

Supporting information for

Valorizing waste lignocellulose-based furniture boards by phosphoric acid and hydrogen peroxide (PHP) pretreatment for bioethanol production and high-value lignin recovery

Jingwen Zhao^{1,2}, Dong Tian^{1,2}, Fei Shen^{1,2,*}, Jinguang Hu^{3,4}, Yongmei Zeng^{1,2}, Churui Huang^{1,2}

- 1 Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China;
- 2 Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China;
- 3 Chemical and Petroleum Engineering, Schulich School of Engineering, the University of Calgary, Calgary, T2N 4H9, Canada;
- 4 Department of Wood Science, the University of British Columbia, Vancouver V6T 1Z4, BC, Canada;
 - * Correspondence: fishensjtu@gmail.com or fishen@sicau.edu.cn; Tel: +86-28-86293087

Crushed furniture boards

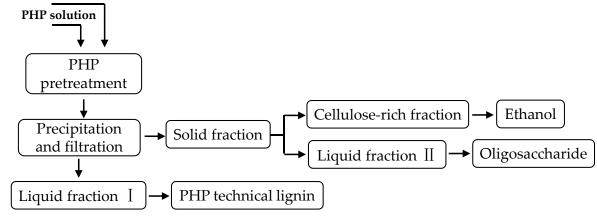
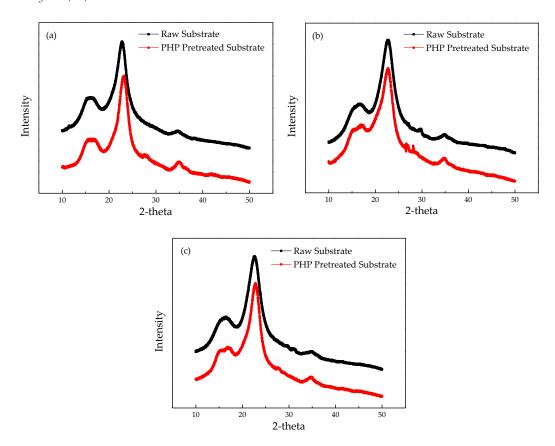
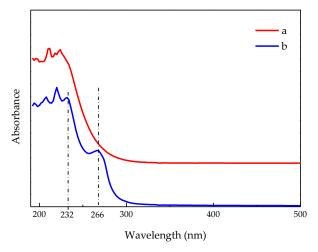




Figure S1 The designed process of bioethanol production, high-value lignin and oligosaccharide recovery

_

Figure S2 Diagram of X-ray diffraction of these 3 furniture boards before/after pretreatment (a: fiberboard; b: chipboard; c: blockboard)

Figure S3 The absorbance scanning spectra of the PHP solution at the wavelength from 190 nm to 500 nm (a: pure PHP solution; b: phenolic resin was added to the PHP solution)