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Abstract: To understand key factors that drive China’s green fodder supply, this study estimates
a Nerlovian partial-adjustment model, using provincial-level panel data spanning two decades
(1997–2016). Based on a set of explanatory variables selected by the LASSO (Least Absolute Shrinkage
and Selection Operator) method, estimation of the Nerlovian model by the system-GMM (Generalized
Method of Moments) method yields three key findings. First, while farmers’ previous cultivation
decisions on green fodder supply strongly predict their current decisions, without the influence of
other drivers, China’s green fodder supply tends to decline over time. Second, among the identified
drivers, government policy plays the most significant role—the availability of subsidies for cultivation
of green fodder crops raises the sown area of green fodder crops by more than 30 percent. In contrast,
farmer’s sown-area decision is only modestly responsive to price incentives. Finally, while the stock
of fixed capital inputs (e.g., number of combine harvesters) and natural disasters (e.g., floods) both
affect green fodder supply, their impacts are small.
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1. Introduction

Dramatic increases in wealth and food availability in China, owing to its economic reforms and
the resulting rapid economic growth, have greatly transformed Chinese consumers’ food consumption
patterns. Official statistics indicate that per capita consumption of animal products (including meat,
eggs, milk, and aquatic products) among urban households rose from 44.4 to 81.1 kilograms during the
period of 1997–2017, with a growth rate of 82.7% [1]. Meanwhile, the focus of food demand has shifted
from quantity targets, e.g., to ensure food security, to quality aspects, such as food variety, nutritional
content, and food safety [2,3]. In particular, shocked by a series food-safety scandals, including the
notorious incident of melamine-contaminated infant formulas in 2008, Chinese consumers have started
to pay considerable attention to information on the manufacturer, nutrition content, and production
process of animal products [4]. All these call for a healthy and sustainable development of China’s
livestock sector.

Adequate supply of high-quality green fodder crops—i.e., fresh crops that are rich in water
and nutrients [5], including natural grass or artificial herbage (e.g., ryegrass, alfalfa and silage corn),
leafy fodder (e.g., sweet potato vines), aquatic feed (e.g., water hyacinth), wild weeds, and wild
vines [6])—plays a key role in the sustainable development of a country’s livestock sector [7–9].
However, the sown area of green fodder crops accounted for less than 2% of the total area of farm
crops in China in the past two decades, and this percentage has declined to below 1% since 2012 [1].
Largely due to the rapidly growing demand for livestock products in the recent decade [10,11], China’s
green fodder demand has outgrown its domestic supply. The resulting shortage in green fodder
supply has led China’s livestock husbandry to rely heavily on feed grain, straw, and other feedstuffs as
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substitutes for green fodder, which, in turn, created a number of problems in China’s agri-food system.
Firstly, the inferior quality of these substitute feedstuffs (relative to that of green fodder) substantially
lowers the production efficiency of China’s livestock sector. In particular, due to insufficient green
fodder content in dairy cow rations, the average lactation yield of Chinese dairy cows (5 tons) is
about 45% lower than that of their American counterparts (9 tons) [9]. The low quality of livestock
products also creates room for illegal practice among irresponsible food providers, who often use illegal
additives and preservatives to increase sales, whereby imposing a serious burden of health risks on
Chinese consumers [2–4]. Secondly, the ever-heavier reliance of China’s livestock sector on feed grains
has deteriorated the pressing problem of “competition for grain between humans and animals” in
China [12]. As indicated by official estimates, the amount of feed grains consumed in China accounted
for more than 40% of the total national grain consumption in the past decade [13]. Finally, facing
insufficient domestic green fodder supply, China has turned to the international market to meet its
domestic demand, importing 1.72 million tons of green fodder from overseas in 2016 alone [14]. The
heavy dependence on international supply introduces substantial risks to China’s livestock production
system. For instance, the unexpected increase in tariff and global supply shortage in 2018 caused
forage costs in China to jump up by 6% [15].

In response to these problems, the Chinese government has set up an agenda for developing a
sustainable, herbivorous and grain-saving stockbreeding system [16]. Subsidies for planting green
fodder crops, as part of the Returning Farmland to Forests and Grassland (RFFG) initiative, were also
provided to farmers to help achieve this goal [17]. Yet before specific action plans can be designed
and carried out to achieve this goal, two fundamental questions need to be answered: what are
the fundamental drivers of green fodder supply in China? And, among these drivers, which are
the most relevant ones: price factors (e.g., factor prices and output prices of green fodder and its
competitor crops) or non-price factors, such as technology (e.g., availability of high-yield varieties),
natural conditions (e.g., flood and drought occurrences), or government policies (e.g., green fodder
planting subsidies)? Unfortunately, the existing literature on green fodder supply has largely failed to
provide conclusive answers to these questions. For instance, previously estimated impacts of output
price, the most important building block of any crop supply models, vary from being significantly
positive [18] to being irrelevant [19]. The role of governmental policies is also unclear, varying from
being “strong” [20] to being “negligible” [21]. These discrepancies in findings are presumably due to
the fact that previous studies were focused on different (and relatively small) regions in China with
vastly different local conditions, which seriously limits the external validity of their findings. The
conditioning on different explanatory variables also greatly reduces the comparability across different
studies. In fact, this problem (of including different explanatory variables in the empirical model)
also plagues the studies of agricultural supply responses in other contexts. For example, in a series
of studies that estimated the acreage (supply) response of wheat in the United States [21–24], the
role of governmental intervention programs vary greatly from being significantly negative [21–23] to
being positive [24]. The specific drivers of wheat supply examined in these studies were also quite
different. For example, Lidman and Bawden [21] considered the national wheat allotment and the
announced loan rate to be key drivers of wheat supply in the U.S. Garst and Miller [22] considered
diversion for payment and the market price of wheat in the preceding season as additional driving
factors, while Morzuch et al. [23] and Krause et al. [24] further included prices of other crops and price
risk in their respective models. Keeping in mind the problems existing in the international literature,
and in the literature specifically on China, to depict a more comprehensive picture of the key drivers
underlying China’s green-fodder supply, more-systematic analyses that (1) use data with a greater
geographical coverage, (2) cover a longer time span, and (3) consider a larger set of potential factors,
are clearly needed.

The present paper aims to fill this demand by estimating an expanded Nerlovian partial-adjustment
model [25–27] of green fodder supply in China, based on provincial-level panel data spanning two
decades (1997–2016); to reflect suppliers’ planting decisions more directly, our analysis focuses on the
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sown-area of green fodder (rather than the output of it). Special attention is paid to variable selection in
the analysis. Note that, except for the basic variables specified in the original Nerlovian model [27–29],
such as lagged output prices and lagged sown areas, theory is silent on what other factors should
be included in the empirical model. Meanwhile, many previous researchers have considered other
factors in their empirical models. For instance, Konyar and Knapp [30] examined the impacts of cost
of production, availability of crop rotation technology, and prices of competing crops on the supply
of alfalfa—a major green-fodder crop—in California, United States. Wang et al., [19] examined the
impacts of prices of different competitor crops of alfalfa (i.e., maize, wheat and cotton) on alfalfa
supply in China. Wang and Qian [18] estimated the impact of the price of maize, a substitute crop of
alfalfa, on the sown area of alfalfa, and the impact of fertilizer use on alfalfa yield in China. Since the
major categories of factors that may potentially affect green-fodder supply (e.g., input prices, prices
of competitor crops, and areas affected by natural disasters) examined in previous studies involve
more than 70 specific variables [29], we resort to the LASSO (Least Absolute Shrinkage and Selection
Operator) method, a machine-learning algorithm developed by Tibshirani [31], to select the most
relevant driving factors of China’s green fodder supply. In estimating the Nerlovian green fodder
supply model, LASSO finds the coefficients of the explanatory variables that minimize the sum of
squared residuals, plus a “penalty” function that penalizes the size of the model (defined over the
sum of absolute values of the estimated coefficients), by setting the coefficients of some explanatory
variables (which are part of the penalty function) to zero, leaving only the most relevant variables
in the estimated model. Our LASSO procedure selects 21 variables out of the full set of 76 variables
available in the data. Not only does the set of LASSO-selected variables cover most of the relevant
categories of factors found in previous studies [18,19,30,32], such as sown areas of competitor crops,
fixed (capital) inputs, and the availability of production services (proxied by the stock of agricultural
machinery), it also includes a number of factors that have been neglected in most of the previous
studies, such as natural disasters and subsidy policy.

Based on the LASSO-chosen variables, estimation of the Nerlovian model using the two-step
system GMM (Generalized Method of Moments) method [33,34] reveals that, while both price and
non-price factors matter for the sown area of green fodder crops in China, non-price factors play a more
important role. First, while suppliers’ sown-area decision made in the previous year strongly predicts
their decision in the current year, the estimated elasticity is slightly less than unity, suggesting that,
without the influence of other drivers, green fodder supply in China tends to decline over time. Second,
among the significant drivers we found, government policy, the availability of subsidies matters the
most. It boosts the sown area of green fodder crops up by more than 30%. Suppliers’ sown-area
decision is also responsive to price incentives, but not dramatically so—the estimated own-price
elasticity is only about 0.21. Finally, while the stock of fixed capital inputs (e.g., the number of combine
harvesters) and natural disasters (e.g., floods) both affect green folder supply in a statistically significant
manner, their impacts are quite small in magnitude.

The remainder of this paper is organized as follows. The next section describes the data and
develops an empirical framework for estimating drivers of green fodder supply in China. Section 3
reports computational and estimation results. Section 4 discusses the findings of the paper. The final
section draws conclusions and points out several directions for future research.

2. Materials and Methods

2.1. Data Compilation

The dataset analyzed in this paper is a provincial-level panel dataset covering 27 provincial-level
administration units (22 provinces and five autonomous regions) in mainland China for the period
of 1997–2016, compiled from Provincial Statistical Yearbooks published in relevant years [1]. Four
municipalities (namely, Beijing, Shanghai, Tianjin and Chongqing, which are also provincial-level
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administration units) are not included in the dataset, due to serious data-missing problems and their
very limited sown areas of green fodder crops.

The variables used in the analysis can be subdivided into five categories (Table 1): (1) (lagged)
sown areas of major crops that are potentially competitor crops or rotation crops of green fodder crops;
(2) price indices for agricultural inputs; (3) policies such as subsidies for the cultivation of green fodder
crops [12] and related directives stipulated in official documents and reports (especially, the No.1
Documents of the Central Government that focus on agricultural development) issued in relevant years;
(4) areas affected by various natural disasters; (5) year-end numbers of major agricultural machines (as
proxies for fixed inputs or capital stock in agricultural production).

Table 1. Potential driving factors of green fodder supply in China.

All Originally Available Variables

Variable Category (1) Variables not Selected by LASSO (2) LASSO-selected Variables

(1) Lagged sown area
(1000 hectares)
[43 variables]

Total sown areas of:
farm crops, grain crops, grain crops harvested in
summer, grain crops harvested in autumn, cereal,
rice, early rice, middle-season rice and
single-cropping late rice, double-cropping late rice,
wheat, winter wheat, spring wheat, corn, millet,
jowar, other cereal, barley, beans, soja, mung, red
bean, tubers, potato, oil-bearing crops, peanuts,
rapeseeds, sesame, helianthus, benne, cotton, fiber
crops, jute and ambary hemp, flax, hemp, ramee,
sugar crops, sugarcane, beetroots, tobacco,
flue-cured tobacco, vegetables, medicinal materials,
other farm crops

Lagged sown area of:
fiber crops (100), other cereal (100),
other farm crops (100), jute and
ambary hemp (95), mung (93),
spring wheat (84), helianthus (69),
winter wheat (69), hemp (49),
peanuts (35), oil-bearing crops (11),
rapeseeds (11)

(2) Price indices for
agricultural production
inputs (2007 price = 100)
[14 variables]

Price indices for:
farm hand tools, forage, commodity animals,
semi-mechanized farm tools, mechanized farm
machinery, mechanized farm machinery, chemical
fertilizer, pesticide and its appliances, chemical
pesticide, pesticide appliances, oil for farm
machinery, other agricultural production inputs,
agricultural seed, other agricultural production
inputs (other than seed), price indices of
agricultural production service

Price indices for:
other means of agricultural
production (other than seed) (96),
service of agricultural production
(96), semi-mechanized farm tools
(49)

(3) Encouragement
(subsidy) policy
[1 variable]

Subsidy of green fodder cultivation (“Returning
Farmland to Forests and Grass” (1999–2003))

Subsidy for green fodder
cultivation (100)

(4) Areas affected by
natural disasters area
(1000 hectares)
[10 variables]

Areas potentially covered by natural disasters,
flood, drought, windstorm and hail, freeze injury;
Areas seriously affected by natural disasters, flood,
drought, windstorm and hail, freeze injury

Areas seriously affected by freeze
injury (58), areas potentially
covered by floods (58), areas
seriously affected by floods (23)

(5) Agricultural
machinery (year-end)
[8 variables]

Number of:
large and medium-sized agricultural tractors, small
tractors, towing farm machinery of large and
medium-sized agricultural tractors, towing farm
machinery of small tractors, agricultural electronic
engines, agricultural diesel engines, combine
harvesters, motorized threshing machines

Number of:
motorized threshing machines
(49), combine harvesters (11)

Notes: Numbers in parentheses in the last column indicate the number of times these variables are selected out of
the 100 LASSO simulations.

A series of data manipulations were performed in preparing the dataset for estimation. First, all
prices were deflated using production price indices, with the 2007 price being set as 100—the year
of 2007 was chosen because it is the year with the fewest missing values. Second, all continuous
variables were transformed into their logarithms to reduce to the problem of outliers and to obtain
elasticity measures for ease of interpretation and comparison—a small constant, one, is added to
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the variables to avoid taking log of zeros. Third, since the variable selection method adopted in
this paper (i.e., the LASSO method, discussed in more detail in the next section) does not support
analytical samples with missing values, we imputed all missing values in our dataset using the “MICE
(multivariate imputation by chained equations)” procedure developed by Buuren [35] and Buuren and
Groothuis–Oudshoorn [36]. In the MICE procedure, each variable with missing values was modeled
on the basis of other observed variables in the dataset, based on a series of linear regression models
that were run to impute those missing values [37,38].

2.2. Analytical Framework

Figure 1 illustrates conceptually the procedure we undertook to analyze green fodder supply
in China. Detailed descriptions of all analytical tools adopted in the analysis are provided in the
following subsections. All results discussed in this paper are obtained using the Statistical Analysis
software R 3.4.3.
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2.2.1. The Nerlovian Supply-Response Model

Agricultural supply is usually modelled as the response of crop sown area (or output) to variations
in price and other factors [27]. In order to study agricultural supply response, it is vital to properly
define and measure farmers’ price expectations. Three price-expectation models have been devised
and commonly adopted in the existing literature of supply response: the naïve price-expectation
model, the adaptive price-expectation model, and the rational price-expectation model, which differ
mainly in their assumptions on how farmers form their price expectations [39]. More specifically,
the naïve price expectation model assumes that farmers do not have a learning process in forming
their price expectation; rather, they make their crop planting decisions solely based on the market
price realized in the previous time period [40]. The obvious limitation of this model is its ignorance
of farmers’ price expectation. The adaptive price-expectation model relaxes the assumptions of the
naïve price-expectation model, by allowing farmers’ crop planting decisions to be responsive to the
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expected price, rather than the realized one, and allowing the expected price to depend not only
on the price realized in the last period but also on the prices realized in all past periods [25]; these
relaxations certainly render the adaptive price-expectation model much more realistic (compared to
the naïve price-expectation model). The rational price-expectation model further refines the adaptive
price-expectation model by assuming that farmers adjust their price expectation based on all available
information in the market, including information on the structure of the system that generates the
data [29,41]. While theoretically compelling, the notion of rational price-expectation may not be
easy to characterize and measure empirically, as it is determined by both supply and demand in
the equilibrium, which imposes a heavy burden on data collection [29]. Given the advantages and
disadvantageous of these models, most previous researchers opted to use the adaptive expectation
model as the framework for their empirical work [29]. The Nerlovian supply response model—more
precisely, the Nerlovian adaptive expectation and partial adjustment model—is one of the most widely
used [18,27,42,43]. Following the majority of previous studies, this study also adopts a Nerlovian
framework to analyze how the supply of green fodder crops in China responds to variations in
important (price and non-price) factors.

The Nerlovian partial-adjustment model specifies the outcome variable of interest (sown area of
green fodder crops in our case) as a function of the expected output price, sown-area adjustment, and
a set of non-price variables. The commonly-adopted Nerlovian model consists of three “structural”
equations [27,29]:

Ae
t = α0 + α1Pe

t +α2Zt + µt (1)

Pe
t = Pe

t−1 + β
(
Pt−1 − Pe

t−1

)
(2)

At = At−1 + γ
(
Ae

t−1 −At−1
)

(3)

where Ae
t and At are, respectively, the expected and realized sown areas of green fodder crops at time t;

Pe
t and Pt are, respectively, the expected and realized output prices of green fodder at time t; Zt is a vector

of non-price factors observed at t that also affect green fodder supply (e.g., national policies, sown
areas and prices of competitor crops, prices of inputs, and natural disasters, etc.)—note that, since the
current sown areas of grain and other crops may be jointly determined with the current sown area of
green fodder crops, to avoid simultaneity bias [44], we include only the lagged values of sown areas of
these crops as explanatory variables in Zt; µt is an independently and identically distributed normal
error with mean 0 and standard deviation (SD) σµ: µt ~ N(0, σµ2); the two parameters, β and γ, both
lying within the unit interval [0, 1], are, respectively, the expectation factor and the adjustment factor.

In this model, Equation (1) describes how the expected sown area of green fodder crops relates to
the expected output price and other factors Z at time t. Equation (2) captures the Nerlovian notion
of adaptive expectation, which assumes that price expectations are updated proportionally (captured
by the expectation factor β) to the discrepancy between the price realized at t − 1 and the expected
price at t − 1. Equation (3) models the realized sown area as the sum of the lagged sown area and the
expected adjustment (i.e., the difference between expected and realized sown areas) multiplied by γ,
the adjustment factor.

Note that, while theoretically well-defined, Ae
t and Pe

t are not directly observable. Thus, the
coefficients attached to them in the above equations, α1, β and γ, are not readily estimable. However,
substituting out these two unobservable variables in Equation (1), using Equations (2) and (3), yields
the following estimable reduced-form equation (which links the observable sown area to its observable
factors):

At = θ0 + θ1Pt−1 + θ2At−1 + θ3At−2 + θ4Zt + θ5Zt−1 + Vt (4)

where θ0 = α0βγ, θ1 = α1βγ, θ2 = (1 − β) + (1 − γ), θ3 = −(1 − β)(1 − γ), θ4 = α2γ, θ5 = −α2(1 − β)γ, νt

= γ[µt − (1 − β)µt−1].
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2.2.2. Identification Issues and Solution

If the idiosyncratic error term νt in Equation (4) is uncorrelated with any of the explanatory
variables, then the conventional Ordinary Least-Squares (OLS) technique can provide consistent
estimates of the parameters θ’s. However, there are two reasons why such a condition may fail. First,
the estimating equation, Equation (4), involves lagged dependent variables (At−1 and At−2) among the
explanatory variables. If νt is serially correlated, i.e., Cov (νt, At−1) = Cov (νt, θ0 + θ1Pt−1 + θ2At−1

+ θ3At−2 + θ4Zt + θ5Zt−1 + νt−1) = Cov (νt, νt−1) , 0 (perhaps due to some unobserved factors that
persist over time), the correlation between these lagged dependent variables and the idiosyncratic
error term νt will lead to biased or inconsistent OLS estimates. To address this problem, we adopt the
two-step system GMM estimator developed by Arellano and Bond [33] and Arellano and Bover [34],
using the lagged sown areas At−3, At−4, . . . as instrument variables for At−1 and At−2 and using lagged
prices Pt−2, Pt−3, . . . as instrument variables for Pt−1.

Second, the validity of the above solution hinges on the assumption that the “structural” Equations
(1)–(3) are correctly specified, which may not be the case. For example, there might be unobserved
factors (e.g., local natural conditions or government policy) that affect both farmers’ sown-area
expectation and their price expectation in Equation (1), causing a spurious relationship between these
two sorts of expectations (captured by α1), thereby causing the estimate of θ1 (which is a function of α1)
to be biased/inconsistent. The conditioning on the Z variables does help reduce this concern to some
extent [27,29], but it is unclear a priori what specific factors should be included in Z. Theory provides
limited insight. While economic theory suggests several (rather broad) categories of factors (e.g., input
prices, output prices of competitor crops, natural disasters, machinery services and related policies)
that should be included in Z, in practice there are plenty of specific factors in each of these categories
(Table 1). For example, input prices may include prices of fertilizer, pesticide, and machinery, etc.,
(Table 1, row 2) and competitor crops may include rice, wheat, beans, peanut, potato, rapeseeds, flax,
tobacco, etc. (Table 1, row 1). Previous empirical studies usually selected only a handful of control
variables or several linear combinations of variables to proxy all potential variables in Z. For example,
Wang and Qian’s [18] model only considered price of maize, a competitor crop of alfalfa, but ignored
other variables. Similarly, the Tennessee hay supply model estimated by Bazen et al. [45] only included
hay seed price and the percentage of row–crop acreage (for corn, cotton, sorghum, soybeans, and
wheat), but not other factors. Such an approach is ad hoc in nature, and it is usually unclear what
the underlying variable-selection criteria are. Therefore, a comprehensive, transparent and efficient
variable-selection method is needed.

2.3. Variable Selection: The LASSO Method

To facilitate variable selection, we resort to the “Least Absolute Shrinkage and Selection Operator
(LASSO)” method developed by Tibshirani [31]. Compared to conventional OLS estimators, the LASSO
estimator sacrifices a small amount of unbiasedness/consistency for a large reduction in variance of the
predicted values, by minimizing the sum of squared residuals plus a penalty function that penalizes
the size of the model through the sum of absolute values of the coefficients [31,46,47]. The efficiency
gain allows LASSO to identify more potential predictors than conventional estimation methods.

Formally, LASSO chooses values of the coefficients (θ) in Equation (4) to minimize the conventional
sum of squared residuals plus a penalty function λ‖θ‖1:

θ̂ = argmin
θ∈R

 27∑
i=1

2016∑
t=1997

(
Ai,t −X′i,tθ

)2
+ λ‖θ‖1

 (5)

where Xi,t = (1, Pi,t−1, Ai,t−1, Ai,t−2, Zi,t, Zi,t−1) contains a total of 111 covariates (a constant term, Pi,t−1,
Ai,t−1, Ai,t−2, 32 in Zi,t and 75 in Zi,t−1); θ = (θ0, θ1, θ2, θ3, θ4, θ5) is the vector of the associated
coefficients, with ‖θ‖1 =

∑
θ∈θ|θ| being the L1-norm (Manhattan norm) of vector θ; λ > 0 is the tuning

parameter (which can be “turned” on to produce the best out-of-sample prediction), whose value is
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usually chosen using a k-fold cross validation, with k usually being 5 or 10 [47,48]. In this study, λ
is obtained by a 10-fold cross validation, which is thought to be better than the leave-one-out cross
validation or 5-fold cross validation [49].

In solving Equation (5), LASSO sequentially excludes the least relevant explanatory variables
during the iterative estimation process by setting their coefficients to zero, thereby reducing the sum
of squared residuals of the model. The resulting variables (with nonzero coefficients) then serve as
the candidates for the explanatory variables in the Nerlovian model (4) discussed above. Note that
in our setting, LASSO has two main advantages over conventional variable-selection methods. The
first advantage, over general variable-selection routines such as stepwise regressions, is that LASSO
solves a convex (global) optimization problem, and is thus computationally more efficient than those
variable-selection solutions that are based on enumerations of all possible variable combinations [46].
Given our dataset, individually filtering 76 variables (Table 1, column 1) may need as many as 276

computer manipulations; if a computer needs only 0.1 seconds to run a regression (with 76 variables),
it needs roughly 3.8 × 1017 years to complete the (global) variable-selection process. The second
advantage of LASSO, over conventional dimension-reduction methods such as principal component
analysis [50,51], is that LASSO does not need to transform the original explanatory variables, thus
imposing no difficulty in interpreting the estimation results.

Note, finally, that before performing LASSO, a choice must be made on whether a fixed-effect or a
random-effect specification should be used as the basis of LASSO estimation. Based on results of a
Hausman test [52] applied to Equation (4), a fixed-effect specification was chosen to perform LASSO
variable selection.

3. Results

3.1. Results of Variable Selection by LASSO

This section presents and discusses the set of variables that were selected by LASSO. The
variable-selection procedure involves two steps. In the first step, a Hausman specification test [52]
was performed to choose a suitable empirical specification for the LASSO estimating model. The need
to perform such a test stems from the concern that even though a large number (i.e., 76) of potential
explanatory variables are available in our dataset (Table 1, column 1), there might still exist unobserved
factors (e.g., land quality and farmers’ farm management skills) that affect green fodder supply in
China; the potential correlation between these unobserved factors and the explanatory variables in
our model may lead to biased estimates of the parameters [44]. Thus, given the panel structure of
our dataset, whether one should use a fixed-effect specification to control for these fixed unobserved
factors or one may adopt a random-effect specification that treats the unobserved factors as random
errors, can be advised by the results of the Hausman test. Since the results of the Hausman test (Chi-sq
= 4.251, p-value = 0.236) are in favor of a province-level random-effect model, we performed LASSO
based on a random-effect specification to select relevant variables from the original set.

In the second step, a 10-fold cross validation was performed 100 times to select the most relevant
variables. Note that the result of LASSO variable selection may not be unique, because the realized
value of the tuning-parameter λ (which sets some coefficients to zero) depends on the specific sample
partition of the data in the 10-fold cross validation, which is determined by the random seed initially
chosen by the program. While one may manually choose a random seed beforehand, as is typically
done in most previous simulation studies, to obtain more robust results we performed a 10-fold
cross-validation 100 times and selected 21 variables (Figure 2; Table 1, column 2) from among the total
of 76 variables that were originally available (Table 1, column 1). As it turned out, the LASSO-chosen
variables included not only most of the important factors found in previous studies, such as sown areas
of competitor crops and fixed capital inputs, but also many factors that have been largely neglected in
previous studies, such as natural disasters and subsidy policies, which allows us to assess how the
omission of these variables affects estimation results.
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Figure 2. Histogram of selected counts for each candidate explanatory variable. (The variables selected
by LASSO may not be unique, in that the realized value of the tuning-parameter λ depends on the initial
random seed ‘chosen automatically by the computer’. To assess the robustness of the variable-selection
results, a 10-fold cross-validation was performed 100 times to count the number of times that each of
the original variables was selected by LASSO. If the current value of a variable or its lagged value is
chosen, this variable is considered to be a candidate explanatory variable in the Nerlovian model.)

Table 2 reports results of descriptive analysis for the LASSO-selected variables (summary statistics
of variables that are not selected by LASSO are not reported in the table but are available upon request).
Since China enacted the policy of “Returning Farmland to Forests and Grassland (RFFG)” during
1999–2003, the results are presented separately for the pre-policy (1997–2003) and the post-policy
(2004–2016) periods. The first notable finding is that the mean price index of green fodder crops was
significantly higher in the post-policy period than in the pre-policy period, while the sown area of
green fodder was significantly lower in the post-policy period. This seems to be at odds with standard
economic theory and common sense, as one usually expects higher product price to induce more
production. Yet note also that a number of other factors significantly changed before and after the
implementation of the RFFG policy (at least marginally so), including sown areas of cereal and other
crops, the price of agricultural inputs, the damaged area due to natural disasters (mainly floods and
freeze), the number of agricultural machineries (Table 2, column 3), which may all have contributed to
the change in the sown area of green fodder crops over time. Thus, to better assess how China’s green
fodder supply responds to variations of these factors, we estimate the Nerlovian partial-adjustment
model using the set of LASSO-selected variables. The main estimation results are presented in the
next subsection.
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Table 2. Summary statistics of explanatory variables selected by LASSO.

Variables
(1) 1997–2003 (2) 2004–2016 (3) P-value for

Difference in MeansMean SD Mean SD

Sown area of green fodder crops (1000 hectares) 95.91 (104.25) 85.95 (103.79) 0.35
Price index of green fodder crops 75.93 (9.3) 124.86 (26.84) 0.00 ***

Sown area of winter wheat (1000 hectares) 1011.00 (1183.82) 1021.65 (1330.63) 0.94
Sown area of spring wheat (1000 hectares) 149.14 (227.52) 137.54 (204.2) 0.59

Sown area of oil-bearing crops (1000 hectares) 545.95 (430.25) 491.54 (433.69) 0.22
Sown area of other cereal (1000 hectares) 107.98 (108.6) 73.95 (79.49) 0.00 ***

Sown area of mung (1000 hectares) 28.35 (42.21) 28.12 (40.08) 0.96
Sown area of peanuts (1000 hectares) 185.15 (248.6) 168.78 (235.69) 0.50

Sown area of rapeseeds (1000 hectares) 266.87 (325.04) 258.50 (336.29) 0.81
Sown area of helianthus (1000 hectares) 47.75 (81.88) 41.62 (82.71) 0.47
Sown area of fiber crops (1000 hectares) 11.00 (21.25) 7.14 (13.81) 0.02 **

Sown area of hemp (1000 hectares) 0.85 (1.05) 0.97 (1.49) 0.38
Sown area of jute and ambary hemp (1000 hectares) 3.17 (4.77) 2.48 (5.30) 0.19

Sown area of other farm crops (1000 hectares) 273.35 (223.22) 232.86 (201.23) 0.06 *
Price index of semi-mechanized farm tools 91.91 (7.27) 108.64 (12.95) 0.00 ***

Price index of agricultural inputs (other than seed) 92.94 (13.81) 104.56 (10.82) 0.00 ***
Price indices of agricultural production service 118.25 (25.08) 129.78 (35.2) 0.00 ***

Areas potentially covered by floods (1000 hectares) 389.18 (543.24) 331.88 (392.99) 0.20
Areas seriously affected by floods (1000 hectares) 247.20 (368.2) 184.99 (268.95) 0.04 *

Areas seriously affected by freeze injury (1000
hectares) 83.24 (117.82) 80.68 (182.83) 0.88

Number of combine harvesters (1000 units) 10.51 (16.66) 35.04 (50.15) 0.00 ***
Number of motorized threshing machines (1000 units) 321.407 (379.09) 344.59 (369.33) 0.54

Notes: all prices have been deflated using production price indices in 2007. Standard errors in parentheses. * p-value
< 0.1; ** p-value < 0.05; *** p-value < 0.01.

3.2. Estimation Results of The Nerlovian Partial-Adjustment Model

Table 3 presents the main results of estimating the Nerlovian partial-adjustment model for China’s
green fodder supply (Equation 4) with LASSO-selected variables. For comparison purposes, the results
of four models are presented. As a starting point, Model (1) is the simplest version of the Nerlovian
model, which includes only three explanatory variables that are explicitly specified in the Nerlovian
theory, i.e., two lagged values of the sown area of green fodder crops (At−1 and At−2) and the lagged
price of it (Pt−1), but not any of the non-price variables (Z) in Equation (4). Estimation of this (overly
simplistic) model based on a random-effect specification suggests that both the lagged sown areas
and the lagged output price have a significant predictive power for Chinese farmers’ current green
fodder planting decisions. More specifically, the estimated one-year lagged-sown area elasticity (i.e.,
coefficient of At−1) is greater than unity (θ̂2 = 1.07), suggesting a strong impact of previous planting
decisions on current planting decisions (At). Somewhat counterintuitively, however, the estimated
two-year lagged-sown area elasticity (i.e., coefficient of At−2) is negative (θ̂3 = −0.100) and statistically
significant, suggesting possible long-run fluctuations in green fodder supply. Also counterintuitive is
the statistically significant and negative price elasticity (θ̂1 = −0.107), which implies that a higher output
price in the previous year tends to reduce the sown area of green fodder crops in the current period
(which is consistent with neither standard economic theory nor intuition). Yet these counterintuitive
results are understandable: because this model does not include any other explanatory variables, these
findings may result from potential omitted-variable biases [53].
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Table 3. Results of estimating the Nerlovian partial adjustment model.

(1) (2) (3) (4)

Estimation Method Random
Effects

Random
Effects

System
GMM

System
GMM

Lagged sown area of green fodder crops 1.066 ***
(0.046)

0.924 ***
(0.281)

0.933 ***
(0.313)

0.868 ***
(0.300)

Lagged two phases sown area of green fodder crops −0.100 **
(0.046)

−0.045
(0.273)

0.039
(0.305)

0.006
(0.258)

Lagged output price of green fodder crops −0.107 **
(0.049)

0.220 ***
(0.064)

0.219 ***
(0.063)

0.213 ***
(0.073)

Encouragement policy of green fodder cultivation 0.319 ***
(0.064)

0.310 ***
(0.067)

0.283 ***
(0.057)

Lagged sown area of winter wheat −0.030 **
(0.013)

Lagged sown area of mung −0.022 **
(0.009)

Lagged sown area of jute and ambary hemp −0.039 **
(0.019)

Lagged sown area of fiber crops 0.040 ***
(0.015)

Lagged sown area of other cereal 0.071 ***
(0.027)

Lagged sown area of oil-bearing crops 0.051 *
(0.029)

Lagged sown area of other farm crops 0.068 *
(0.041)

Number of combined harvesters −0.019
(0.021)

Lagged number of combined harvesters 0.044 *
(0.025)

Number of motorized threshing machines −0.031 **
(0.015)

Lagged number of motorized threshing machines −0.019
(0.022)

Areas potentially covered by floods 0.019 **
(0.010)

Lagged areas potentially covered by floods −0.030 **
(0.012)

Notes: Standard errors in parentheses. * p-value < 0.1; ** p-value < 0.05; *** p-value < 0.01.

Column (2) adds a dummy variable for green fodder planting encouragement policy as an
additional explanatory variable in the model. As expected, the inclusion of this dummy variable
in the model dramatically changes the estimated price elasticity (i.e., coefficient on Pt−1), and the
estimate now becomes positive (θ̂1 = 0.22) and statistically significant, which is more consistent with
intuition and standard economic theory [25,26] and lies within the range of previous estimates of price
elasticities of agricultural supply response [18,19,23,27,30]. It is worth noting that the green fodder
planting encouragement policy itself has a statistically (and economically) significant impact on green
fodder supply, suggesting that this policy variable should not be omitted from the green fodder supply
model for China. The estimated coefficient of the policy dummy suggests that, compared to the years
without this policy, the sown area of green fodder crops in China is about 32% higher in those years
(1999–2003) under this policy. However, because rapidly increasing sown area of green fodder crops
may seriously affect cultivation of other crops, and because the Chinese government began to attach
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great importance to grain cultivation in the early 2000s [54], the encouragement policy for green fodder
cultivation was weakened and eventually canceled in the mid-2000s.

To further address potential bias caused by the inclusion of lagged dependent variables, Model (3)
estimates the same model using the system-GMM method [33,34] described in Section 2, which yields
results that are very close to those of Model (2). Model (4), also estimated by system-GMM, further
includes a large set of other, non-policy variables from the remaining four LASSO-chosen categories
presented in Table 1, i.e., areas of competitor crops, price indices of agricultural inputs, natural
disasters, and fixed capital inputs. Three important findings emerge. Firstly, the inclusion of these
variables does not substantially change the estimated impacts of the basic variables in the Nerlovian
partial-adjustment model (i.e., At−1, At−2 and Pt−1), suggesting that, once the policy impact has been
accounted for, the results of the system-GMM method (which uses lagged values as instrumental
variables for At−1, At-2 and Pt−1) are quite robust to the composition of the set of other Z variables.

Secondly, model (4) identifies a number of potential competitor crops and complements of green
fodder crops in China. More specifically, winter wheat, mung and jute and ambary hemp are identified
as competitor crops of green fodder crops by the model, as the supply (sown area) of green fodder
crops in response to the sown areas of these crops are all negative (and statistically significant),
suggesting a trade-off between the sown area of green fodder crops and those of these competitor
crops. Meanwhile, the positive sown-area response of green fodder crops, with respect to the sown
areas of fiber, other cereal, oil-bearing crops and other farm crops suggest that the latter crops are
complements of green fodder crops in China; indeed, in feeding animals, these crops are usually used
together with green fodder crops as feedstuff [55,56]. In a series of analyses (whose detailed results are
not reported but made available upon request), we explored many other combinations of crop sown
areas within the LASSO-selected dataset, but none of the coefficients of crop sown areas showed up as
statistically significant in the model; the inclusion of sown areas of other crops also introduces serious
multicollinearity problems, rendering the estimates of their coefficients rather imprecise.

Finally, model (4) reveals several other important determinants of green fodder supply in China.
For example, the stock of farm machinery is found to be an important predictor of green fodder supply,
although different types of machines (i.e., combine harvesters versus motorized threshing machines)
exert different impacts on green fodder supply. More specifically, while the number of combine
harvesters significantly raises the cultivation area of green fodder crops (i.e., θ̂4 = 0.044, for combine
harvesters), the number of motorized threshing machines reduces it (i.e., θ̂4 = −0.031, for motorized
threshing machines). These results are not surprising, because combine harvesters are usually used
extensively during green fodder harvest seasons; thus, an increase in the stock of combine harvesters
may raise farmers’ willingness and ability to grow green fodder crops. In contrast, motorized threshing
machines are more suitable for harvesting food grains (which are competitor crops of green fodder
crops); thus, an increase in the number of motorized threshing machines helps food grains compete
with green fodder crops for the limited arable land, thereby lowering the supply of green fodder crops.

Natural disasters, floods in particular, are also important drivers of green fodder supply in China.
More specifically, areas that encountered floods in the previous year have a significantly smaller
cultivated area of green fodder crops in the current year, compared to similar areas that did not
encounter floods. Interestingly, encountering natural disasters in the current period has a small positive
impact on current green fodder cultivation, which may be due to the fact that farmers tend to replant
green fodder crops after the disasters to make up the loss. In a series of analyses whose results are
not reported here (but made available upon request), we tried including areas affected by other types
of natural disasters (e.g., freeze injury) in the model, but none of these variables turned out to be
significant predictors of the supply (sown area) of green fodder in China.

4. Discussion

The analysis performed above on key drivers of China’s green fodder supply has several
advantages over previous studies. First of all, the data we used (i.e., panel data covering 27 provinces
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and spanning two decades) allow us to depict a more comprehensive picture of the supply function of
China’s green fodder industry than previously portraited, because previous studies done in China
usually focused on only a single province within a relatively short time period. Moreover, the richness
of our dataset, which involves 76 variables, allows us to examine considerably more combinations of
factors potentially driving China’s green fodder supply than most previous studies, which usually
examined only a handful of factors. In particular, we resorted to LASSO, a machine-learning tool,
to effectively solve the optimal variable selection problem and find the most relevant set of drivers.
It turned out that our LASSO procedure not only selects out most of the important factors found in
previous studies (e.g., sown areas of competitor crops and fixed capital inputs), but, more importantly,
it also identifies many factors that have been largely neglected in previous studies (e.g., natural disasters
and subsidy policies).

More specifically, our final, preferred model (Model 4 in Table 3) identified multiple competitor
and substitute crops of green fodder crops in China. Besides wheat, which was generally considered
as a competitor crop of green fodder crops in previous studies [19], our model also identified mung,
jute and ambary hemp as competitor crops of green fodder crops, which were usually ignored in
previous studies. Under some circumstances, farmers prefer to grow these competitor crops rather
than green fodder crops because the former can not only help ensure food security in China but also
help promote its economic growth by generating more cash income. Yet, with a stronger environmental
adaptability compared to many grain crops and an ability to improve soil quality by reducing soil
erosion, green fodder crops play a more important role in enhancing the sustainability of a country
development process [57–59]. Thus, future policy in China may be tailored to strengthen this role.
In addition to competitor crops, our models also discovered substitute crops of green fodder crops
(e.g., fiber and oil-bearing crops) that were not discovered in previous studies, which usually only
considered competitor crops in their models [18,19]. We also found important drivers that have
been neglected in most of the previous studies: natural conditions and the availability of mechanical
technology, both of which have significant impacts on green fodder supply but were often neglected in
previous research. Moreover, in some analyses that are not reported in detail here, variable input costs
(which were usually found to be important drivers of agricultural supply in previous studies) were
found to have little impact on the cultivation of green fodder crops (and were thus dropped from the
final, preferred model (Model 4 in Table 3). One possibility is that they were offset by the impact of the
subsidy policy; another possibility is that fixed inputs play a more important role in the cultivation of
green fodder crops than variable inputs.

Secondly, the results of estimating the Nerlovian partial-adjustment model (Table 3) shed some
new light onto the supply dynamics in China’s green fodder sector. In particular, the estimated
one-year lagged-area elasticity suggests a strong impact of farmers’ previous cultivation decisions
on current decisions, which is consistent with previous findings [18]. The estimated models also
reveal that, without influences of other drivers, China’s green fodder supply tends to decline over
time (since the sum of estimated coefficients on lagged green-fodder sown areas is less than one),
which was seldom discussed in previous studies. The main reason for this is that the planting scale of
most Chinese farmers is small, and they lack production technology and capital to expand the scale
of green fodder cultivation. Thus, their green fodder planting decisions are easily influenced by the
profitability of planting traditional grain crops. Given the policy priority to maintain food security in
China in the past few decades, the relative importance of green fodder crops has been low compared to
food grains, which in turn lowers the incentive for Chinse farmers to plant them. Another important,
policy-relevant finding is that, while the price elasticity of green fodder is positive and statistically
significant, its magnitude (around 0.2) is smaller, suggesting that green fodder supply is not greatly
sensitive to price signals; other, non-price factors may play a more important role. Indeed, as discussed
above, governmental policy serves as a more significant predictor of green fodder supply in China.

Note that, while we are unbale to directly estimate the full set of structural parameters in the
Nerlovian model, we can infer the sign and the magnitude of some parameters of the structural
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equation in an indirect manner. Consider β (the expectation factor) and γ (the adjustment factor),
which reflect farmers’ expectation formed from past output prices and their adjustment for sown
area of green fodder crops. Based on information of the estimated model (Table 3, column 4), three
“structural” Equations (1)–(3), and the relationships among structural parameters (θ4 = α2γ, θ5 = −α2(1
− β)γ, and θ2 = (1 − β) + (1 − γ)), we can infer that β = 0.367 and γ = 0.765, which are consistent with
predictions of economic theory that β > 0 and γ < 1 [25]. Given θ4 = α2 γ, the finding that γ = 0.765 < 1
implies that α2 (which captures the direct effects of non-price factors Z on green fodder supply) and θ4

(which captures the total contemporaneous effects of Z on green fodder supply) have the same size, but
the former is smaller (by 23.5%). And θ5 = −α2(1 − β)γ suggests that the effect of non-price factors in
the current period and the effect of those in the previous period on green fodder supply have opposite
signs, which may, in turn, impose a limit on the potential effect of non-price factors in the long run.

Finally, a note on the limitations of this study is in order. The most obvious limitation is that
our data were collected at the province level. Thus, the impacts of some household-level (such as
farmers’ education, as a proxy of their managerial skills [60,61]) or village-level factors (such as land
quality) might have been “averaged out” in the provincial-level analysis. Future research that employs
detailed household-level data, which facilitates the investigation of the role of these micro-level factors,
is expected to be fruitful. Also due to data limitation, this study does not examine the yield response of
green fodder in China. A fuller picture of the supply–response mechanism of China’s green fodder
sector may be depicted by future studies that examine both sown-area and yield responses, perhaps
with the help from remote sensing data. Furthermore, no dataset contains all potential factors of
agricultural supply; thus, there is always the possibility that some drivers of China’s green fodder
supply have been left out in our final model (Model 4). A final limitation lies in the Nerlovian model
itself. As discussed above, the Nerlovian model assumes farmers make their green fodder sown area
decisions through partial adjustments, rather than taking into account all information available in
the past periods, which may not be entirely consistent with reality. Empirical models that are based
on the rational price-expectation model may be adopted to help evaluate the performance of the
Nerlovian model.

5. Conclusion

Using a provincial-level panel dataset spanning two decades, our system-GMM estimation based
on LASSO-selected variables yielded a number of important findings with respect to the driving
forces of the supply in China’s green fodder industry. Two findings stand out. First, while farmers’
previous sown-area decisions strongly affect their current decision, perhaps due to high entry or exit
costs, without the influence of other drivers, green fodder supply in China tends to decline over time.
Second, among the identified drivers, government encouragement policy (subsidies for green fodder
cultivation) is the most significant one, which boosts the sown area of green fodder in China up by more
than 30%. In contrast, farmer’s sown-area decision is at best modestly responsive to price incentives.

These findings suggest that solely relying on market mechanism may not be able to ensure
sustainable green fodder supply in China, especially given the policy priority of maintaining food
security. Effective government interventions are thus needed to meet the twin goals of food security
and sustainable development. The government not only needs to ensure the scale and stability of
its green-fodder cultivation encouragement subsidy (e.g., the size of subsidies, specific production
methods, and supporting mechanism) but also needs to further improve the quality of supplier services
(e.g., by providing high quality seeds and subsidies for equipment purchase), innovate planting
techniques (e.g., by increasing investment in research and extension and providing training of new
cultivation techniques to farmers), and broaden supply channels (e.g., by providing timely and reliable
information about the green fodder market to farmers and providing guidance to help them make
planting decisions). In particular, given the substantial space required for harvesting and storing green
fodder crops, the government may support service providers and local administrations in constructing
warehouses, and providing management and transportation services to small and medium-sized
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farmers (e.g., by strengthening cooperation between enterprises and small and medium-sized farmers,
establishing and improving information channels and logistics platforms, and providing transportation
services), and offering land rental services to agricultural enterprises and large-scale family farmers.
Moreover, to the extent that fixed capital inputs play a role in driving up green fodder supply,
encouragement policy may be combined with machinery subsidies to enhance its effect. Finally,
investment in agricultural research on technologies that may increase both the yields of grain crops
and green fodder crops should be encouraged. Crop rotation technology is one such technology. Not
only can crop rotation balance soil nutrients, improve soil quality, and reduce pests and diseases, but it
can also increase the yields of both green fodder and grain crops, thereby alleviating the pressure from
competition for limited land.
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