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Abstract: With the rapid development of plug-in electric vehicles (PEVs), the charging of a number
of PEVs has already brought huge impact and burden to the power grid, particularly at the medium
and low voltage distribution networks. This presents a big challenge for further mass roll-out of
electric vehicles. To assess the impact of charging of substantial number of electric vehicles on the
grid, a model of 30000 PEVs integrated with unit commitment (UCEV) was investigated in this
study. The unit commitment was a large-scale, mixed-integer, nonlinear, NP-Hard (non-deterministic
polynomial) optimization problem, while the integration of PEVs further increased the complexity of
the model. In this paper, a global best inspired negatively correlated search (GBNCS) method which
extends the evolutionary logic of negatively correlated search is proposed to tackle the UCEV problem.
In the proposed algorithm, a rounding transfer function in GBNCS, is deployed to convert real-valued
variables into binary ones; further, the global best information is combined in the population to
improve the efficiency of the algorithm. Numerical results confirmed that the proposed GBNCS can
achieve good performance in both a basic IEEE 10 unit commitment problem and the UCEV problem.
It was also shown that, among four charging modes, the off-peak charging mode and EPRI (Electric
Power Research Institute) charging mode are more economical in PEV charging.

Keywords: unit commitment; electric vehicle; negatively correlated search

1. Introduction

Industry revolutions and urbanization have led to a number of intractable environmental and
resource problems, such as global warming, due to extensive consumption of fossil fuels [1]. According
to a research by the U.S. Energy Information Administration (EIA) in 2014, carbon emission is the
single most important factor for the global warming and the transportation sector accounts for more
than 1/3 of the total greenhouse gas emissions [2]. Therefore, to reduce the carbon emissions from
the transportation sector is an important part of the global effort to curb global warming. To achieve
this goal, many governments have introduced a wide range of policies to promote the development of
electric vehicles.

Generally speaking, electric vehicles can be grouped into three categories: battery electric vehicles
(BEVs), hybrid electric vehicles (HEVs), and plug-in electric vehicles (PEVs). Due to the technical
limitations of fuel cells and the huge costs in the production and storage of hydrogen, the fuel cell electric
vehicles are still not suitable for large-scale applications, while HEVs have already been widely used.
In recent years, the advances in the battery technology and power control [3] have further improved
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the efficiency of HEVs. But they still use fossil fuels. With the maturity of battery technology, lithium
batteries, nickel metal hydride batteries, and lead-acid batteries have been widely used in electric
vehicles [4–6], and the PEV has become the most popular EV type. Both the research and practice have
confirmed the great potentials of PEVs in energy conservation and emission reduction [7,8].

However, the rapid growth of the electric vehicle market has introduced new problems and
challenges. The charging of a massive number of electric vehicles is likely to have a huge impact
and burden to the power grid, which is another problem that needs to be addressed [9,10]. Further,
questions such as how to save the operational costs while integrating the charging of EVs and how to
cope with stochastic charging behavior of different EV owners should be answered. In [11], Zhou et al.
presented a probability model of EV charging load in the distribution network. In [12], the EV charging
model was studied from the demand side, and the charging demand data was collected from a
real application in Korea and the load control strategy was employed to develop a smart charging
technique suitable for practical applications. In this paper, in order to investigate the effect of EV
charging, the charging of EVs is combined with the unit commitment problem. The charging demand
is formulated as an unpredictable load to the power system which needs to be addressed for power
secure operation at the lowest cost.

The unit commitment problem (UC) is a large-scale, mixed-integer, nonlinear, NP-Hard
(non-deterministic polynomial) optimization problem. The aim of unit commitment is to minimize the
generation costs by reasonably scheduling the on/off status and output power of generations under
various system constraints. Conventional methods such as dynamic programming [13] and lagrangian
relaxation [14] are able to quickly solve low dimension UC problems. But these two methods both have
poor performance and may not guarantee to find the optimum solutions in large-scale UC problems [15].
In the last few decades, various methods, including artificial neural networks [16], Tabu search [17],
simulated annealing [18], branch and cut (BC) [19], Benders decomposition (BD) [20], and intelligent
meta-heuristic algorithms, such as particle swarm optimization [21] and a genetic algorithm [15], have
been applied to solve the UC problem. However, the complexity of the UC problem is significantly
increased due to the introduction of new participants such as electrical vehicles.

To handle the increased complexity, Saber proposed an intelligent unit commitment model
with vehicle-to-grid (V2G) and applied binary particle swarm optimization to find a balance in
reducing both fuel costs and emissions [22]. But the paper does not consider the stochastic charging
scenario and uncertainties associated with charging and discharging. To investigate the impact of
EV charging in different situations, Foley proposed two charging modes; namely, peak charging
mode and off-peak charging mode [23]. Ma et al. further combined Foley’s EV charging mode witha
multi-objective, dynamic, economic, emission load dispatch problem [24]. In Liu’s research, a stochastic
unit commitment model with plug-in electric was combined with wind power [25]. Mohammadi
designed a solar-powered EV which reduces the use of fossil cells and can be combined into the
research of optimization problems in power systems such as UC [26]. Yang et al. further proposed
a framework to comprehensive study the unit commitment problem integrating various renewable
generations and PEVs [27]. Further, bidirectional power charging control strategy is also an important
research direction which can help reduce the burden to the power grid [28,29]. In this paper, four
charging modes, including the peak charging mode, the off-peak charging mode, the Electric Power
Research Institute (EPRI) charging mode, and a stochastic charging mode are combined with the UC
problem to thoroughly investigate the effect of EV charging on the power system.

The negatively correlated search (NCS) was first proposed by Tang et al. [30] and has shown
to deliver excellent performance for continuous optimization problems. The core logic of NCS is
divide-and-conquer; the search domain is divided into several parts and each part is a random local
search (RLS) which helps to avoid trapping into local optimum. However, NCS is rarely applied to
binary or mixed-integer optimization problems such as UC. Furthermore, the computation time of
the search process is too long, due to the calculation of correlations between individuals. Therefore,
a binary, negatively correlated search (BNCS) is proposed in this paper which uses a rounding
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transfer function to convert real-valued variables into binary ones. To improve the efficiency of BNCS,
the global best solution is introduced to BNCS, leading to the proposal of the global best inspired
binary negatively correlated search (GBNCS) algorithm. These two algorithms were first tested on
eight benchmark instances of the knapsack problem and then applied to UC problems.

The remainder of the paper is organized as follows: Section 2 presents the formulation of the
unit commitment problem, followed by the proposed global-best inspired negative correlated search
(GBNCS) and its implementation for a UC problem in Section 3, and the numerical results and analysis
are given in Section 4. Finally, Section 5 concludes the paper.

2. Problem Formulation

The unit commitment problem, including the basic unit commitment and the unit commitment
with electrical vehicles can be formulated as follows.

2.1. Basic Unit Commitment

The unit commitment problem can be modeled as a kind of optimization problem which aims at
minimizing the objective function while equality and inequality constraints at the system level such as
power balance limit and minimum up/down time limit have to be met.

2.1.1. Objective Function

The objective function of basic unit commitment problem consists of two parts including the fuel
cost and the start-up cost.

Fuel cost

The committed units in power system usually have different power and efficiency. To dispatch
these units economically, the fuel cost becomes a significant factor which can be expressed by a
quadratic equation.

Ff c,i
(

Pt
u,i
)
= ai + biPt

u,i + ci
(

Pt
u,i
)2 (1)

where Ff c,i and Pt
u,i present the fuel cost and the power of ith unit at time t respectively, and ai, bi, and

ci are the fuel cost coefficients associated to the ith unit.

Start-up cost

The start-up cost is also an important part of the objective function which can be divided into
cold start-up cost and hot start-up cost. If the unit has not been off for too long time, it may take less
time and cost to start up, whereas if the unit has been off for enough time, it may take much longer to
start up the unit. The start-up cost related to unit is given by:

fsc,n =

{
Chot

n i f Mdown
n ≤ To f f

n ≤ Mdown
n + CHn

Ccold
n i f To f f

n > Mdown
n + CHn,

(2)

where Chot
n is the hot start-up cost and Ccold

n is the cold start-up cost. Mdown
n is the minimum down

time, To f f
n is the off-line duration time, and CHn is the cold-start hour of nth unit.

Therefore, the objective function of the unit commitment problem combining both the fuel cost
and start-up cost can be expressed as follows, where Ut

i is a binary variable representing the on/off
state of ith unit at time t, and Ut−1

i represents the on/off state of the ith generating unit at time t− 1.
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2.1.2. Constraints

In the following, various constraints that need to be considered at the unit commitment stage are
presented to ensure the adequacy of the system after implementation, while other constraints which
are often considered at lower system operation and control levels relating to power system adequacy,
contingency, vulnerability, and stability, are not included.

Power balance constraint

The power generated by all the units at time t needs to meet the power demand, which is given
in Equation (4), where Pd(t) is the demand power, and Pt

i is the generation power of unit i at time t.

N

∑
i=1

Pt
i Ut

i = Pd (t) . (4)

Generation limit

The power of each unit should be within its rated generation range, as defined in Equation (5),
where Pmin

i and Pmax
i respectively represent the minimum and maximum power outputs of the ith unit.

Pmin
i ≤ Pt

i ≤ Pmax
i . (5)

Minimum up and minimum down time constraint

To maintain the unit in good condition, the generation unit should not be turned on or off too
frequently and has to meet the following constraints.{

To f f
n > Mdown

n
Ton

n > Mup
n ,

(6)

where To f f
n and Ton

n represent the off-line time and on-line time of unit n; Mup
n and Mdown

n represent
the minimum up/down time of unit n.

Ramp rates constraint

The power output of each unit cannot be changed violently, and it has to meet the ramp rate
constraint given below,

Pmin
i (t) ≤ Pt

i ≤ Pmax
i (t) , (7)

where Pmin
i (t) and Pmax

i (t) in Equation (7) are the minimum and maximum outputs of unit i at time
t, which are defined as follows, where RUi and RDi are the ramp-up/down rates of the ith unit and
Pi

t−1 representing the output of unit i at time t− 1.

Pmin
i (t) = max

(
Pt−1

i − RDi, Pmin
i

)
Pmax

i (t) = min
(

Pt−1
i + RUi, Pmax

i

) (8)

Spinning reserve constraint

To meet with the uncertainty of power demand forecast and unexpected failure of generating
units, the spinning reserve constraint is considered, which is given by,

N

∑
i=1

Pmax
i Ut

i − Pd (t) · (1 + SR) ≥ 0, (9)
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where Pmax
i is the maximum output of ith unit, Pd (t) is the power demand at t time, and SR is the

spinning reserve factor for controlling the reserve capacity of the system.

2.2. Unit Commitment Integrated with EV

The unit commitment integrated with electric vehicles model is based on the basic unit
commitment problem and the objective function associated with the fuel cost and start-up cost remains
the same as before, but the integration of electric vehicles introduces new and more complex constraints.

2.2.1. Constraints of UC Combined with EVs

Power Balance Constraint

The charging load is added to the demand load due to additional load of EVs charging. Therefore,
the power balance constraint in the unit commitment with EVs is given by:

N

∑
i=1

Pt
i Ut

i − Pcar (t) = Pd (t) , (10)

where Pcar (t) is the additional load for charging electric vehicles at time t.

Spinning reserve constraint

In order to solve the instantaneous demand changes brought by electric vehicle charging, the
reserved capacity needs to increase.

N

∑
i=1

Pmax
i Ut

i + Pmax
car (t) ≥ Pd (t) · (1 + SR) , (11)

where Pmax
car (t) is the maximum power required for electric vehicle charging.

2.2.2. Different Charging Models

Since different EV users often have different charging habits which increase the complexity
and stochasticity of the problem, four charging modes were introduced to reflect different charging
portfolios; those included the off-peak charging mode (OPCM), peak charging mode (PCM), Electric
Power Research Institute Charging Mode (EPRICM) and the stochastic charging mode (SCM).

Off-peak charging mode (OPCM)

In off-peak charging mode users usually charge EVs between 23:00 to 6:00; in this period of time
the demand power is usually not high and the impact on the grid caused by the charging of EV is
not significant. Foley et al. assumed a plain load curve to simulate the 10% EV charging load curve
in Ireland in 2013 [23]. According to [23], research on the probability distribution of 24 h off-peak
charging mode given in Table 1 and Figure 1 represents the probability distribution more intuitively.

Table 1. The probability of charging electric vehicles (EVs) in off-peak mode.

Time Period Charging Probability

01:00–06:00 18.5% 18.5% 9% 9% 4% 4%
07:00–12:00 0% 0% 0% 0% 0% 0%
13:00–18:00 0% 0% 0% 0% 0% 0%
19:00–24:00 0% 0% 0% 0% 18.5% 18.5%
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Figure 1. The probability of charging EVs in off-peak mode.

Peak charging mode (PCM)

Different from the off-peak charging mode, the peak charging mode considers the most extreme
situations. In the peak charging Mode, it is assumed that almost all EVs are charged during peak
hours, which will bring a huge impact and burden to the power system. Table 2 and Figure 2 [23] give
the probability distribution of 24 h peak charging Mode; the charging peak is mainly concentrated
during the period from 13:00 to 20:00.

Table 2. The probability of charging EVs in peak mode.

Time Period Charging Probability

01:00–06:00 0% 0% 0% 0% 0% 0%
07:00–12:00 0% 0% 0% 0% 9% 9%
13:00–18:00 18.5% 18.5% 18.5% 18.5% 0% 0%
19:00–24:00 4% 4% 0% 0% 0% 0%

Figure 2. The probability of charging EVs in PEAK mode.
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Electric Power Research Institute Charging Mode (EPRICM)

The Electric Power Research Institute Charging Mode (EPRICM) is an electric vehicle charging
mode proposed by the Electric Power Research Institute (EPRI). The research work of EPRI in 2007 [31]
integrated the 24 h daily charging probability distribution of electric vehicles in the United States,
which is shown in Table 3, and the fitting curve of this model is illustrated in Figure 3. It can be
concluded from the curve that three-quarters of the EVs are charged between 23:00 and 6:00, and the
remaining EVs are charged at other periods.

Table 3. The probability of charging EVs in Electric Power Research Institute Charging Mode
(EPRI) mode.

Time Period Charging Probability

01:00–06:00 10% 10% 9.5% 7% 5% 3%
07:00–12:00 1% 0.3% 0.3% 1.3% 2% 2%
13:00–18:00 2% 2% 2% 1% 0.3% 0.3%
19:00–24:00 1.5% 3% 5% 9.5% 10% 10%

Figure 3. The probability of charging EVs in EPRI mode.

Stochastic charging mode (SCM)

The off-peak charging mode and the peak charging Mode are usually assumed with ideal
conditions. However, due to different charging habits, users of electric vehicles often change with daily
activities, resulting in stochastic charging periods and charging duration. Therefore, the stochastic
charging mode may be closer to the actual charging situation. In stochastic charging mode, five
scenarios are randomly generated by a Gaussian operator N(λ, σ) where the mean value λ and
standard deviation σ are respectively set as 4.16% (1/24) and 0.01. The probability distribution of five
cases is given in Table 4 and Figure 4.
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Table 4. The probability of charging EVs in stochastic mode.

Time Period Charging Probability (Scenario1)

01:00–06:00 5.70% 4.90% 4.80% 2.40% 2.60% 9.70%
07:00–12:00 8.70% 4.80% 1.10% 3.20% 2.10% 5.70%
13:00–18:00 3.80% 2.20% 2.10% 6.10% 3.20% 2.20%
19:00–24:00 2.80% 2.20% 5.50% 2.50% 3.50% 8.20%

Time period Charging probability (scenario2)

01:00–06:00 9.98% 5.81% 6.92% 2.04% 3.22% 3.62%
07:00–12:00 6.36% 3.60% 5.56% 0.06% 3.45% 2.51%
13:00–18:00 1.01% 5.18% 4.72% 4.23% 1.49% 6.41%
19:00–24:00 4.86% 3.56% 4.21% 3.64% 3.97% 3.59%

Time period Charging probability (scenario3)

01:00–06:00 3.40% 3.96% 6.53% 2.78% 5.42% 4.65%
07:00–12:00 3.79% 2.47% 3.71% 4.02% 2.84% 4.47%
13:00–18:00 2.84% 4.01% 4.70% 2.71% 3.70% 4.72%
19:00–24:00 1.22% 5.82% 8.04% 5.07% 3.65% 4.85%

Time period Charging probability (scenario4)

01:00–06:00 3.10% 4.58% 2.47% 5.82% 3.07% 8.16%
07:00–12:00 2.32% 4.51% 1.57% 2.91% 3.15% 4.84%
13:00–18:00 5.76% 4.67% 3.53% 5.55% 5.52% 4.36%
19:00–24:00 5.13% 4.86% 2.48% 5.45% 3.04% 3.13%

Time period Charging probability (scenario5)

01:00–06:00 4.35% 4.91% 4.33% 8.90% 2.18% 1.01%
07:00–12:00 2.22% 2.30% 3.42% 3.87% 3.79% 5.08%
13:00–18:00 4.82% 5.44% 7.18% 6.24% 1.98% 0.77%
19:00–24:00 5.69% 1.04% 4.27% 4.22% 7.95% 4.04%

Figure 4. The probability of charging EVs in stochastic mode.
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3. Negatively Correlated Search

3.1. Negatively Correlated Search

Negatively correlated search (NCS) is a population based algorithm proposed by Tang [30].
The core logic of NCS is automatic divide-and-conquer, and it is different from conventional population
based evolutionary algorithms, such as genetic algorithm (GA), which use stochastic recombination.

When solving a minimization optimization problem, GA concentrates more on stochastic
recombination. During the evolution process, crossover and mutation operator are applied to the
algorithm to obtain better individuals which have smaller objective value, and in the later selection
phase, these individuals have a greater probability of being selected. Stochastic recombination shares
the useful information between individuals and combines this information to help improve the
efficiency of the algorithm. But there are also drawbacks for stochastic recombination. Since the
generation of new individuals always combines the information from the existing individuals, the
evolution of the population will easily converge prematurely and the solutions are trapped into local
optimum during the evolution process. In order to overcome the premature convergence problem,
NCS uses automatic divide-and-conquer which divides the population into several subpopulations;
each subpopulation is ordered to search different parts among the feasible domain. Automatic divide
and conquer improves the global search ability of the algorithm, helps NCS jump out of local optimum,
and finds global optimum. To simplify the algorithm, it is assumed that each subpopulation only
contains one individual and the search process of this individual is a randomized local search (RLS).

The Bhattacharyya distance [32] is defined to evaluate the divisibility of two discrete probability
distributions in statistics. In NCS, the Bhattacharyya distance used to measure the difference between
individuals is defined in the following equation, where pi and pj are the probability density functions
of two distributions.

DB(pi, pj) = −ln(
∫ √

pi(x)pj(x)dx). (12)

Hence, the correlation between RLSs is defined as follows:

Corr(pi) = min{DB(pi, pj)|j 6= i}. (13)

Equation (14) formulates the search process of a RLS. A gausses mutation operator is employed to
generate a new solution, where xid is the dth variable of an existing solution; N(0, σi) gives a random
number with zero mean and sigma standard deviation.

x
′
id = xid + N(0, σi). (14)

Only one solution will be selected from either the original one or the new one in a RLS; the
selected solution should not only have smaller objective value f(x) but should also be distant from
other RLSs which reflect in a larger Corr(p). The ratio of f (x) and Corr(p) is defined to combine these
two factors into the selection criterion as given below, where λ is a parameter used for balancing
the importance of f (x) and Corr(p). f (x′) is the objective value of new solution and Corr(p′) is the
correlation between other RLSs.

xnew,i =

 xi i f f (x
′
i )

Corr(p′i )
< λ

x
′
i otherwise.

(15)
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3.2. Global Best Inspired Binary Negatively Correlated Search

The NCS has been proven to have good performance in continuous optimization problem.
However, the original NCS is not suitable for practical binary optimization problems. In [33], a binary
negatively correlated search(BNCS) has been proposed to enable NCS to solve binary optimization
problems [33]. A more efficient global best inspired binary negatively correlated search (GBNCS)
is proposed in this paper. In BNCS, a rounding transfer function is used to convert the real valued
variables into binary ones which are given in Equation (16).

xbinary =

{
1 i f x < 0.5
0 otherwise.

(16)

The global best inspired binary negatively correlated search (GBNCS) algorithm is improved
based on the BNCS algorithm; the best solution in the population is employed in the selection phase
of GBNCS; when the search process is trapped into local optimum, solutions distant from the best
solution are preferred. The information shared by the best solution not only helps the search process
jump out of the local optimum, but also improves the convergence. Here, this algorithm is named
global best inspired binary negatively search (GBNCS). Different from BNCS, hamming distance [34]
is used in GBNCS to measure the distance from the best solution which is widely used in evaluating
the correlation between binary vectors. The definition of hamming distance is given by:

Hij =
n

∑
d=1
|xik − xjk|, (17)

where xid and xjd are the dth variables of two different solutions and Hij is the hamming distance
between these two solutions.

Hence, the selection strategy is changed as defined in Equation (18). Different from original NCS
and BNCS, the correlation between individuals Corr(p

′
i) is replaced by the hamming distance between

each individual and the best individual Hgi.

xnew,i =

 xi i f f (x
′
i )

Hgi
< λ

x
′
i otherwise.

(18)

To improve the efficiency of the algorithm, adaptive λ and σ was applied to the algorithm in
Tang’s work [30], which is given in Equation (19), where iter is the index of current iteration, Tmax is
the maximum iteration number, and λiter stands for the value of λ in iteration iter.

λiter = N(1, 0.1− 0.1 ∗ iter
Tmax

). (19)

A commonly used, self-adaptive step size, namely, the 1/5 successful rule proposed by
Rechenberg [35], is applied—which is defined in Equation (20), where σi is the step size, r is a
number less than 1, and epoch is the frequency of the step size adjustment.

σi =


σi
r i f c

epoch > 0.2
σi ∗ r i f c

epoch < 0.2
σi i f c

epoch = 0.2.
(20)

The flowchart of the GBNCS is given in Figure 5.
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Figure 5. Optimization procedure of global best inspired binary negative correlate search.

3.3. The Proposed Algorithm for UC Problem

The main procedure based on the GBNCS to solve UC problem is presented as follows:

Step 1 Initialize the parameters including the step size σ, epoch, λ, r , Max_FES (total number
of cost function evaluations), and population size.

Step 2 Randomly generate a population consisting binary variables (0, 1) representing the
on/off status of units.

Step 3 Handle the minimum up/down time and spinning reserve constraints by adjusting the
population.

Step 4 Solve the economic load dispatch (ELD) sup-problem, where a lambda iteration method
is used to solve this problem [36].

Step 5 Calculate the objective function using Equation (3).

Step 6 While stopping criterion is not met,

Step 6.1 Generate a new population using Gaussian mutation operator according
to Equation (14), and convert the variables to binary variables based on
Equation (16).
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Step 6.2 Handle the minimum up/down time and spinning reserve constraints by
adjusting the population.

Step 6.3 Solve the economic load dispatch (ELD) sub-problem, where a lambda
iteration method is used to solve this problem.

Step 6.4 Calculate the objective function of the new population.

Step 6.5 Calculate the Hamming distance between each solution and the best solution.

Step 6.6 Select the solution with better quality using Equation (18).

Step 7 End while.

4. Experimental Results

In this section, the proposed BNCS and GBNCS is first tested on the knapsack problem [37],
and then applied to the basic UC problem and the UC problem integrated with the EV problem.
The experiments were conducted using MATLAB2016a on an Intel Core i7-8700k CPU with 3.7 GHz,
a personal computer with 32 GB of RAM. The unit data and load demand, which were obtained from
the IEEE-10-unit system, are given in Table 5 [15], and the spinning reserve was assumed to be 10% of
the demand.

4.1. Knapsack Problem

The knapsack problem is a classical, binary, NP-hard optimization problem which has many
practical applications in many fields, such as the finance, engineering, and computing. The Knapsack
problem can be modeled as a maximum optimization problem given by Equation (21), where wi and
ci represent the quality and value of ith item respectively, and M is the maximum capacity of the
backpack. The aim is to get the maximum total value of the items without exceeding the capacity of
the backpack.

max f (X) =
n
∑

i=1
cixi

s.t.
d
∑

i=1
wixi ≤ M.

(21)

Although the knapsack problem has already been thoroughly studied, the benchmark functions
of the knapsack problem are still often used to test the performance of binary algorithms. In this
paper, ten benchmark functions of the knapsack problem are used to test the performance of BNCS
and GBNCS. The dimension and parameters of ten test problems are listed in Table 6 [37]. To test the
convergence of these algorithms, the total number of cost function evaluations (FES) was set as 10,000.

Table 5. The characteristics of units in the 10-unit base system.

Parameters U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

Pmax(MW) 455 455 130 130 162 80 85 55 55 55
Pmin(MW) 150 150 20 20 25 20 25 10 10 10

a($/h) 1000 970 700 680 450 370 480 660 665 670
b($/MWh) 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79
c($/MWh2) 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173

MUT(h) 8 8 5 5 6 3 3 1 1 1
MDT(h) 8 8 5 5 6 3 3 1 1 1
SUH($ 4500 5000 550 560 900 260 260 30 30 30
SUC($ 9000 10000 1100 1120 1800 520 520 60 60 60
Tcold(h) 5 5 4 4 4 2 2 0 0 0

Initial state(h) 8 8 −5 −5 −6 −3 −3 −1 −1 −1
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It is shown from the results in Table 6 that GBNCS produces the best performance of the two
algorithms. The GBNCS is always able to find the best solution of almost all test cases except for F8 in
10,000 FES, and the BNCS’s performance is not ideal due to the slow convergence. Figure 6 gives the
converge curve in different dimensions of F1, F2, F5, and F8.

Figure 6. Convergence characteristics of BNCS and GBNCS in F1, F2, F5 and F8.

4.2. Basic UC

The BNCS and GBNCS methods are applied to the 10 generating unit power systems over a 24 h
scheduling horizon. The parameters of units in 10-unit system and the load demand in 24 h are listed
in ref. [15] and given in Tables 5 and 7.

Table 6. Numerical results of binary, negatively correlated search (BNCS) and global best inspired
binary negatively search (GBNCS) approaches for Knapsack problem.

dim opt.value BNCS GBNCS

Best Mean Best Times Best Mean Best Times

F1 10 295 295 286.8 9 295 295 30
F2 20 1024 1016 988 0 1024 1024 30
F3 4 35 35 35 30 35 35 30
F4 4 23 23 23 30 23 23 30
F5 15 481.0694 481.0694 425.9331 4 481.0694 481.0694 30
F6 10 50 52 51.6 21 50 50 30
F7 7 107 107 103.6 27 107 107 30
F8 23 9767 9752 9733.4 0 9767 9763.1 6
F9 5 130 130 130 30 130 130 30

F10 20 1025 1025 991.9 3 1025 1025 30
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Table 7. Load demand for 24 h scheduling horizon.

Hour Pload Hour Pload Hour Pload Hour Pload

1 700 7 700 13 1400 19 1200
2 750 8 1150 14 1300 20 1400
3 850 9 1200 15 1200 21 1300
4 950 10 1300 16 1050 22 1100
5 1000 11 1400 17 1000 23 900
6 1100 12 1500 18 1100 24 800

To comparatively study the performance of the BNCS and GBNCS, the best value, worst value,
and mean value obtained by the two algorithms proposed in this paper were compared with several
popular algorithms which were applied to the UC problem. These algorithms include dynamic
programming [15], Lagrangian relaxation [15], the genetic algorithm (GA) [15], NS evolutionary
programming (EP) [38], simulate anneal (SA) [18], improved particle swarm optimization (IPSO) [39]
binary particle optimization (BPSO) [40], quantum-inspired PSO (QPSO) [41], improved quantum
evolutionary algorithm (IQEA) [42], quantum-inspired evolutionary algorithm (EQA-UC) [43] binary
differential evolution algorithm (BDE) [44], binary real-coded GA (brGA) [45], harmony search
algorithm (HAS) [46], hybrid harmony search (HHS) [47], binary gravitational search algorithm
(BGSA) [36], and binary symmetric particle swarm optimization (BSPSO) [48]. The total number
of cost function evaluations (FES) was set as 30,000. Table 8 shows the experimental results over
30 independent runs.

Table 8. Comparison of BNCS and GBNCS with other approaches for 10 unit systems.

Method Best Worst Mean std

DP [15] 565825 - - -
LR [15] 565825 - - -
GA [15] 565,825 507,732 570,032 -
EP [39] 564,551 566,231 565,325 -
SA [18] 565,825 566,260 565,988 -

IPSO [39] 563,954 564,579 564,162 -
BPSO [40] 563,977 563,977 563,977 -
QPSO [41] 563,977 563,977 563,977 -
IQEA [42] 563,977 563,977 563,977 -

EQA-UC [43] 563,937 564,012 564,711 -
BDE [44] 563,937 564,253 564,088 -
brGA [45] 563,937 - - -
HAS [46] 563,977 - 564,168 -
HHS [47] 563,937 563,995 563,965 -
BGSA [36] 563,937 564,241 564,031 -

BSPSO1 [48] 563,977 564,018 563,980 0.002
BSPSO2 [48] 563,937 563,977 563,976 0.001
BSPSO3 [48] 563,937 563,977 563,973 0.002
BSPSO4 [48] 563,937 563,977 563,964 0.003
BSPSO5 [48] 563,937 563,977 563,960 0.003

BNCS 563,937 563,977 563,941 8.455
GBNCS 563,937 563,937 563,937 0

According to Table 8, it was found that GBNCS, BNCS, BGSA, HHS, EQA-UC, BDE, and
BSPSO(2–5) were all capable of achieving the best value 563,937 $/day, which was also the best
result among state-of-the-art UC results (some are illustrated as 563,938 $/day.) Meanwhile, GBNCS
had the best performance in mean value, and worst value. Due to the great performance in seeking
optimum, GBNCS is always able to achieve the best solution in all 30 independent runs. Figure 7
shows the convergence process of GBNCS and BNCS; it was revealed that the GBNCS and BNCS
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algorithms converge within around 2000 iterations and GBNCS has better performance than BNCS
in convergence.

Figure 7. Convergence curve of basic unit commitment (UC) problem.

According to the above experiment, GBNCS and BNCS are competitive in dealing with the
10 unit UC benchmark problem. These two algorithms were applied to the unit commitment problem
integrated with electric vehicles, which is more complex.

4.3. UC with EVs

Intelligent charging helps to relieve the peak load and fills the valley load, which not only reduces
the fuel cost but also avoids to start-up or shut-down the generators frequently. To study the EV
charging impact on the power systems, 30,000 electric vehicles were integrated into the basic 10-unit
benchmark power system, and the number of electric vehicles in Equation (22) is denoted as N. The
EV parameters are given in Table 9 [49], and the maximum battery capacities of these EVs were within
the range of 0.01–0.25 MW. It was assumed that the average capacity was 0.015MV and departure state
of charge δ was set to 50%. The efficiency of charging is related to temperature. Here, the charging
efficiency of all electric vehicles was set as 85%. The total charging load and maximum charging load
of electric vehicles can be obtained from the following equation, where PV is the battery capacity.

Pdemand = N ∗ PV ∗ δ ∗ η. (22)

Table 9. Parameters of electric vehicles.

Item Value

Average battery capacity of an electric vehicle PVav(MW) 0.015
Maximum battery capacity of an electric vehicle PVmax(MW) 0.025
Minimum battery capacity of an electric vehicle PVmin(MW) 0.010

Departure state of charge δ 50%
Charging efficiency η 85%
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Hence, the total charging load was 191.25 MW, and the maximum charging load was 318.75 MW.
Thus, the EV charging load within 24 h can be obtained from the total charging load and the probability
distribution of four charging modes. The maximum charging load was added to the reserved constraint
to consider the worst situation. Figure 8 shows the load curve after integrating electric vehicles in
off-peak, peak, and EPRI modes, and basic UC loads.

Figure 8. Load demand curve for 24 h scheduling horizon in different charging modes.

To investigate the impact of EV charging on power systems and test the performance of BNCS and
GBNCS, these two algorithms were applied to the 10-unit UC problem integrated with EVs. The results
including best values, worst values, and mean values are given in Table 10. Similar to the experiment
in the basic 10 unit UC benchmark problem, the FES was set as 30,000 and the results were obtained
from 30 individual runs. The population size was set to 10.

Table 10. Performance comparison of the proposed algorithms for UC with EVs problem.

OFF-PEAK PEAK EPRI stochastic

Best Mean Worst Best Mean Worst Best Mean Worst Best Mean Worst

GAH
[50] 577,405 579,632 - - - - - - -

578,884 580,254 -
577,932 580,082 -
578,564 581,332 -
580,087 582,258 -
580,028 583,821 -

GAD
[50] 571,085 572,577 - - - - - - -

572,403 573,400 -
572,435 573,184 -
573,364 574,439 -
573,543 574,738 -
574,663 576,152 -

BNCS 568,372 568,373 568,374 568,894 569,120 569,210 568,201 568,202 568,210

568,086 568,102 568,155
568,281 568,283 568,284
568,460 568,764 569,032
569,581 569,811 569,862
569,648 569,755 569,834

GBNCS 568,370 568,371 568,374 568,894 569,032 569,180 568,199 568,202 568,203

568,085 568,099 568,146
568,279 568,282 568,283
568,440 568,772 568,960
569,562 569,806 569,862
569,627 569,738 569,820
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As shown in Table 10, the results obtained by BNCS and GBNCS were far better than those
obtained by GAD and GAH. GBNCS is always able to get the best solutions in four modes and eight
scenarios. Table 10 also reflects the impact of EV charging on power systems. In the peak charging
mode and the off-peak charging mode, the mean results obtained by GBNCS were 568,370 $/day
and 568,894 $/day, respectively; peak charging costs 524 $/day more than off-peak charging, and
the reason can be found in the unit commitment schedule and reserve available for 10-unit system
under peak charging mode and off-peak charging mode obtained by GBNCS given in Tables 11 and 12.
Compared with the schedule of the off-peak charging mode, the charging of EV in peak charging mode
caused a sudden start-up of unit 8 at 20:00; this unit was connected to the grid for only one hour and
then shut down immediately at 21:00, which greatly increased the cost. But off-peak charging mode is
not the most economical way to charge: the EPRI charging mode is cheaper than the off-peak charging
mode; that is because off-peak charging mode as an ideal charging mode where all the EVs are charged
in the off-peak period which forms a new peak of charging, but EPRI charging mode charges most of
the EVs off-peak; only a quarter of EVs are charged at home.

Table 11. Unit commitment schedule available for 10 unit system using GBNCS in Peak charging mode.

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

1 455 245 0 0 0 0 0 0 0 0
2 455 295 0 0 0 0 0 0 0 0
3 455 370 0 0 25 0 0 0 0 0
4 455 455 0 0 40 0 0 0 0 0
5 455 390 130 0 25 0 0 0 0 0
6 455 360 130 130 25 0 0 0 0 0
7 455 410 130 130 25 0 0 0 0 0
8 455 455 130 130 30 0 0 0 0 0
9 455 455 130 130 85 20 25 0 0 0

10 455 455 130 130 162 33 25 10 0 0
11 455 455 130 130 162 73 25 10 0 10
12 455 455 130 130 162 80 25 43 10 10
13 455 455 130 130 162 58 25 10 10 0
14 455 455 130 130 120 20 25 0 0 0
15 455 455 130 130 45 20 0 0 0 0
16 455 345 130 130 25 0 0 0 0 0
17 455 277 130 130 25 0 0 0 0 0
18 455 377 130 130 25 0 0 0 0 0
19 455 443 130 130 25 0 25 0 0 0
20 455 455 130 130 162 31 25 10 10 0
21 455 455 130 130 85 20 25 0 0 0
22 455 455 130 0 40 20 0 0 0 0
23 455 450 0 0 25 0 0 0 0 0
24 455 345 0 0 0 0 0 0 0 0
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Table 12. Unit commitment schedule available for 10 unit system using GBNCS in Off-Peak charging mode.

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

1 455 280 0 0 0 0 0 0 0 0
2 455 330 0 0 0 0 0 0 0 0
3 455 387 0 0 25 0 0 0 0 0
4 455 357 130 0 25 0 0 0 0 0
5 455 397 130 0 25 0 0 0 0 0
6 455 367 130 130 25 0 0 0 0 0
7 455 410 130 130 25 0 0 0 0 0
8 455 455 130 130 30 0 0 0 0 0
9 455 455 130 130 85 20 25 0 0 0

10 455 455 130 130 162 33 25 10 0 0
11 455 455 130 130 162 73 25 10 10 0
12 455 455 130 130 162 80 25 43 10 10
13 455 455 130 130 162 33 25 10 0 0
14 455 455 130 130 85 20 25 0 0 0
15 455 455 130 130 30 0 0 0 0 0
16 455 310 130 130 25 0 0 0 0 0
17 455 260 130 130 25 0 0 0 0 0
18 455 340 130 130 25 20 0 0 0 0
19 455 440 130 130 25 20 0 0 0 0
20 455 455 130 130 162 33 25 10 0 0
21 455 455 130 130 85 20 25 0 0 0
22 455 455 130 0 35 0 25 0 0 0
23 455 455 0 0 25 0 0 0 0 0
24 455 355 0 0 25 0 0 0 0 0

Figure 9 shows the computation time for solving the unit commitment integrated with electric
vehicle problem and knapsack problem. GBNCS only uses about half of the calculation time of BNCS
in all these four modes. Furthermore, when solving the knapsack problem, the calculation time of
GBNCS is almost one tenth that of BNCS. The efficiency of GBNCS is more obvious when dealing
with simple optimization problems, such as the knapsack problem. That is because the object function
of the knapsack problem is much simpler then UC’s, so when dealing with knapsack problem, the
objective function evaluation time is much less than the Bhattacharyya distance calculation time.
GBNCS optimized the problem with significantly reduced computation time; therefore, the efficiency
of the algorithm was greatly enhanced.

Figure 9. Computational time of BNCS and GBNCS for the knapsack problem and UC with EVs problem.
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5. Conclusions

This paper has proposed a unit commitment problem integrated with electric vehicles.
Two algorithms, namely, the binary negatively correlated search and the global best inspired, binary,
negatively correlated search have been proposed, for which a rounding transfer function to convert
real-valued variables to binary ones was proposed. Furthermore, the GBNCS uses the global best
information to improve the efficiency and convergence of the algorithm. The proposed algorithm was
first tested on a benchmark knapsack problem and a basic unit commitment problem, and then applied
to the unit commitment integrated with an electric vehicle model.

To comprehensively study the charging model, four charging modes were used to simulate
different charging scenarios. The results confirmed that the proposed BNCS and GBNCS are very
competitive in dealing with the traditional knapsack benchmark problem and the UCEV problem.
The GBNCS is not only able to achieve good quality solutions to dispatch the committed units
economically but also has great performance in convergence and computation time.

Our future work will consider other practical constraints of EV charging and discharging in
real-world applications.
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