 100.
Figure 9 shows the convergence process of the GA tool. It shows that the best fitness score in each
generation increases from 0.564 to 0.584 and the GA tool stops after evolving for 50 generations.
The calibrated model parameters are presented in Table 4. The calibrated organic proportion parameter
(0.78) indicates that the urban growth in the study area preferred the compact urban growth pattern,
which would improve the connectedness and cohesion of the urban landscape. The isometry parameter
shows that the self-growth of new urban patches in both urban growth processes tended to follow
an elongated pattern. The corresponding urban land map generated from the CA model using the
calibrated parameters (the fitness score is 0.584) is illustrated in Figure 10. Visual inspection shows
that there exists a high agreement between the simulated and observed urban land pattern. But the
simulated urban patches are more dispersed and fragmented than the observed ones, which means the
CA model parameters can be further optimized as needed.

Table 4. Initial values, ranges, and the optimized solutions for the model parameters (cells).

Parameters Initial Value Range Calibrated Value
Organic proportion 0.69 0,1) 0.78
Mean 16.56 (7.54, 25.58) 14.61
Organic growth Variance 120.90 (45. 24, 196.56) 120.89
Patch size and shape Isometry 1.00 0,2) 0.57
Mean 4.88 (2.13,7.63) 2.47
Spontaneous growth  Variance 19.99 (3.12, 26.169) 7.25
Isometry 1.00 0,2) 0.30
0.590 - mmmmmmm e
0.585
)
5 0.580
]
§ 0.575
=]
%0570
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Figure 9. Best fitness score in each generation of the genetic algorithm.
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Figure 10. Simulated and observed urban land map in 2009. (a) Observed urban land map; (b) Simulated
urban land map corresponding to the solution with the highest fitness score in the genetic algorithm.

4.2.3. Validation of the Calibrated CA Model

We ran the calibrated CA model 100 times. The simulated urban land map with the highest
similarity (0.398) is presented in Figure 11. It can be seen in Figure 11 that the simulated urban
pattern matches the observed one well, although patches generated by the CA model are more
irregular. Notably, as shown in Figure 11a3,b3, the spontaneous urban growth observed was captured
successfully by the CA model, which reveals the that the proposed CA model operates favorably for
the representation of the different urban growth patterns. The mean reciprocal similarity for these
100 model runs was 0.389 with a standard deviation of 0.0036, which asserts a good generalization
ability of the calibrated CA model. Thus, the CA model is capable of projecting future urban growth
with support from the RF algorithm and the GA tool.
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Figure 11. Simulated urban land map with the highest fitness score in the 100 model runs and the
observed urban land map in 2016. (a) Observed urban land map; (b) simulated urban land map with
the highest fitness score.

4.3. Scenario-Based Delineation of UGBs

4.3.1. The Simulated Urban Landscape in 2030 under Different Scenarios

The organic proportion parameter of the CA in the compact scenario was assigned value 1 which
means no spontaneous growth was allowed, and for the spontaneous scenario, the organic proportion
parameter was 0.39 (decreasing the calibrated percentage by 50%). The CA model was implemented
under the six scenarios to simulate the urban land patterns in 2030 starting from 2016, using the
calibrated model parameters, except for the organic proportion. The model ran 100 times for each
scenario and the resulting urban land maps were aggregated. Figure 12 shows the histogram of the
urbanization frequency maps under the six scenarios. As can be seen, there is not much difference in
the distribution of urbanization frequency between different spatial patterns of urban growth (compact
or spontaneous) under the slow and moderate urban growth scenarios. But the difference becomes
larger when more land is developed. To be specific, 20% of the total developed cells in scenario 5 (fast
urban growth with compact pattern) have urbanization frequencies larger than 90. However, only
8% of the cells have a frequency higher than 90 in scenario 6 (which have the same expected urban
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demand but follow a dispersed urban growth pattern). In addition, the percentages of cells that have
urbanization frequencies smaller than 10 are 27% and 38% for scenario 5 and 6, respectively.

100%
80% |
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g —
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— ]
[ e .
20% |
[ —— .
I |
0% 1 ———— 1 - 1 1 1 - J
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Figure 12. Frequency of urbanization in the aggregated urban map under different scenarios. (Scl) slow
urban growth with a compact spatial pattern; (Sc2) slow urban growth with a dispersed spatial pattern;
(Sc3) moderate urban growth with a compact spatial pattern; (Sc4) moderate urban growth with a
dispersed spatial pattern; (Sc5) fast urban growth with a compact spatial pattern; (Sc6) fast urban
growth with a dispersed spatial pattern.

The total area of new urban development and the frequency threshold used to prune the
aggregated urbanization map are shown in Table 5. The pruned urban land maps under six scenarios
are illustrated in Figure 13. Visual inspection of the pruned urban land maps (Figure 13) also reveals
that the distinctness within the simulated urban landscapes between different spatial patterns of
urban development increases when more urban land is requested. In addition, landscape metrics
for new patches in the pruned urban maps under these scenarios were calculated in the Fragstats
software [76] to characterize the spatial pattern of the simulated urban landscape, as shown in Table 6.
Detailed descriptions of these landscape metrics can be found in supplementary materials. Results show
that the urban patterns are more connected and aggregated in the compact urban growth scenarios.
The number of new patches (NP) generated under the compact scenarios is much smaller than that in
the spontaneous scenarios. The contiguity (CONTIG) and the cohesion (COHESION) indices suggest
that the connectedness of new patches are better in the compact scenarios than in the dispersed ones,
and the Euclidean nearest-neighbor (ENN) and the aggregation (Al) indices indicate that new patches
are more spatially clustered in the compact scenarios.

Table 5. The amount of newly generated urban patches and the pruning threshold for the aggregated
urbanization map in different scenarios.

Scenario  Area of New Urban Development (km?)  Pruning Threshold of Urbanization Frequency

Scl 104.76 58
Sc2 135.63 47
Sc3 120.32 44
Sc4 156.16 40
Sc5 154.13 57

Sc6 203.81 50
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Figure 13. Pruned urban maps under the six scenarios. (Sc1) slow urban growth with a compact spatial
pattern; (Sc2) slow urban growth with a dispersed spatial pattern; (Sc3) moderate urban growth with
a compact spatial pattern; (Sc4) moderate urban growth with a dispersed spatial pattern; (Sc5) fast
urban growth with a compact spatial pattern; (Sc6) fast urban growth with a dispersed spatial pattern.
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Table 6. Landscape metrics of the pruned urban land maps in different scenarios.

Landscape Metrics Scl Sc2 Sc3 Sc4 Sc5 Sc6 Definition
NP 293.00 551.00 483.00 870.00  639.00  1541.00 Number of urban patches
CONTIC 0.20 013 023 018 026 018 Indication of the spatial contiguity of cells within an
urban patch
Quantification of patch isolation degree based on the
ENN 237.07  235.04 207.05 22457 176.67 205.19 Euclidean nearest-neighbor distances between urban
patches
COHESION 79.03 72.68 85.99 80.85 91.12 86.25 Measurement of the spatial connectedness of all the
urban patches
Al 40,49 33.66 49.71 4372 59.29 51.77 Measurement of the adjacencies or aggregation between

the urban patches

4.3.2. Established UGBs from the Simulated Urban Landscapes

The UGBs delineated based on the pruned urban land maps are presented in Figure 14. The results
show that the morphological operators worked well in converting the simulated urban land maps into
the UGBs. The general shapes of the delineated UGBs show good agreement with the simulated urban
distributions. But the difference of UGBs generated under the compact and the spontaneous scenarios
with the same urban demand is not as apparent as the original urban land maps due to the effects
of the morphological operators. Because many small and dispersed urban patches were removed,
and the narrow gaps between patches and the holes within patches were filled by the opening and
closing operators, as shown in the sub-areas in Figure 14. Therefore, the area of urban development
within the delineated UGBs is less than the predicted urban demands. These area differences are
larger in the spontaneous scenarios than that in the compact scenarios, especially when more urban
development is expected (as shown in Table 7). For example, the desired urban demand in the fast
growth scenarios is 214.77 km?, while the simulated UGBs only encompass 180.28 km? and 168.87 km?
urban land under the compact and spontaneous growth patterns, respectively. Figure 15 compares the
UGBs under the compact and spontaneous patterns in the fast growth scenario (Figure 15a), and the
UGBs in the compact scenarios with different urban growth rates were also overlapped to show their
spatial disagreement (Figure 15b). It can be seen in Figure 15a that there is high agreement between the
UGBs delineated under two urban expansion patterns in the fast growth scenario, despite the removal
of small patches and infill of gaps and holes.

Table 7. Area of UGBs under different scenarios (km?).

Simulated Difference
Scenario Expected
Compact Spontaneous Compact Spontaneous
Slow 165.56 132.43 129.69 33.13 35.88
Moderate 182.02 148.14 142.69 33.88 39.33
Fast 214.77 180.28 168.87 34.50 45.90
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Figure 14. Map of UGBs under different scenarios (UGBs: urban growth boundaries).
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Figure 15. Comparison maps of UGBs under different scenarios. (a) UGBs under the compact and
spontaneous patterns in the fast scenarios of urban growth; (b) UGBs in the compact scenarios with
different urban growth rates. UGBs: urban growth boundaries.

5. Discussion

5.1. Feasibility of the Proposed CA Model

Although the simulated urban patches are more dispersed and fragmented than the observed
ones in both the calibration and validation processes, which may reveal further improvements in both
the CA model parameters and the model structure, the results still verified the applicability of the
proposed CA model. Application of the CA model reveals that the spatial parameter for patch layout
control impacts the spatial pattern of simulated urban landscapes. The histogram of the aggregated
urbanization frequency (Figure 12) suggests that if the urban development process follows a compact
pattern; more cells will distribute in the high urbanization frequency intervals, which means a higher
spatial agreement among multiple model replications in a scenario. However, the impact of the spatial
pattern of patch growing process may be marginal in the early stage of urban development but will
become apparent when more land is converted for urban uses. Moreover, the difference of urban
land allocation between the two spatial patterns of urban land allocation indicates that a compact
urban growth behavior may reduce the uncertainty in terms of the location agreement among model
replications. The total area of new urban development and the pruning threshold under different
scenarios also supports the findings above. Under the spontaneous growth scenarios (2, 4, and 6),
more cells are likely to be developed, which makes the urban growth trajectory more difficult to
be predicted. Moreover, the pruning thresholds for the compact growth scenarios (1, 3, and 5) are
larger than the spontaneous scenarios (2, 4, and 6), which suggests that candidate cells for future
urban development are more spatially aggregated and can lead to more compact urban landscapes.
A comparison of the pruned urban land maps under different scenarios also indicates that urban land
tends to expand in a more compact manner when more organic growth is preferred.

The model calibration and validation results also reveals an overestimation of organic urban
growth and an underestimation of spontaneous urban growth, which is a common issue in CA-based
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urban growth model due to the embedded neighborhood mechanism. CA models are used to assume
that locations adjacent to existing urban areas are tend to show higher potential of future development.
this assumption can lead to more organic growth. This is a major reason why we divide urban growth
into organic and spontaneous urban growth. The other reason for the overestimation is that patches
from the spontaneous growth are agglomerated with patches from organic growth over the process of
urban development. Therefore, patches in the final outputs seems to be generated mostly from the
organic process.

5.2. Flexibility of the Proposed Framework in Building Scenarios for UGB Delineation

The patch-based CA model proposed, consists of two separate modules: the demand module that
allows modelers to specify the quantity of urban growth, and the spatialization module that determines
the spatial arrangement of these demands, which provides modelers the ability to control patch
characteristics (the patch size and shape parameters) and urban compactness (the organic proportion
parameter) [77]. By using this demand-allocation framework, modelers can apply various methods
(such as trend interpolation, linear regression, Markov chains, and system dynamics models) [78]
and social-economic indicators (such as GDP, population, and immigration) to estimate future urban
demand, and therefore, can establish various social-economic scenarios for UGB delineation by the
adjustment of these indicators. In this study, we used the linear extrapolation method to forecast
future urban demand. However, other sophisticated approaches, such as machine learning and
system dynamics models, could be applied to involve more essential social-economic indicators.
Additionally, the spatialization module enables the models to build a variety of spatial scenarios by
manipulation of the patch characteristics—the urban compactness, the ecological constraints, and even
the spatial drivers for the estimation of urban development probability. Therefore, the proposed
framework offers the modeler flexibility in building various spatial and nonspatial coupled scenarios
for UGB delineation.

5.3. Policy Implications of the UGB Alternatives

The overlapped areas within the two UGBs under the scenarios of fast urban growth are more
reliable and reasonable to be included in future urban development because they are insensitive to
the spatial patterns of urban growth. The areal agreement between these two scenarios is 131.43 km?,
accounting for 72.51% of the merged areas (181.27 km?) of these two UGBs. The disagreements in these
UGBs can be reserved as candidate locations where future urban development are very possible under
different urban expansion patterns. Thus, further field inspections may be needed in these regions to
make sure of their availability for urban development. Similarly, the common areas of UGBs in the
slow, moderate, and fast urban growth scenarios with a compact pattern can be considered as the
primary locations for future urban allocation. The area of these overlapped regions is 166.55 km?,
which accounts for 91.19% of the merged area (182.64 km?) of the three UGBs. The disagreement areas
in the slow, moderate, and fast growth scenarios are potential regions that can serve as sequential
candidates to be developed in the future. In other words, these disagreements indicate the elastic
regions of UGBs [79] under different socio-economic scenarios if the current UGBs are no longer
suitable for future urban growth.

6. Conclusions

This study demonstrates that artificial intelligence, such as CA, evolutionary computation,
and machine learning, can help decisionmakers capture the complexity of urban development,
and thus, make informed decisions in urban management. An application of our proposed framework
for UGB delineation in a rapidly growing city in China revealed the applicability and reliability
of these artificial intelligence methods in the simulation of urban growth and the delineation of
UGBs. The patch-based CA model that represents urban growth as an organic and spontaneous
patch-generation processes can simulate a more realistic urban landscape by a coupled consideration of
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both the spatial process and pattern of urban development. The random forest model can successfully
build the relationship between the driving factors and the urban development probability. The key
model parameters calibrated through the genetic algorithm capture the landscape characteristics of the
historical urban changes well, and thus, can be used for future projections. In addition, the results
suggest that empirical knowledge from historical observations can help the genetic algorithm avoid
overfitting to some extent. In this study, the prior knowledge of the landscape characteristics was
derived using landscape expansion index analysis and was incorporated in the model to constrain
the behavior of the genetic algorithm. Thus, the historical trend of urban growth was maintained for
future projection. The UGB alternatives under the six spatial and socio-economic scenarios showed
that with less urban growth the difference of simulated urban distribution is not that obvious, but when
more urban land is budgeted, the disagreement of simulated urban pattern between the compact and
spontaneous scenarios becomes significant. Larger patches are generated in the compact scenarios,
and these newly-generated patches are more connected and aggregated. Results demonstrate that the
spatial compactness of patch allocation can impact the layout of delineated UGBs.

In this study, we only investigate how population growth and the spatial arrangement of urban
development impact future UGBs. Although a simple population projection method was applied,
and the factors that drives future urban development can be further enhanced, the successful application
of the framework in the study area verified the feasibility and flexibility of the proposed framework
in incorporation of more sophisticated demand estimation models and more representative spatial
drivers that trigger future urban development (such as economic growth, housing demand, investment,
and road expansion), which can be a valuable direction of our future work.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/11/21/6159/s1,
Figure S1: title, Table S1: title, Video S1. title.
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