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Abstract: This article offers a multi-objective framework for an optimal mix of different types of
distributed energy resources (DERs) under different load models. Many renewable and non-renewable
energy resources like photovoltaic system (PV), micro-turbine (MT), fuel cell (FC), and wind turbine
system (WT) are incorporated in a grid-connected hybrid power system to supply energy demand.
The main aim of this article is to maximize environmental, technical, and economic benefits by
minimizing various objective functions such as the annual cost, power loss and greenhouse gas
emission subject to different power system constraints and uncertainty of renewable energy sources.
For each load model, optimum DER size and its corresponding location are calculated. To test the
feasibility and validation of the multi-objective water cycle algorithm (MOWCA) is conducted on
the IEEE-33 bus and IEEE-69 bus network. The concept of Pareto-optimality is applied to generate
trilateral surface of non-dominant Pareto-optimal set followed by a fuzzy decision-making mechanism
to obtain the final compromise solution. Multi-objective non-dominated sorting genetic (NSGA-III)
algorithm is also implemented and the simulation results between two algorithms are compared with
each other. The achieved simulation results evidence the better performance of MOWCA comparing
with the NSGA-III algorithm and at different load models, the determined DER locations and size are
always righteous for enhancement of the distribution power system performance parameters.

Keywords: Multi-objective Water Cycle Algorithm; different load models; hybrid power system;
greenhouse gas emissions

1. Introduction

In recent years, worldwide switching towards reliable and workable hybrid renewable energy
systems is mainly because of two reasons, the potential technical and economic benefits of hybrid
combinations and the rapid depletion of conventional sources of energy [1]. Hybrid renewable energy
(RE) systems based on photovoltaic and wind energy systems are known and implemented successfully
in different locations and have a long lifetime [2]. Focusing on improving the hybrid energy sources
economically and technically receives much attention from the researchers in both off-grid and on-grid.
The implementation of hybrid energy sources provides better performance, and more economic than
implementing PV energy system or wind energy system individually. On the other hand the hybrid
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energy sources should be designed optimally to ensure balancing the overall system arrangement [3].
Originally, the utilization of hybrid renewable energy was mainly concentrated for power generation
in remote areas [4].

Multi-objective optimization (MOO) shows optimizing various objectives which are often
conflicting in nature. Multi-objective optimization is much more convoluted than single-objective
optimization because of the presence of multiple optimal solutions. At large, all solutions are conflicting
and hence a group of non-dominated solutions is required to be found out to approximate the true
Pareto front [5]. Most of the novel single-objective algorithms have been assorted with convenient
mechanisms to transact with multi-objective problems (MOP) also such as Mirjalili et al offered Ant
Lion Optimizer (MOALO) method in 2017 [6]. Tawhid and Savsaniin 2017 presented Multi-objective
Sine Cosine Algorithm (MOSCA) [7]. A multi-objective function is optimized using hybrid an artificial
immune with PSO [8]. The development of the genetic algorithm, there has been a growing interest
in applying it in different applications and improving its performance by proposing new versions.
For example, the multi-objective NSGA-II algorithm called non-dominated sorting genetic algorithm
(NSGA-III) is proposed by Jain and Deb [9], which is more efficient to solve problems with more
than two objectives. The performance measures reveal that the multi-objective water cycle algorithm
(MOWCA) is better than the other algorithms such as MODA, MOGA, MOEA-D. Further, MOWCA
suggests a wide range of non-dominated solutions depending on the complexity of the optimization
problem [10]. Bacterial Foraging Optimization Algorithm is used to identify the optimum capacity of
the DG and DSTATCOM under different load is presented in [11]. A traditional planning approach
for electric distribution networks is studied under Voltage-dependent load mode considering other
environmental and economic perspectives in [12].

There are many issues to be studied in the case of hybrid systems. Chauhan and Saini [13] in
2016 studied the combination of Micro Hydro Power (MHP), biogas, biomass, wind, and solar energy
in order to meet the electrical and cooking demands of the study area. In 2017, Halabi et al [14]
published a paper in which they had described the technical, economical, and environmental aspects
of the combination of PV/diesel/battery systems using HOMER. Also, Singh and Fernandez, in 2017,
studied the optimization of hybrid PV/wind/battery energy sources developed for remote regions [15].
Guangqian et al [16], in 2018, studied practical and a frugal aspect of hybrid energy sources is presented
in Iran. Peng et al [17], in 2018, researched technical and economical concepts of the hybrid system
based on PV/WT/battery/RO. Also, the summaries of various articles are listed in Table 1 in order to
facilitate comparison with the present study.

The prime contributions of this research work are summarized as follows:

(1) We proposed a multi-objective Water Cycle Algorithm for optimal allocation of the hybrid
power system model in distribution systems. Also, an NSGA-III algorithm is performed and the
simulation results between two algorithms are compared with each other

(2) Studying the impact of different load models in summer day and winter day on the optimum
placement of the hybrid power system model in radial distribution systems

(3) Considering the uncertainty of renewable energy sources by using Hong’s 2m +1 PEM method.
(4) Studying the impact of the hybrid power system model to enhance the technical, economic and

environmental issues of distribution systems.
(5) Reducing the power loss is considered as a technical benefit for achieving the improve system

performance, reliability, and efficiency.
(6) Minimizing energy costs because of the reduction in power loss can also be translated into

economic benefits by using multiple distributed energy resources (DER) placements.
(7) Minimizing the greenhouse gas emission is considered as environmental benefit.
(8) Eventuality of the aforesaid approach is conducted on the standard IEEE 33 and IEEE 69 bus

power system.
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Table 1. The summaries of various articles in the literature.

Ref. no. Solution Method
DER Type Objective Function Multi

Objective
Uncertainty

Effect
Different

Load ModelsPV WT MT FC Bat DE PLoss TC EM

[18]
a second-order

cone programming
model

3 3 3

[19] Cuckoo search
algorithm 3 3 3 3 3

[20]
The Flower
Pollination

Algorithm (FPA)
3 3 3

[21]
biogeography-based

optimization
algorithm

3 3 3

[22] PSO algorithm 3 3 3 3 3 3

[23] Multi-objective ant
lion optimizer 3 3 3 3 3

[24] Breeder genetic
algorithm (BGA). 3 3

* Proposed
algorithms 3 3 3 3 3 3 3 3 3 3

Abbreviations: WT: Wind Turbine; FC: Fuel Cell; PV: Photovoltaic; DE: Diesel; ES: Energy Storage; Bat: Battery;
MT: Micro Turbine; Ploss: Power loss; VD: Voltage deviation; TC: Total cost; EM: Emission; *: Proposed algorithms:
MOWCA & NSGA-III.

The organization of the remainder of the current article is as the following, Load and uncertainty
modeling discusses in part II. The formulation of the mathematical problem objective functions and
constraints are presented in part III. The concept of MOWCA is briefed in part IV. Part V presents the
obtained results and discussion. The article’s conclusion is given in the final part of part VI.

2. Load, Uncertainty and Distributed Energy Resources Modeling

2.1. Load Models

For evaluating the impact of hybrid power system model on DER planning for various load
models i.e. summer day load model (SDM) and winter day load model (WDM) loads are adopted
in. The real and complex power of the load is considered as constant power in the classical load
flow problems, despite, the load may be nonlinear such as industrial load residential and commercial
which discussed by models in [25]. The nonlinear dependent voltage load model is represented by
exponential function as the following form:

Pi = PoiVα
i (1)

Qi = QoiV
β

i (2)

In the classical power flow solution, the load is suggested to be fixed power, where α = β = 0. For
nonlinear loads representing commercial and residential, the real and complex power components are
given in Table 2 [25].

Table 2. Exponential indices of load type [25].

Load Type Residential Load Commercial Load

α β α β

Summer SDM 0.72 2.96 1.25 3.5
Winter WDM 1.04 4.19 1.5 3.15
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2.2. Modeling of DistributedEnergy Resources

2.2.1. Fuel Cell (FC)

The produced energy of FC is described as follows [26]:

CFC = CgasFC ×
PFC

ηFC
(3)

2.2.2. Micro-Turbine (MT)

The output power of MT is presented as follows [26]:

CMT = CgasMT ×
PMT

ηMT
(4)

2.2.3. Photovoltaic System (PVS)

Assume the irradiance of the solar irradiance performance β PDF and CDF are implemented to
represent it according to (5) and (6) [27].

fB(si) =

 Γ(α+β)
Γ(α)Γ(β)

siα−1

0 otherwise
(1− si)β−1 0 ≤ si ≤ 1, α ≥ 0,β ≥ 0 (5)

FB(si) =
∫ si

0

Γ(α+ β)

Γ(α)Γ(β)
siα−1(1− si)β−1 dsi (6)

α & β: beta PDF parameters, that can be used as the following equation:

α = µ

(
µ(1 + µ)
σ2 − 1

)
(7)

β = (1− µ)
(
µ(1 + µ)
σ2 − 1

)
(8)

PPV(si) = AC·η·si (9)

when applying Equation (5) the PDF fB(PPV) of the PV generated power can be obtained as the
following equation:

2.2.4. Wind Turbine (WT)

fPPV(PPV) =

 Γ(α+β)
Γ(α)Γ(β)

(ACηsi)α−1

0 otherwise
(1−ACηsi)β−1 ifPPV ∈ [0, PPV(si)] (10)

The PDF and CDF can be expressed according to the following equations [27]:

FV(Vwind) = 1− exp
(
−

(Vwind

αw

)2)
(11)

fV(Vwind) =
2
α2

w
Vwind exp

(
−

(Vwind

αw

)2)
(12)

when assuming the Vm is the mean wind speed, the parameters can be obtained as the following:

Vm = αwΓ
(
1 +

1
2

)
=

1
2
αwΓ

(1
2

)
=

√
π

2
αw, αw =

2
√
π

Vm (13)
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When substituting αw in PDF and CDF, the Rayleigh model for WT can be obtained as a function
of average wind speed according to the Equations (12) and (13).

fV(Vwind) =
π

2
Vwind

V2
m

exp

−(π4 )(Vwind

V2
m

)2 (14)

FV(Vwind) = 1− exp

−(π4 )(Vwind

V2
m

)2 (15)

The output power generated by WT is obtained in terms of wind speed Vwind as follows:

PWT =


0 Vwind ≤ Vc or Vwind ≥ Vf

Pr
V(t)−Vc
Vr−Vc

Vc ≤ Vwind < Vr

PrVr ≤ Vwind < Vf

(16)

The characteristics of different DER technologies (i.e., MT, FC, WT, and PV) are listed in Table 3.

Table 3. Characteristics of assumed distributed energy resources (DERs) technologies [28].

Generation Capacity
(kW)

Capacity
Factor

Life Time
(Year)

Capital Cost
($/kW)

Maintenance
Cost ($/kWh)

Annual
Conversion Factor

FC 400 0.4 10 3674 0.001 0.1006
MT 250 1 10 750 0.039 0.2152
PV 300 0.25 20 6675 0.005 0.0843
WT 300 0.2 20 1500 0.005 0.1006

2.3. Fundamental of Point Estimated Method (PEM)

The point estimate method is a numerical method exerted to calculate the true unknown value.
PEM is a stochastic technique developed by Hong which consists of km and km+1 scheme (K) is a
parameter depending on the type of Hong’s PEM schemes. The 2m+1 scheme is more accurate than
2m scheme due to its use the kurtosis of the input random variables. So this research work uses 2×m +

1 Hong’s PEM [29]. General Procedure of Point Estimate Method:

Step 1: Calculate the statistical information of the input variables.
Step 2: Calculate the concentrations for each input variable xl.

Step 3: Evaluate the F function at the points
(
p1, p2, . . . , xl,k, . . . , pm−1, pm

)
, by theweighted probability

factor. pl is themean value of the input variable xl. The points
(
p1, p2, . . . , xl,k, . . . , pm−1, pm

)
includethe kth location xl,k and the meanvalue of m − 1 remaining input variables(
p1, p2, . . . , pl−1, pl+1, . . . , pm−1, pm

)
.

Step 4: Compute the statistical information of the output variable (Z)

Z(l, k) = F
(
p1, p2, . . . , pl, . . . , pm

)
(17)

For each random variable pl, the three locations are calculated using mean value (µp,l) and
variance value (σp,l) of pl

pl,k = µpl + ξpl,k.σpl k = 1, 2, 3 (18)

The standard location, weighting factorωl,k of the uncertain parameters are determined by the
following equation:

ξl,k =
λpl,3

2
+ (−1)3−k

√
λpl,4 +

3
4
λ2

pl,3 For k = 1, 2 ξl,3 = 0 (19)
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ωl,k =
(−1)3−k

ξl,k(ξl,1 − ξl,2)
, ωl,3 =

1
m
−

1
λl,4 − λ

2
l,3

For k = 1, 2 ξl,3 = 0 (20)

The parameters λpl,3, λpl,4 are the third and the fourth standard central moments of pl which are
defined as coefficients of skewness and kurtosis as follows:

λpl,3 =
E
[(

pl − µpl

)3
]

(
σpl

)3 , λpl,4 =
E
[(

pl − µpl

)4
]

(
σpl

)4
(21)

In current work, (K = 3,ξl,k= 0) is applied for wind and PV power uncertainties.After computing two
pairs of locations and weights (pl, k,ωl, k, k=1, 2) for each point, the output function Z will be computed
for each variable and for each concentrated point Z(l, k) based on F

(
µp1, µp2, . . . , pl,k, . . . ,µpm

)
. The

jth order moment of Zj can be computed as follow:

E
(
Zj

)
�

m∑
l=1

K∑
k=1

ωl,k ×
[
F
(
µp1, µp2, . . . , pl,k, . . . ,µpm

)]j
(22)

3. Mathematical Problem Formulation

3.1. Objective Functions

The goal of multi-objective optimal allocation of DER units is to obtain an accurate solution in
the optimization process. In this article, three objective functions are examined for optimization as
shown below:

3.1.1. Power Loss (Technical Benefit):

Reducing the total system power loss is mainly affected by the optimal allocation of the DERs
problem. The power loss equation can be defined as follows [30].

F1(x) = PL(x) =
nbr∑
i=1

Ri|Ii|
2 (23)

3.1.2. Total Annual Energy Cost (Annual Economic Benefit)

After installing DERs in the network, the overall real losses (PwDER
L ) is decreased when compared

to that without DER (PwoDER
L ). The cost provided by DERs is given in [31]. Annual cost has been

calculated as the difference in energy loss cost without DER and with DER. The DER cost includes the
cost of DER and its installation. So the total annual cost is given by the following equation [32].

F2(x) =
(
Ce ×

(
PwoDER

L − PwDER
L

)
+ CDER

)
× 8760 (24)

CDER =

NFC∑
i=1

CFCi +

NWT∑
i=1

CWTi +

NGas∑
i=1

CGasi +

NPV∑
i=1

CPVi (25)

3.1.3. Total Greenhouse Gas Emission (Environmental Benefit)

The third objective function (F3) is considered to minimize the harmful gas emission into the
environment resulted from the substation and DER units. The values of emission coefficients of DER
units and the grid are given in [31].

F3(x) =
NMT∑
i=1

EMTi +

NFC∑
i=1

EFCi +

NPV∑
i=1

EPVi +

NWT∑
i=1

EWTi + Egrid (26)
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3.2. Constraints

3.2.1. Equality Constraints

The basics of equilibrium effect on the equality constraints. Real and interactive power balance
equations can be written as below [32]:

Pi = Vi

nbus∑
j=1

VjYij cos(θij − δi + δj) (27)

Qi = Vi

nbus∑
j=1

VjYij sin(θij − δi + δj) (28)

The real and complex power that can be injected when the energy sources are taking into account
for distribution system can be calculated as the following equations

Pi = Pgi − Pdi (29)

Qi = Qgi −Qdi (30)

3.2.2. Inequality Constraints

• Bus Voltage constraints

The bus voltages amplitude at the radial network should be limited by prescribed operating
conditions, which appear as the following equation:

Vmin
i ≤ Vi ≤ Vmax

i (31)

where, Vmin
i = 0.95 and Vmax

i = 1.05

• Power generation limit

It contains the limits of the maximum real power of the DERs and assuring that the whole DERs
capable to work within the permissible limits as the following equation:

Pgi ≤ Plimit
gi (32)

4. Preliminaries of Proposed Algorithm

4.1. Review of WaterCycle Algorithm

The water cycle optimization algorithm (WCA) mimics the stream of rivers and flow directly
to the sea and derived by the notification of the water cycle process [33]. The complete details are
used from [32]. The general procedures of the multi-objective water cycle algorithm (MOWCA) are
summarized as follows [32].

Step 1: Choose the initial parameters for the MOWCA: Nsr, dmax, Npop, Max Iteration, and Pareto
archive size.

Step 2: Generate a random initial population and form the initial streams, rivers, and sea by using
equations as below.

Total population =


Sea River1, River2, River3

StreamNsr + 1, StreamNsr + 2, StreamNsr + 3
StreamNpop

 (33)
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Nsr = Numbers of River + 1(sea) (34)

NStream = NPOP −NSr (35)

Step 3: Calculate the value of multi-objective functions for each stream using Equation (36).

Ci = Costi = f
(
xi

1, xi
2, . . . , xi

3

)
(36)

Step 4: Determine the non-dominated solutions in the initial population and save them in the
Pareto archive.

Step 5: Determine the non-dominated solutions among the feasible solutions and save them in the
Pareto archive

Step 6: Calculate the crowding-distance for each Pareto archive member.
Step 7: Select a sea and rivers based on the crowding-distance value.
Step 8: Determine the intensity of the flow for rivers and sea-based on the crowding distance values

using Equation (37).

NSn = round


∣∣∣∣∣∣∣ Costn∑NSr

i Costi

∣∣∣∣∣∣∣×NStream

 n = 1, 2, . . . , NSr (37)

Step 9: Streams flow into the rivers using Equation (38).

Xi+1
Stream = Xi

Stream + rand×C×
(
Xi

River −Xi
Stream

)
(38)

Step 10: Exchange positions of the river with a stream which gives the best solution.
Step 11: Some streams may directly flow into the sea using Equation (39).

Xi+1
Stream = Xi

Stream + rand×C×
(
Xi

Sea −Xi
Stream

)
(39)

Step 12: Exchange positions of the sea with a stream which gives the best solution.
Step 13: Rivers flow into the sea using Equation (40).

Xi+1
River = Xi

River + rand×C×
(
Xi

Sea −Xi
River

)
(40)

Step 14: Exchange positions of the sea with a river which gives the best solution.
Step 15: Check the evaporation condition.
Step 16: If the evaporation condition is satisfied, the raining process will occur using Equation (41).

XNew
Stream = LB + rand× (UB− LB) (41)

Step 17: Reduce the value of dmax which is a user-defined parameter using Equation (42).

di+1
max = di

max −
di

max

maxIteration
(42)

Step 18: Determine the new feasible solutions in the population.
Step 19: Determine the new non-dominated solutions among the feasible solutions and save them in

the Pareto archive.
Step 20: Eliminate any dominated solutions in the Pareto archive.
Step 21: If the number of members in the Pareto archive is more than the determined Pareto archive

size, go to Step 22, otherwise, go to Step 23.
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Step 22: Calculate the crowding-distance value for each Pareto archive member and remove as many
members as necessary with the lowest crowding-distance value.

Step 23: Calculate the crowding-distance value for each Pareto archive member to select new sea
and rivers.

Step 24: Check the convergence criteria. If the stopping criterion is satisfied, the algorithm will be
stopped, otherwise return to Step 9.

4.2. Non-Dominated Sorting Genetic Algorithm (NSGA-III)

A modified version of NSGA, called NSGA-II, developed by Deb et al. (2000) and Deb et al. (2002),
utilizes a fast non-dominated sorting genetic algorithm. This method is computationally efficient,
non-elitism preventing, and less dependent on a sharing parameter for diversity preservation. Recently,
a reference-point based multi-objective NSGA-II algorithm (called NSGA-III) is proposed by Deb
and Jain, which is more efficient to solve problems with more than two objectives [33]. The main
procedure of NSGA-III can be briefly described below. NSGA-III starts with the definition of a set
of reference points. Then an initial population with N members is randomly generated, where N is
the population size. The next steps are iterated until the termination criterion is satisfied. At the t-th
generation, the current parent population Pt is used to produce an offspring population Qt by using
random selection, simulated binary crossover (SBX) operator and polynomial mutation. The size of Pt
and Qt are both N. subsequently, the two populations Pt and Qt are merged together to form a new
population Rt = Pt∪Qt (of size 2N). To choose the best N members from Rt for the next generation, the
non-dominated sorting based on the usual domination principle [34,35] is first used, which classifies
Rt into different non-domination levels (F1, F2, and so on). Then, a new population St is constructed by
filling members of different non-domination levels one at a time, starting from F1, until the size of St
equals to N or for the first time becomes greater than N. Let us suppose that the last level included
is the l-th level. Hence, the solutions from the level l + 1 onwards are simply rejected. Members in
St\Fl are already chosen for Pt+1, and the remaining population slots are chosen from Fl such that the
desired diversity is maintained in the population. In the original NSGA-II, the solutions in Fl with
the largest crowding distance values are selected. However, the crowding distance measure does not
perform well for many-objective problems. Thus, the selection mechanism in NSGA-III is modified by
conducting a more systematic analysis of members in St with respect to the supplied reference points.
To achieve this, objective values and supplied reference points are first normalized so that they have an
identical range. After normalization, the ideal point of the set St is the zero vectors. Thereafter, the
perpendicular distance between a member in St and each of the reference lines (joining the ideal point
with a reference point) is calculated. Each member in St is then associated with a reference point having
the minimum perpendicular distance. Next, the niche count ρj for the j-th reference point, defined as
the number of members in St\Fl that are associated with the j-th reference point, can be obtained based
on the above process. Further, a niche-preservation operation is executed to select members from Fl,
and it works as follows. First, the reference point set Jmin = {j:argminj ρj} having the minimum ρj value
is identified. In case of |Jmin| > 1, one ¯j ∈ Jmin is randomly chosen. If ρ¯j = 0, we choose the one having
the shortest perpendicular distance to the j-th reference line among members associated with the j-th
reference point in Fl and add it to Pt+1. The count of ρ¯j is then increased by one. In the event ρj ≥ 1, a
randomly chosen member from front Fl that is associated with the j-th reference point is added to Pt+1,
and the count of ρ¯j also needs increasing by one. In both of the two cases, once there exists no such
member to be selected, the j-th reference point is excluded from further consideration for the current
generation. After niche counts are updated, the above niche operation is repeated for a total of K = N
− |St \ Fl| times to fill the remaining population slots of Pt+1. For more details of NSGA-III, please refer
to [33].The pseudo-codes of NSGA-III are shown in Figure 1.
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4.3. Best Compromise Solution

The power system operators may have imprecise goals for the DERs planning problem. Therefore,
a fuzzy-based mechanism is employed over the tradeoff curve of the Pareto optimal set obtained
by the MOWCA and NSGA-III algorithm to extract the best compromise solution. The value of the
membership function µk

i is calculated for the kth solution of the ith objective function, as follows [34]:

µk
i =


1 for Fi(x) ≤ Fmin

i
FMax

i −fi(x)

FMax
i −FMin

i
for FMin

i ≤ fi(x) ≤ FMax
i

0 for Fi(x) ≥ Fmax
i

(43)
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For each non-dominated solution in the archive set, the normalized membership function Uk is
calculated as follows:

Uk =

∑Nobj

i=1 µ
k
i∑NArchive

k=1

∑Nobj

i=1 µ
k
i

(44)

The solution that has the maximum value of Uk is considered the best compromise solution. In
this paper, all objective functions have the same importance (weight factor).

The values of input data parameters used in NSGA-III and MOWCA are summarized in Table 4.

Table 4. Values of parameter settings used in non-dominated sorting genetic algorithm (NSGA-III) and
multi-objective water cycle algorithm (MOWCA).

Parameter NSGA-III Parameter MOWCA

Population size N 80 Population size 80
Evaluation generation 50 Evaluation generation 50
Crossover probability (pc) 0.5 Nsr (Number of rivers + sea) 4

Mutation probability (pm) 0.5 dmax (Maximum allowable
distance between river and sea) 1×10−16

Distribution index for a crossover (ηc) 30
Distribution index for mutation (ηm) 20

5. Results and Discussion

To define the impact of the suggested algorithm carried out on a test system of IEEE-33 bus systems
and the IEEE-69 bus network. The cost of the energy losses per kWh is supposed to be $0.05 [31]. The
planning of hybrid power system model added to different load models, like constant, residential
and commercial load models at summer day load (SDM) and winter day load (WDM) are made by
employing MOWCA and NSGA-III form minimization of total power loss, total annual energy cost,
and emission while placing the DERs in appropriate locations. The simulations have been carried out
over six different cases as shown in Table 5.

Table 5. The case studies presented in this study.

Case Study Load Models System

Case 1 Constant load
IEEE- 33 bus system

Case 2 Residential load
Commercial load At summer day

Case 3 Residential load
Commercial load At winter day

Case4 Constant load
IEEE-69 bus system

Case5 Residential load
Commercial load At summer day

Case 6 Residential load
Commercial load At winter day

5.1. IEEE 33- Bus System

For examining the feasibility of the suggested MOWCA optimization technique, a test system
consists of 33-bus and 32 branches are used. 100 MVA, and 12.66 kV operating parameters, and loading
parameters are 3720 kW and 2300 kVAr respectively. The active and reactive losses without installing
DER units are 202.7 kW and 140.03 kVAr, respectively. The system parameters are found in [31].

5.1.1. Case 1: Constant Load Model

The results calculated by the suggested MOWCA algorithm are shown in Table 4. It is compared
to the results obtained by other techniques like NSGA-III for comparative study with the suggested
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algorithm. It is observed from Table 6 that a significant reduction is achieved by MOWCA in the
annual energy cost (683,595.915 $) and Emission (5489.94691 Ib/h) in comparison with NSGA-III while
the power loss achieved by MOWCA method (103.9202 kW) is higher than NSGA-III method. Figure 2
shows a set of non-dominated solutions or Pareto optimal fronts of constant load model.

Table 6. Simulation results using MOWCA and NSGA-III for optimization of power loss, annual
economic loss and emission under different loads such as the Summer Day Load Model (SDM) and
Winter Day Load Model (WDM) (IEEE-33 bus systems).

Method Type of
DG

Constant
Summer Day Load Model (SDM) Winter Day Load Model (WDM)

Residential Load Commercial Load Residential Load Commercial Load

Location
(bus no)

Size
(kW)

Location
(bus no)

Size
(kW)

Location
(bus no)

Size
(kW)

Location
(bus no)

Size
(kW)

Location
(bus no)

Size
(kW)

MOWCA
method

MT
(27)
(13)
(13)

89.751
73.116

0

(13)
(26)
(27)

135.25
150
129.85

(9)
(5)

(24)

250
172.95
100

(6)
(9)

(19)

198.37
121.99
153.42

(32)
(27)
(27)

241.53
116.8

0

FC
(19)
(13)
(29)

205.74
0

210.71

(16)
(6)

(27)

137.14
186.18

0

(5)
(10)
(18)

0
323.36
400

(19)
(11)
(24)

0
152.96
191.82

(4)
(24)
(20)

146.76
220.32

200

PV
(18)
(14)
(26)

-
(21)
(28)
(14)

-
(30)
(8)

(28)
-

(15)
(10)
(22)

-
(13)
(8)

(30)
-

WT
(16)
(28)
(8)

-
(24)
(29)
(12)

-
(32)
(6)

(29)
-

(14)
(26)
(16)

-
(17)
(23)
(15)

-

F1 (kW) 103.9202 71.2596 54.95523 69.68398 59.18302
F2 ($) 683.595.915 710.536.85 793,960.79887 738.466.285 835.280.76

F3 (Ib/h) 5489.94691 5105.50415 4779.93565 4928.2749 4624.96045

NSGA-III
method

MT
(31)
(32)
(23)

58.58
247
134.5

(27)
(5)
(9)

2.161
59.053
116.97

(21)
(17)
(2)

0.23526
0.021001
0.032842

(33)
(28)
(11)

223.4
101.4

175.99

(17)
(11)
(18)

19.834
242.84
133.4

FC
(7)
(7)

(25)

17.24
0343.6

(14)
(18)
(14)

218.51
324.28

0

(17)
(33)
(15)

0
0.33302
0.12261

(21)
(15)
(9)

109.5
162.5
191.4

(11)
(12)
(23)

0
229.63
251.36

PV
(4)

(15)
(12)

-
(22)
(16)
(30)

-
(18)
(14)
(19)

-
(25)
(26)
(31)

-
(3)

(27)
(31)

-

WT
(12)
(28)
(17)

-
(12)
(2)

(32)
-

(4)
(30)
(25)

-
(31)
(6)

(28)
-

(21)
(24)
(14)

-

F1(kW) 96.54708 77.65119 70.53227 53.64945 64.16248
F2 ($) 744204.37 757584.55805 739478.40639 818483.8614 792.522.977

F3(Ib/h) 5520.95828 5078.22182 4964.23913 5087.94170 4793.43071

* The best solution marked in bold.

Figure 2. Distribution of Pareto-optimal solution for the constant load model in the IEEE 33 bus system.
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5.1.2. Case 2: Summer Day Load Model (SDM)

• Residential load

Table 6 depicts the multi-objective output for the residential load model. The network losses are
164 kW before the installation of any DER, and after installing they are reduced to 71.2596 kW.From
Table 4 it is clear that the MOWCA method significantly improves the system performance in terms of
reduction of the power loss of (71.2596kW) and annual energy cost (710,536.85$)as compared with
NSGA-III. However, the emission (5078.22182Ib/h) is less in NSGA-III.

• Commercial load

Table 6 illustrates the obtained results from implementing multi-objective optimization for the
commercial load model. Before installing any DER the system losses are 152 kW and after installing they
are reduced to 54.95 kW. The simulation results show that the MOWCA method reduces power losses
and emissions. However, the annual energy cost is less in NSGA-III. Figure 3 shows Pareto optimal
fronts and three dimensional residential and commercial load models at summer day load model.

Figure 3. Distribution of Pareto-optimal solutions for residential and commercial load models at
summer day load in the IEEE 33 bus system.

5.1.3. Case 3: Winter Day Load Model (WDM)

• Residential load

The output results using MOWCA optimization algorithms are compared to the NSGA-III method
and summarized in Table 6. The comparison proves that the suggested MOWCA provides the most
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reduction is achieved in annual cost and emission as compared with NSGA-III method. While the
power loss achieved by MOWCA (69.68398 kW) is higher than NSGA-III (53.64945 kW).

• Commercial load

The output results deduced using the suggested MOWCA are compared to NSGA-III as presented
in Table 6. It may be notified that MOWCA significantly reduces the power loss and emission as
compared with the NSGA-III algorithm. However, the annual cost is less in NSGA-III. Figure 4 shows
Pareto optimal fronts and three dimensional residential and commercial load models at the winter day
load model.

Figure 4. Distribution of Pareto-optimal solutions for residential and commercial load models at winter
day load in the IEEE 33 bus system.

5.2. IEEE 69- Bus System

To show the performance of the proposed optimization techniques on a huge network is developed
using a 69-bus network, the second test system used is 69-bus systems with a load of 3800 kW and 2690
kVAr, respectively and the data related to this test system was taken from [31]. Before the placement of
DG units, the total active and reactive power losses are 224.95 kW and 102.12 kVAr, respectively.
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5.2.1. Case 4: Constant Load Model

From Table 7, it is clearly notified that the results obtained by MOWCA show that significant
reduction is achieved in the active power losses (135.852 kW) and annual energy cost (653,778.637$) in
comparison with NSGA-III while the emission achieved by MOWCA method (5622.082 Ib/h) is higher
than NSGA-III method. A group of non-dominated solutions or Pareto optimal fronts of constant load
model are shown in Figure 5.

Table 7. Simulation results using MOWCA and NSGA-III for optimization of power loss, annual
economic loss and emission under different loads such as SDM and WDM (IEEE-69 bus systems).

Method Type
of DG

Constant
Summer Day Load Model(SDM) Winter Day Load Model(WDM)

Residential Load Commercial
Load Residential Load Commercial Load

Location
(bus no)

Size
(kW)

Location
(bus no)

Size
(kW)

Location
(bus no)

Size
(kW)

Location
(bus no)

Size
(kW)

Location
(bus no)

Size
(kW)

Proposed
MOWCA

MT
(6)

(62)
(45)

123.6
197.44
61.991

(45)
(39)
(37)

98.874
131

24.193

(54)
(35)
(59)

204.1
100.58
0.17812

(19)
(15)
(47)

187.33
75.74

149.42

(28)
(53)
(21)

164.19
30.188
85.132

FC
(62)
(20)
(7)

0
136.72
302.2

(38)
(62)
(44)

50.602
392.54
173.06

(21)
(61)
(30)

216.05
274.91
65.198

(56)
(60)
(36)

2.3104
355.13
96.482

(24)
(32)
(55)

257.94
65.586
207.26

PV
(24)
(41)
(65)

-
(15)
(65)
(68)

-
(7)

(38)
(11)

-
(63)
(32)
(33)

-
(64)
(23)
(67)

-

WT
(15)
(12)
(44)

-
(20)
(21)
(5)

-
(27)
(64)
(53)

-
(41)
(64)
(31)

-
(62)
(46)
(31)

-

F1 (kW) 135.852 88.02824 87.47904 78.90383 96.37189
F2 ($) 653.778.637 713.190.23449 689.160.668 669.380.049 661.212.176

F3 (Ib/h) 5622.082 5270.99823 5066.35384 5094.87203 4991.83448

NSGA-III
method

MT
(55)
(45)
(33)

46.52
173.36
111.68

(50)
(20)
(6)

96.838
0

149.14

(37)
(36)
(46)

109.69
19.288 17.67

(37)
(24)
(51)

0
116.5
116.5

(43)
(6)

(43)

0
0
0

FC
(11)
(60)
(54)

117.83
331.41
184.07

(50)
(19)
(31)

0
201.44
147.54

(52)
(52)
(29)

75.316
0

262.41

(26)
(26)
(33)

296.54
0
0

(40)
(500)
(28)

0
300
0

PV
(51)
(15)
(40)

-
(23)
(24)
(60)

-
(62)
(51)
(33)

-
(65)
(21)
(35)

-
(33)
(47)
(63)

-

WT
(46)
(38)
(47)

-
(27)
(34)
(39)

-
(16)
(54)
(25)

-
(4)
(7)

(38)
-

(26)
(18)
(7)

-

F1 (kW) 152.73747 127.309 116.14785 111.44034 120.86334
F2 ($) 744.761.744 537.874.808 495.466.135 499.478.626 418.812.277

F3 (Ib/h) 5498.66641 5437.09658 5311.83193 5473.49029 5411.5537

* The best solution marked in bold.

Figure 5. Distribution of Pareto-optimal solution for the constant load model in the IEEE 69 bus system.

5.2.2. Case 5: Summer Day Load (SDM)

• Residential load
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Before installing any DER the system losses are 177 kW active power loss and after installing they
are reduced to 88.02824 kW. Form Table 7, it can be noticed that the results obtained by MOWCA show
that significant reduction is achieved in power loss (88.02824 kW) and emission (5270.99823 Ib/h) as
compared with the NSGA-III while the annual economic benefit achieved by MOWCA(713,190.234$) is
higher than NSGA-III (537,874.808$).

• Commercial load

Before installing any DER, the system losses are 162 kW active power loss and after installing they
are reduced to 97.75 kW. Form Table 7, it can be seen that the MOWCA method significantly improve
the system performance in terms of reduction of power loss of (87.47904 kW) and emission (5066.35384
Ib/h) as compared with NSGA-III. However, the annual economic benefit is less in NSGA-III method.
Figure 6 shows Pareto optimal fronts and three dimensional of residential and commercial load model
at summer day load.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 18 

 

Table 2. Vegetation characteristics for each plot in the study area. 

 
  

(a) Residential load model 

  
 

(b) Commercial load model 

 

 

 

Figure 6. Distribution of Pareto-optimal solutions for residential and commercial load models at
summer day load in the IEEE-69 bus system.

5.2.3. Case 6: Winter Day Load Model (WDM)

• Residential load

Without allocation DER, the network losses are 161 kW and after installing they are reduced
to 78.90383 kW. The simulation results show that the MOWCA method reduces power losses and
emission in an effective manner. However, the total annual energy cost is high compared with the
method NSGA-III.

• Commercial load

Without installing DER, the network losses are 159 kW and after installing they are reduced to
(96.37189 kW). It may further be noted from Table 7 that the power losses and emission obtained by the
MOWCA method which provides highly accurate results in compared with that obtained by NSGA-III
method while the annual energy cost achieved by NSGA-III is lower than MOWCA method. Figure 7
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shows Pareto optimal fronts and three dimensional residential and commercial load models at winter
day load.

Figure 7. Distribution of Pareto-optimal solutions for residential and commercial load models at winter
day load in the IEEE-69 bus system.

6. Conclusions

In this article, the Multi-objective Water Cycle Algorithm (MOWCA) is proposed to determine the
optimum placement and size of a hybrid power system model consisting of various combinations of a
conventional system and renewable energy resources. Various optimization problems are addressed
in this article such as real power loss, annual energy cost, and greenhouse gas emission as objective
functions. The prime aim of considering these objectives is minimization of power loss, annual energy
cost, and greenhouse gas emission. The DER planning with MOWCA method is tested for different
voltage-dependent load models, namely constant, residential, and commercial load at summer and
winter day load models in IEEE 33 bus and 69 bus distribution systems. The attained results by
MOWCA method are compared with NSGA-II algorithm to validate its performance. It is clear from
the comparison of simulation results that MOWCA was capable of obtaining better solutions than
NSGA-III approach for multi-objective problems. The results indicated that enhancement of the
distribution power system performance parameters depends on the size of DERs and their suitable
placement in the distribution power systems. It was clear the proposed MOWCA method proves
that the economic and environmental benefit is achieved with the optimal allocation of DERs at the
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constant load and residential load in the winter day load model regarding to other load models for
IEEE 33-bus system while technical and economic benefit is got at the constant load with respect to
other load models for the IEEE 69-bus system. The technical and environmental benefit is obtained
at commercial load in summer and winter day load model for the IEEE 33-bus system and also at
residential load for the IEEE 69-bus system while the technical and e economic benefit is attained at
residential load in summer day load model for IEEE 33-bus system.
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Nomenclature

CFC Fuel consumption cost of a fuel cell ($/h) PSub Substation active power
CgasFC Price of natural gas supplied to fuel cell Pmax

gi Real power limit of the ith generator
CMT Fuel consumption cost of micro-turbine ($/h) PFC Output power of fuel cell
CgasMT Natural gas price supplied to micro-turbine PMT Output power of micro-turbine
Fi The ith objective function PWT Wind turbine output power
ηFC Fuel cell efficiency Pr Rated/nominal power of the wind turbine
ηMT Micro-turbine efficiency PSub Substation active power
Ii The current of ith branch ξl,k Standard location of kth point
Gr Annual conversion factor µpl Mean deviation of pl random input variable
LF The load factor Qdi Load demand reactive power at ith bus
nbr Number of branches Ri Resistance of ith branch
n Nominal output power of photovoltaic panel sn Nominal illumination intensity of the photovoltaic
NMTNMT Numbers of the micro-turbine Vc Wind cut-in speed
NFC Numbers of the fuel cell Vf Wind cut-out speed
NPV Numbers of the Photovoltaic Vr Wind rated speed
NWT Numbers of the wind turbine V Actual speed of the wind turbine
Ploss Total system active power losses Vmax

i Upper voltage limits of ith bus
PMTi Real output power of the ith micro-turbine Vmin

i Lower voltage limits of ith bus
PPVi Real output power of the ith Photovoltaic
PWTi Real output power of the ith wind turbine
Pgi Active powers of the ith energy source
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