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Abstract: Streets, as one type of land use, are generally treated as developed or impervious areas in
most of the land-use/land-cover studies. This coarse classification substantially understates the value
of streets as a type of public space with the most complexity. Street space, being an important arena for
urban vitality, is valued by various dimensions, such as transportation, recreation, aesthetics, public
health, and social interactions. Traditional remote sensing approaches taking a sky viewpoint cannot
capture these dimensions not only due to the resolution issue but also the lack of a citizen viewpoint.
The proliferation of street view images provides an unprecedented opportunity to characterize street
spaces from a citizen perspective at the human scale for an entire city. This paper aims to characterize
and classify street spaces based on features extracted from street view images by a deep learning
model of computer vision. A rule-based clustering method is devised to support the empirically
generated classification of street spaces. The proposed classification scheme of street spaces can serve
as an indirect indicator of place-related functions if not a direct one, once its relationship with urban
functions is empirically tested and established. This approach is empirically applied to Beijing city to
demonstrate its validity.

Keywords: street view images; streetscape classification; spatial indicator of urban functions;
deep learning

1. Introduction

Streets, as one type of land use, are generally treated as developed or impervious areas,
or more specifically, as carrying the transport function in most land-use/land-cover (LULC) studies.
This oversimplified classification entirely neglects the value of streets as a type of public space with
the most complexity. Street space, as an important place for urban vitality, and its place-related
activities and functions, such as recreation, aesthetics, public health, and social interactions, have been
discussed and understood separately in specific domains of the literature [1]. There is still a lack
of large-scale empirical studies that quantitatively test if the physical appearance of a street space
can reflect fundamental urban functions for a large city. Furthermore, because of the richness and
complexity of these functions the street space can serve, it remains intangible that how and where
those streets serving different place-related functions are delineated and distributed spatially across a
city. It would be greatly desirable for urban planners and researchers to obtain an indicator of specific
urban functions for street spaces, as the information about the functions of street spaces cannot be
collected as straightforwardly and directly as other land-use information.

The physical appearance of the street space, termed streetscape, and its characteristics have been
the central interest for urban designers and planners. Traditional remote sensing as a standard approach
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to existing LULC research, taking a sky viewpoint, can hardly capture the relevant dimensions not only
due to the resolution issue but also because of the lack of a citizen perspective. The proliferation of street
view images (SVIs), such as Google StreetView, provides an unprecedented opportunity to characterize
the streetscape from a citizen perspective at the human scale for an entire city. Taking advantage of this
novel approach, this paper aimed to characterize and classify streetscapes based on features extracted
from SVIs by deep learning methods that are well developed in computer vision. The proposed
classification scheme for the streetscape can serve as an indirect indicator of place-related functions,
if not a direct one, once its relationship with urban functions is empirically tested and established.
This approach was empirically applied to Beijing city to demonstrate its validity.

The rest of this paper is organized as follows. The second section reviews the various urban
functions that streets can serve from different domains of the literature and discusses the data approaches
to the measurement of the physical appearance of street spaces. The third section introduces the study
area and proposes an analytical framework of characterizing and classifying street spaces in order to
test the correspondence of street features to urban functions. This is followed by a detailed description
of the involved methods and data within the framework. Section 5 discusses the analytical results
after applying the framework to the study area. Section 6 draws the conclusions and speculates on
future work.

2. Literature Review

2.1. Urban Functions of Street Spaces

Streets have traditionally been considered an essential element of urban form and structure [1].
As a form of urban land use, streets are normally treated as linear public spaces connected to each
other in a network, with buildings and other structures on one or each side. This particular structure
allows them to serve many urban functions, such as mobility, commerce, recreation, aesthetics,
public health, and social interactions. Among those functions, two main types of functions can be
differentiated: Transport-related and place-related functions [1,2]. The former refers to the function of
public infrastructure through which the movement of people, goods, and vehicles occurs, which has
been a main focus of the discussions in transportation literature. The latter includes serving any
kind of non-transport-related human activities taking place in this public space that may have one
or many economic, civic, political, cultural, and social values. However, in most LULC studies,
streets are generally treated as developed or impervious areas, or more specifically, as carrying
the transport-related function, while their place-related functions have been largely overlooked in
land classification.

The place-related functions of streets have been widely researched in the literature of urban
studies, with a focus on pedestrians at the individual scale and their everyday activities and social
interactions, such as walking, meeting, staying, and playing [3–5]. In these studies, special attention
has been paid to how humans perceive, make use of, and interact with the physical environment of
street spaces as accessible, safe, and vibrant urban places that can support various activities separately
or simultaneously, as exemplified by the ‘livable streets’ and ‘complete streets’ movements [5–9].
The common idea in these notions about streets centers on improving people’s well-being and
promoting urban prosperity, reflecting a recognition of the street space as an integral factor to
achieve sustainable urban development. Specifically, studies of 100 cities around the world have
found that proper management of street spaces plays a key role in five aspects of urban prosperity:
Infrastructure development, environmental sustainability, productivity, quality of life, and equity and
social inclusion [1].

Unlike other land uses, such as residential, commercial, and industrial types, the various
place-related functions served by streets are not predesignated during planning and the information
about these functions is rarely collected during use, although administrative agencies of transportation
and urban planning usually maintain the classification of transport uses for roads, such as hierarchical
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road systems. Instead, the place-related functions of streets usually emerge as a result of human
interaction with the physical environment of street spaces, hence the latter could somehow reflect
those urban functions. Therefore, the richness and variation of the multi-functionality of streets
and the lack of information about place-related functions in administrative data pose challenges to
land-use classification in that how and where those streets serving different functions are delineated
and distributed spatially across a city.

2.2. Measurement of Streetscape Features as a Reflection of Urban Functions

The physical appearance of urban form and structure is a strong indication of urban land uses,
and thus is a traditional interest of LULC studies [10]. Remote sensing from aerial and satellite
imageries of earth surfaces has become a standard approach to extracting land use information that
indicates the functions of land covers. This approach has been working quite well for typical land
uses, e.g., residence, commerce, and industry, other than streets. In nature, the standard approach
takes a top-down bird’s eye viewpoint, which is good enough for two-dimensional land features,
yet is incapable of sensing the street as a three-dimensional space, including the pavement of lanes,
trees, facades of buildings on the sides, and other features. More importantly, the standard approach
does not take a citizen perspective that senses and perceives the physical appearance of streets from a
human viewpoint.

The measurement and quality of the streetscape, which refers to the appearance and arrangement
of physical features of the street space, have been a central topic in the urban design literature [11–13].
Features characterizing the streetscape have been proposed, such as streetscape skeleton variables
and streetscape or scene elements, among which important features include enclosure, openness,
and greenery [12,14,15]. Enclosure is the property of a contained street space with room-like proportions
related to the amount of building facades on each side of the street. Openness refers to the amount
of sky visibility in the scene. Greenery is the proportion of green space covered by trees or other
vegetation in the scene.

With the proliferation of spatial data and geographic information, geographic information system
(GIS) and remote sensing techniques have been widely used to extract the streetscape features from
data, such as building footprints, street parcels, and tree canopy mappings, in large-scale analysis at
the city level. They have largely mitigated the drawbacks of the time-consuming approach of field
audits, which are restricted to small-scale empirical studies [12,16]. However, due to the lack of a
citizen viewpoint in these GIS data and methods, the streetscape features extracted from a pedestrian
perspective remain missing. The advent of street view images from Google StreetView and similar
online data services has opened the door of opportunities to remedy this disadvantage. A series
of recent studies managed to extract streetscape features from SVIs and applied them in a range of
applications, including the perception and quality of the urban environment [15,17–20], street livability
and walkability [21–24], environmental audit for human health and wellbeing [25–29], urban inequality
and socioeconomic changes of neighborhoods [30–34], urban safety [35,36], and information retrieval
for adjacent land uses [37]. Among these studies, many assume implicitly or explicitly that the extracted
streetscape features, representing the physical appearance of streets, from SVIs can reflect place-related
functions that serve human activities both on the street and those associated with the uses of buildings
on the sides [23,30,32–34,37]. However, a confirmatory testing of this relationship in a large-scale
empirical study is still lacking. This research closes this gap in the literature.

3. Analytical Framework and Study Area

This research aimed to characterize and classify streetscapes based on features extracted from
SVIs and empirically test if streetscape classes can reflect urban functions. Once this relationship is
confirmed, the empirically generated classification of streetscapes can be used as a spatial indicator of
the delineation and distribution of streets serving different urban functions. Specifically, SVIs were
leveraged by a state-of-the-art deep learning model of computer vision to extract scene elements (e.g., sky,
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building, and tree) to construct features of enclosure, openness, and greenery. Then, a rule-based
clustering approach was applied to classify the streetscapes into classes based on the diversity and
complexity of the streetscape feature composition. Finally, we regressed these empirically generated
streetscape classes on an extensive list of urban functions and activities-related factors to test if the
streetscape feature can reflect urban functions. An analytical framework depicting these steps is
detailed in Figure 1.

Sustainability 2019, 11, x FOR PEER REVIEW 4 of 17 

 

clustering approach was applied to classify the streetscapes into classes based on the diversity and 
complexity of the streetscape feature composition. Finally, we regressed these empirically generated 
streetscape classes on an extensive list of urban functions and activities-related factors to test if the 
streetscape feature can reflect urban functions. An analytical framework depicting these steps is 
detailed in Figure 1. 

 
Figure 1. Analytical framework. 

This research was conducted within the area confined by the Fifth Ring Express Road in Beijing, 
an area of 667 km2 with a perimeter of 98.6 km (Figure 2). This area is a core area with the highest 
(re)development intensity and the highest population density in Beijing. It includes Beijing's primary 
city center and several sub-centers, such as Zhongguancun, Financial Street, and CBD, and has urban 
and rural lands mixed together at the periphery. The street system in this area is complex. There are 
streets with transportation as the leading function, streets with balanced transportation and place-
related functions, and also streets and Hutongs that play a main role for pedestrians instead of 
vehicles. In particular, Hutong is a representative traditional street form in Beijing old city and refers 
to narrow pathways or alleys enclosed by two rows of courtyards in traditional neighborhoods. 

Figure 1. Analytical framework.

This research was conducted within the area confined by the Fifth Ring Express Road in Beijing,
an area of 667 km2 with a perimeter of 98.6 km (Figure 2). This area is a core area with the highest
(re)development intensity and the highest population density in Beijing. It includes Beijing’s primary
city center and several sub-centers, such as Zhongguancun, Financial Street, and CBD, and has
urban and rural lands mixed together at the periphery. The street system in this area is complex.
There are streets with transportation as the leading function, streets with balanced transportation and
place-related functions, and also streets and Hutongs that play a main role for pedestrians instead of
vehicles. In particular, Hutong is a representative traditional street form in Beijing old city and refers
to narrow pathways or alleys enclosed by two rows of courtyards in traditional neighborhoods.
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Figure 2. A map of the study area, including six districts: Haidian, Chaoyang, Dongcheng, Xicheng,
Fengtai, Daxing, and Shijingshan.

4. Methods and Data

4.1. Characterizing Streetscape from SVIs

We utilized street view images (SVIs), which were acquired from Baidu Maps, one of the largest
big data venders in China. The SVIs were requested from the Baidu Maps API service with sample
points generated along the streets at an interval of 100 m. The street network data were also from
Baidu Maps. Theoretically, SVIs could be obtained from different lanes of a street. To better simulate
the actual pedestrians’ perspective, we set the detailed request parameters for each sample point as
follows: Image size: 480 × 600; compass heading of the camera: 0 degrees; the horizontal field of view
of the image: 90 degrees. As a result, 42,077 SVIs with 800 × 500 pixels were collected for the period
from March 1 to September 1 2018.

Currently, numerous deep learning models, including DCNN, FCN, and SegNet, have been
applied in the task of image semantic segmentation [20]. However, specific to the field of streetscape
image partition, the performance of these models may vary. A key factor lies in the lack of accurate
scene perception. For instance, when partitioning an image taken on the 4th ring road, the shadow
of trees may be mistakenly regarded as water due to a similar shape and color. However, given the
prior knowledge that the image is taken on an express road, it is not likely that water would appear.
By incorporating this information, the results of image recognition can be improved by considering the
contextual information. Therefore, the most proper model should incorporate suitable strategies to
understand the complex scene semantics of the streetscape in Beijing.

In this study, we employed PSPNet (Figure 3), a novel deep convolutional neural network model,
to take advantage of its special architecture, which has been proven to be remarkably efficient and
accurate in streetscape image segmentation [38]. PSPNet provides a strong ability to interpret the
overall scene by extending the pixel-level clues to a global pyramid pooling one. Therefore, the model
combines global and local features together to achieve a state-of-the-art performance. In addition,
the loss function of PSPNet has been carefully designed to have a better optimization strategy.
The PSPNet model was pre-trained on the cityscape dataset, which is a representative repository
containing 5000 SVIs [39]. We further fine-tuned the model using 500 high-quality pixel-level annotated
SVIs provided by Baidu Maps to achieve a better classification accuracy in our task.
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Figure 3. Overview of image semantic segmentation using PSPNet: (a) Input image; (b) feature map;
(c) pyramid pooling module; and (d) final prediction

SVIs were partitioned into 21 different categories (Figure 4), including major elements, such as
the sky, roads, and trees, as well as secondary elements, such as dustbins, billboards, and traffic
lights. For each SVI, the number of pixels for every category was recorded and further calculated as
proportions. As a result, streetscape elements were characterized as proportions of a scene view for
each SVI at the 42,077 sample locations in the study area (Figure 5). Specifically, the proportion of sky
represent the openness of a street canyon: A higher proportion of sky is usually related to an open
street where buildings and trees are relatively low in height compared with the width of the street.
The proportion of building stands for the degree of enclosure of a street. A higher proportion of building
often indicates a so-called street wall or a Hutong with relatively tall buildings along the streets.
Another import indicator that reflects the quality of a street is the proportion of tree, which reflects the
degree of street greenery that pedestrians actually perceive, rather than the projected area of trees.
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4.2. Classifying Streetscape

To further measure the streetscape at the local neighborhood level that forms a rather homogeneous
scene character, a grid scheme of 250 by 250 m was empirically adopted. Grids, instead of street
segments, were chosen as the unit of analysis based on the following considerations. As the streetscape
characteristics can vary along a street segment, especially for a long one, the length of the street
segments varies greatly in Beijing, making the street segment an inappropriate unit of analysis to
capture a homogeneous scene of the streetscape at its pertaining level. In addition, other data can
be easily aggregated or disaggregated at the level of grids, which facilitates an efficient way of data
integration. A total of 5844 grids, which contained sample locations of SVIs, were generated with
about 7 SVI locations per grid on average. In other words, each grid contained at least one location
and up to 36 locations. The proportion of a streetscape element within a grid was computed by taking
the average of the proportion of the element at all SVI locations within that grid.

In order to reflect the place-related function of the streetscape, we clustered the streetscape
of grids into classes based on the streetscape features extracted from SVIs. According to existing
research [15,17,19], using the three dimensions of enclosure, openness, and greenery features is
sufficient to portray the spatial characteristics of streets, while keeping the model as easy to interpret
and analyze. In order to support the rule-based classification, we used information entropy [40] to
measure the proportional relationship between these streetscape elements. The calculation formula of
information entropy is as follows:

L = −
∑4

k=1
pk log pk, (1)

where pk is the proportion of sky, tree, building, and other elements. The distribution of L can be
converted to a heavy-tailed distribution by taking:

Lr =
1
L

(2)
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The distribution of Lr in Figure 6 provides evidence on how streetscape elements mix.
The landscape patterns are highly or moderately balanced in most grids, which are characterized by
low Lr values (high entropy values). In contrast, there are also grids with relatively high Lr values (low
entropy value), which indicates that the form of the streets in these grids may be dominated by certain
elements. Inspired by Jiang’s work [41], a head/tail breaks method was introduced here to provide
further insight. Specifically, we partitioned the entire range of the Lr values at the mean, then took the
part with larger values and partitioned it at its mean value. By continuing this process recursively,
we obtained a smaller range of higher Lr (lower entropy) values. In this case, the process was executed
twice with two breaks: The first break at the mean point of 0.48 (entropy = 2.1); the second break
at the mean point of 0.52 (entropy = 1.9). With the two breaks, three ranges were formed, and each
range allowed a further exploration of the ratios between any two element proportions among the
three elements.
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Figure 6. Distribution of Lr representing the diversity of streetscape elements.

When Lr < 0.48 (Figure 7), the proportion of the three elements are close in that the majority of
the grids have ratios of any two element proportions distributed between 0.5 and 1.0, indicating a
balanced streetscape. When 0.48 < Lr < 0.52 (Figure 8), for most grids, the ratios of the two largest
element proportions are greater than 0.5, while the ratios of the two smallest element proportions are
less than 0.5. It means that there are the two dominating elements with comparable proportions in
these grids. When 0.52 < Lr < 1 (Figure 9), most grids have the ratios of the two largest element
proportions less than 0.5, while only a slightly greater number of grids have ratios of the two smallest
element proportions less than 0.5. It is evident that there is a dominating element in these grids and
the influence of the other two elements is minor.

Sustainability 2019, 11, x FOR PEER REVIEW 8 of 17 

 

𝐿  =  1𝐿 (2) 

The distribution of 𝐿  in Figure 6 provides evidence on how streetscape elements mix. The 
landscape patterns are highly or moderately balanced in most grids, which are characterized by low 𝐿  values (high entropy values). In contrast, there are also grids with relatively high 𝐿  values (low 
entropy value), which indicates that the form of the streets in these grids may be dominated by certain 
elements. Inspired by Jiang’s work [41], a head/tail breaks method was introduced here to provide 
further insight. Specifically, we partitioned the entire range of the 𝐿  values at the mean, then took 
the part with larger values and partitioned it at its mean value. By continuing this process recursively, 
we obtained a smaller range of higher 𝐿  (lower entropy) values. In this case, the process was 
executed twice with two breaks: The first break at the mean point of 0.48 (entropy = 2.1); the second 
break at the mean point of 0.52 (entropy = 1.9). With the two breaks, three ranges were formed, and 
each range allowed a further exploration of the ratios between any two element proportions among 
the three elements.  

 
Figure 6. Distribution of Lr representing the diversity of streetscape elements. 

When 𝐿   0.48 (Figure 7), the proportion of the three elements are close in that the majority 
of the grids have ratios of any two element proportions distributed between 0.5 and 1.0, indicating a 
balanced streetscape. When 0.48  𝐿   0.52 (Figure 8), for most grids, the ratios of the two 
largest element proportions are greater than 0.5, while the ratios of the two smallest element 
proportions are less than 0.5. It means that there are the two dominating elements with comparable 
proportions in these grids. When 0.52  𝐿   1 (Figure 9), most grids have the ratios of the 
two largest element proportions less than 0.5, while only a slightly greater number of grids have 
ratios of the two smallest element proportions less than 0.5. It is evident that there is a dominating 
element in these grids and the influence of the other two elements is minor. 

  
(a) (b) 

Figure 7. Distributions of (a) the ratio of the second largest proportion to the largest proportion and 
(b) the ratio of the smallest proportion to the second largest proportion for grids with 0  𝐿   0.48 

Figure 7. Distributions of (a) the ratio of the second largest proportion to the largest proportion and
(b) the ratio of the smallest proportion to the second largest proportion for grids with 0 < Lr < 0.48.



Sustainability 2019, 11, 6424 9 of 17

Sustainability 2019, 11, x FOR PEER REVIEW 9 of 17 

 

  
(a) (b) 

Figure 8. Distributions of (a) the ratio of the second largest proportion to the largest proportion and 
(b) the ratio of the smallest proportion to the second largest proportion for grids with 0.48  𝐿   0.52. 

  
(a) (b) 

Figure 9. Distributions of (a) the ratio of the second largest proportion to the largest proportion and 
(b) the ratio of the smallest proportion to the second largest proportion for grids with 0.52  𝐿   1. 

Given the distributions in Figures 7–9, a set of rules can be derived to classify the streetscape 
grids. The distributions of the generated streetscape classes are detailed in Figure 10 and Table 1. 

(1) Single-feature-dominated streets. Single-feature-dominated classes were defined as the 
proportion of any feature for openness (sky), enclosure (building), or greenery (tree) being at least 
two times larger than that of the second largest feature. Three classes were generated based on this 
rule: Openness (S), enclosure (B), and greenery (T): 𝑃   2  𝑃 , 
where 𝑃  = the proportion of the largest feature; 𝑃  = the proportion of the second largest 
feature. 

(2) Two-feature-dominated streets. Two-feature-dominated classes were defined as the 
proportions of the two largest features among the three being relatively close, in that the larger one 
is less than twice that of the smaller one. They are both much larger than the proportion of the smallest 
feature in that the second largest proportion is at least twice that of the smallest proportion. Three 
classes were generated based on this rule: Enclosure/openness (BS), greenery/openness (TS), and 
greenery/enclosure (TB): 𝑃   2  𝑃  and 𝑃   2  𝑃 , 
where 𝑃  = the proportion of the smallest feature. 

(3) Streets with balanced features. This class was defined as the proportion of all three features 
being relatively close in that the largest proportion is less than the twice that of the second largest 
proportion and the second largest proportion is less than twice that of the smallest proportion. One 
class was generated based on this rule: Enclosure/openness/greenery (A): 𝑃   2  𝑃  and 𝑃   2  𝑃 . 

Figure 8. Distributions of (a) the ratio of the second largest proportion to the largest proportion and
(b) the ratio of the smallest proportion to the second largest proportion for grids with 0.48 < Lr < 0.52.

Sustainability 2019, 11, x FOR PEER REVIEW 9 of 17 

 

  
(a) (b) 

Figure 8. Distributions of (a) the ratio of the second largest proportion to the largest proportion and 
(b) the ratio of the smallest proportion to the second largest proportion for grids with 0.48  𝐿   0.52. 

  
(a) (b) 

Figure 9. Distributions of (a) the ratio of the second largest proportion to the largest proportion and 
(b) the ratio of the smallest proportion to the second largest proportion for grids with 0.52  𝐿   1. 

Given the distributions in Figures 7–9, a set of rules can be derived to classify the streetscape 
grids. The distributions of the generated streetscape classes are detailed in Figure 10 and Table 1. 

(1) Single-feature-dominated streets. Single-feature-dominated classes were defined as the 
proportion of any feature for openness (sky), enclosure (building), or greenery (tree) being at least 
two times larger than that of the second largest feature. Three classes were generated based on this 
rule: Openness (S), enclosure (B), and greenery (T): 𝑃   2  𝑃 , 
where 𝑃  = the proportion of the largest feature; 𝑃  = the proportion of the second largest 
feature. 

(2) Two-feature-dominated streets. Two-feature-dominated classes were defined as the 
proportions of the two largest features among the three being relatively close, in that the larger one 
is less than twice that of the smaller one. They are both much larger than the proportion of the smallest 
feature in that the second largest proportion is at least twice that of the smallest proportion. Three 
classes were generated based on this rule: Enclosure/openness (BS), greenery/openness (TS), and 
greenery/enclosure (TB): 𝑃   2  𝑃  and 𝑃   2  𝑃 , 
where 𝑃  = the proportion of the smallest feature. 

(3) Streets with balanced features. This class was defined as the proportion of all three features 
being relatively close in that the largest proportion is less than the twice that of the second largest 
proportion and the second largest proportion is less than twice that of the smallest proportion. One 
class was generated based on this rule: Enclosure/openness/greenery (A): 𝑃   2  𝑃  and 𝑃   2  𝑃 . 

Figure 9. Distributions of (a) the ratio of the second largest proportion to the largest proportion and
(b) the ratio of the smallest proportion to the second largest proportion for grids with 0.52 < Lr < 1.

Given the distributions in Figures 7–9, a set of rules can be derived to classify the streetscape grids.
The distributions of the generated streetscape classes are detailed in Figure 10 and Table 1.

(1) Single-feature-dominated streets. Single-feature-dominated classes were defined as the
proportion of any feature for openness (sky), enclosure (building), or greenery (tree) being at least two
times larger than that of the second largest feature. Three classes were generated based on this rule:
Openness (S), enclosure (B), and greenery (T):

Pr1 ≥ 2 × Pr2,

where Pr1 = the proportion of the largest feature; Pr2 = the proportion of the second largest feature.
(2) Two-feature-dominated streets. Two-feature-dominated classes were defined as the proportions

of the two largest features among the three being relatively close, in that the larger one is less than twice
that of the smaller one. They are both much larger than the proportion of the smallest feature in that the
second largest proportion is at least twice that of the smallest proportion. Three classes were generated
based on this rule: Enclosure/openness (BS), greenery/openness (TS), and greenery/enclosure (TB):

Pr1 < 2 × Pr2 and Pr2 ≥ 2 × Pr3,

where Pr3 = the proportion of the smallest feature.
(3) Streets with balanced features. This class was defined as the proportion of all three features

being relatively close in that the largest proportion is less than the twice that of the second largest
proportion and the second largest proportion is less than twice that of the smallest proportion. One class
was generated based on this rule: Enclosure/openness/greenery (A):

Pr1 < 2 × Pr2 and Pr2 < 2 × Pr3.
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Table 1. Percentages of grids for seven streetscape classes.

A B BS S T TB TS

34.2% 5.9% 7.3% 7.0% 23.1% 6.6% 15.8%

Note: A, B, BS, S, T, TB, and TS are the streetscape classes defined in Section 4.2.

4.3. Variables of Urban Functions and Model Specification

An extensive list of factors related to urban functions and activities were identified and obtained
from the seven categories (Table 2). The first six are place-related urban functions, while the last is the
transport-related function. Figure 11 demonstrates the spatial distributions of some of the variables.

Table 2. Variable description.

Variable Category Variable Description

far Density FAR
rpop Residential population by grid
mix Diversity of services Entropy of POIs of different types
cbdis Accessibility Distance the nearest city (sub-)left
apop Urban vitality Ambient population density
zon Regulation Inside/outside the protection zone of Beijing old city
lu_res

Land uses

Residential
lu_ind Industrial
lu_grn Green space
lu_com Commercial
lu_sev Public service
tr2 Transportation Main
tr3 Secondary
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urban services.

The density of the urban space is mainly characterized by two indicators: FAR (floor area ratio)
and the resident population. FAR was defined as the ratio of a building’s total floor area to the size of
the piece of land upon which it is built. FAR were derived based on the building footprint data and land
use survey data. The building footprint data were sourced from Baidu Maps and the land use survey
data were provided by the land administration of Beijing city and was collected in 2015. The resident
population reflects the density from a perspective of human dwellings. It was estimated through
China Unicom cellphone data over a long period of time to identify users’ home locations and was
aggregated to grids. The population density of neighborhoods may represent different socioeconomic
statuses and preferences of residents.

For the diversity of urban services, we present an entropy-based measure using point-of-interest
(POI) data. Specifically, the number of each type of POI by the grid was recorded and the index of
diversity was computed as follows:

D = −
∑n

j=1
p j log p j, (3)

where p j is the proportion of a certain kind of POI and is the ratio of this kind of POI’s count to the
count of all POIs in the grid. The larger the value, the higher the diversity of urban functions. A high
degree of functional mix may indicate a commercial center or a mature community, while a low degree
of functional mix is more relevant to industrial or suburban areas.

We defined the accessibility of a grid by its geographical distance to the nearest city center.
Accessibility impacts street space through its influence on land value. The closer the neighborhood
is to the city center, the higher the land value, and the more compact the city space. The vitality of
a neighborhood was measured by the ambient population of a grid. The ambient population is a
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temporally averaged measure of human activity intensity. Different from resident population, ambient
population considered the average volume of people appearing in a grid. The data were sourced from
China Unicom and were collected from August 1 to August 7, 2018. The protection zone of Beijing old
city is located at the core area of our study area. Its boundary was defined as the second ring road.
The total area of the protection zone is around 62 km2. Protection regulations are direct influence
factors of the streetscapes. By regulating FAR, building height, etc. to preserve the traditional pattern
of the old city, the forms of streets can be effectively maintained. The adjacent land uses on the sides of
streets include residential, commercial, industrial, green space, and public service types. The area of
each type of land uses for each grid was extracted from the Beijing Land-use Survey Data of 2015.

The transport-related function of a street/road is represented by its hierarchy in the transportation
system. According to the traffic capacity of streets, there are mainly two levels: Main streets and
secondary/branch streets. All grids were divided into two categories: Main-street-dominated grids
and secondary-street-dominated grids, according to the proportion of the length of each type of streets.
A strong transportation function leads to a large street width, resulting in an increase of the proportion
of sky and a decrease of the proportion of other streetscape elements accordingly.

Because the dependent variable, the streetscape class, is categorical, multinomial logistic regression
was used for model estimation. We have two model specifications: 1) To test if the streetscape features
reflect place-related functions from the first six categories of variables; and 2) to test if the streetscape
features reflect place-related functions from the first six categories of variables while controlling for the
variables of the transport-related function. As the streetscape class A is a balanced feature class, it was
used as the reference alternative for both model estimations:

Model 1 : P
(
Y j

)
= F(Xp),

where Xp =
[

f ar, rpop, mix, cbdis, apop, zon, lures, luind, lugrn, lucom, lusev
]

are variables of the place-related

functions, F(·) is the multinomial logistic regression formulation, P
(
Y j

)
is the probability of an alternative

Y j ∈ {A, B, BS, S, T, TB, TS} of the generated seven streetscape classes:

Model 2 : P
(
Y j

)
= F

(
Xp, Xt

)
,

where Xt = [tr2, tr3] are variables of the transport-related function.

5. Results and Discussions

Table 3 presents the general goodness of fit for the two model estimations. These testing statistics
indicate that both models are acceptable. Compared to model 1, model 2 gains a better goodness
of fit due to the addition of transport-related variables, which may be correlated with some of the
place-related variables and thus inflate the goodness of fit. This will be investigated in more detail in
the following variable discussions. Tables 4 and 5 show the results of models 1 and 2, respectively.
All coefficients of the variables were estimated regarding any other alterative class relative to the
balanced streetscape class (A). As only the sign direction of the coefficients and the significance level
are of the interest, Tables 4 and 5 are the simplified results. Here, 95% was empirically taken as the
significance level for model interpretation.

Table 3. Model fitting.

Model Log-Likelihood ratio test McFadden R2 IIA test

1 445.52*** 0.11978 rejected
2 597.87*** 0.16075 rejected

Note: significance level: ‘***’ 0.001.
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Table 4. Results of model 1.

Variable B BS S T TB TS

far (+)** (−). (−)*** (−)***
rpop (+)*
mix (−). (−)**
cbdis (−). (−). (−)**
apop (−)**
zon (+)*** (+)***
lu_res (+). (+). (+)*
lu_com (+)* (+)* (+). (+).
lu_grn (+)** (+)*
lu_ind (+). (+)**
lu_sev (−)* (+)** (+)*

Note: (+/−), positive/negative coefficients; significance levels: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1.

Table 5. Results of model 2.

Variable B BS S T TB TS

far (+)** (−). (−)*** (−)***
rpop (+)*
mix (−). (−)*
cbdis (−). (−)* (−)**
apop (−). (−)*
zon (+)** (+)***
lu_res
lu_com (+)* (+). (+).
lu_grn (+)* (+)*
lu_ind
lu_sev (−)* (+)*
tr2 (−)* (+).
tr3 (+)*** (−)*** (+)*** (+)*** (−)*

Note: (+/−), positive/negative coefficients; significance levels: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1.

The results of model 1 (Table 4) show shat all place-related function variables have certain
significant effects on some streetscape classes, while, on the other hand, all streetscape classes reflect
the significant influence from certain place-related function variables. It means that: 1) There is no
waste of variables; and 2) the six categories of place-related variables are able to differentiate all the
streetscape classes. Specifically, FAR has a significant impact on several streetscape classes. Higher FAR
usually means a higher building volume, leading to well-enclosed street spaces. In particular, FAR has
a positive effect on building-dominated streets and a negative effect on the streets where openness
is at least one of the dominant features. The resident population has a significant positive effect on
tree-dominated streets, showing greenery as an amenity for residential choice. The diversity of urban
services has a significant negative effect on tree-dominated streets. This indicates that areas with a
high diversity of urban services are mainly located in more commercialized areas where the degree of
greenery is lacking.

The distance to the nearest city center has a positive effect on the building- and tree-dominated
streets. It is an indication that urban peripheries are less developed and have less greenery compared
to urban centers. Urban vitality has a negative effect on the tree-dominated streets, which is less likely
in city centers. The protection zone of Beijing’s historical and cultural city also affects the character of
streets. According to the protection planning and regulations, the land use and density are strictly
controlled to preserve the traditional street patterns. The streets mainly comprise small-scale roads
and Hutongs, making building-dominated streets and building- and tree-dominated streets as the
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most common streetscapes within this area. As a result, the zoning has a positive effect on these two
types of streetscapes.

Land-use-related variables all have significant effects on at least one class of streetscape. Residential
land has a positive influence on the greenery and enclosure of street space where trees and buildings are
dominant features. Commercial lands have a positive effect on the enclosure and openness of the streets,
reflecting a common scene in commercial centers where buildings and the sky are dominant features.
Green spaces unquestionably affect the streetscapes with trees as the dominant feature. Industrial lands
have a positive influence on tree- and building-dominated streets as they are often located in suburban
areas. Public service lands have a positive effect on the greenery of streets, as the administrative,
school, and hospital campuses usually consider green space as an amenity, while openness is not
a requirement.

Compared to model 1, model 2 examines the variation of effects from place-related functions
on the streetscape with the presence of the effects from the transport-related functions. There is
almost no change for the significance and direction of the effects from variables in the categories
of density, diversity, accessibility, vitality, and regulation. For variables of land use, residential and
industrial lands become insignificant in influencing any streetscape class and public service lands
become insignificant in affecting streets with trees and buildings as the dominant features. The effects of
other land types do not change. In contrast, streets with the secondary road function gain significance
in positively influencing the tree- and building-dominated streetscape, which has lost the influence
from residential, industrial, and public service lands. This could be explained by the association or
interaction between the secondary road function and the above three land uses, as road levels affect
not only the traffic capacity but also the development type of surrounding areas. On the contrary,
the place-related functions from the categories of density, diversity, accessibility, vitality, and regulation
are less associated with the transportation function, resulting in their invariant effects on streetscapes.
Besides, both levels of road functions have non-positive effects on streetscapes with a high degree of
openness and the secondary road function has significant effects on almost all classes of streetscapes,
which means that the transport-related variables are less differentiative for streetscape classes compared
to place-related variables.

6. Conclusions and Future Work

This study proposed an analytical framework for characterizing and classifying streetscapes based
on features extracted from large-scale street view images collected for a city through a state-of-the-art
deep learning model of computer vision. With the constructed streetscape features of enclosure,
openness, and greenery, a rule-based clustering method was devised to support the empirically
generated classification of streetscapes based on the diversity and complexity of those features.
The derived streetscape classes delineating street spaces geographically were tested against six
categories of place-related factors with and without a set of transport-related variables by two
multinomial logit models, respectively. The results formally confirmed that streetscape classes indeed
reflect and correspond to certain urban functions with an acceptable model fitting. We found that
the six categories of place-related variables were capable of differentiating all identified streetscape
classes. Based on the comparison of the two models, we also found that place-related variables from
the categories of density, diversity, accessibility, vitality, and regulation were more robust than land-use
variables as they were less associated and interacted with transport-related variables, which in turn
validated the selection of these place-related variables. Last, but not least, transport-related variables
were shown to be less useful in differentiating between the streetscape classes, which is evidence of the
deficiency of street space classification only based on transport-related functions.

As the relationship that streetscape features reflect place-related urban functions was confirmed,
the empirically generated classes of streetscapes can be used as a spatial indicator of the delineation
and distribution of streets serving different urban functions (Figure 10). It would be greatly desirable
for urban planners and researchers to obtain such a spatial indicator of urban functions for street
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spaces, as the information cannot be collected as straightforwardly and directly as other land uses.
Furthermore, this indicator can facilitate the evaluation of the usage of street spaces by considering the
mixed use of various urban functions, interactions with adjacent land uses, and provision of transport
options beyond the automobile, and thus it can aid the design of multi-functional streets that are
more livable.

This research serves as an initial study of street space classification based on street view
images. For a large city, such as Beijing, including a hierarchy of urban centers and peripheries,
spatial heterogeneity plays an important role for any spatial indicators of urban functions.
The consideration of spatial heterogeneity could be incorporated into the derivation of clusters
and the model estimations in future research. In addition, direct indicators of urban functions for
streets can be obtained via an on-site survey and field work, which should be incorporated in future
studies to further validate the proposed indirect indicator in this research.
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