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Abstract: In this study, we performed seismic vulnerability assessment and mapping of the ML5.8
Gyeongju Earthquake in Gyeongju, South Korea, as a case study. We applied logistic regression
(LR) and four kernel models based on the support vector machine (SVM) learning method to derive
suitable models for assessing seismic vulnerabilities; the results of each model were then mapped
and evaluated. Dependent variables were quantified using buildings damaged in the 9.12 Gyeongju
Earthquake, and independent variables were constructed and used as spatial databases by selecting
15 sub-indicators related to earthquakes. Success and prediction rates were calculated using receiver
operating characteristic (ROC) curves. The success rates of the models (LR, SVM models based on
linear, polynomial, radial basis function, and sigmoid kernels) were 0.652, 0.649, 0.842, 0.998, and
0.630, respectively, and the prediction rates were 0.714, 0.651, 0.804, 0.919, and 0.629, respectively.
Among the five models, RBF-SVM showed the highest performance. Seismic vulnerability maps were
created for each of the five models and were graded as safe, low, moderate, high, or very high. Finally,
we examined the distribution of building classes among the 23 administrative districts of Gyeongju.
The common vulnerable regions among all five maps were Jungbu-dong and Hwangnam-dong, and
the common safe region among all five maps was Gangdong-myeon.

Keywords: seismic vulnerability; support vector machine; kernel function; logistic regression;
machine learning; Gyeongju Earthquake; GIS

1. Introduction

Natural disasters such as earthquakes, landslides, or tsunamis damage buildings and cause
loss of human life as well as environmental and economic losses due to unexpected changes in the
environment [1]. Earthquakes are considered the most devastating natural disaster in most countries,
causing a serious threat to human life and safety [2,3]. According to a UN report, about 10% of all
natural disasters from 1998 to 2017 were related to earthquakes and volcanic eruptions [4], and about
23% of economic losses due to natural disasters was due to earthquakes, which also resulted in about
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56% of all casualties. Thus, despite their low occurrence rate compared to other natural disasters,
earthquakes cause considerable damage [5].

The Korean Peninsula is located inside the Eurasian plate, and has the characteristics of the
Intraplate as it is close to the Japan and Ryukyu trenches where the Pacific plate and the Philippine
plate enter the lower part of the Eurasian plate. It has accumulated local seismological stress due to
plate tectonic movement. Compared to interplate earthquakes, intraplate earthquakes exhibit irregular
spatiotemporal distribution, making it difficult to predict their occurrence, which is less frequent and
accidental [6]. Since the beginning of the twentieth century, no major changes in seismic activity have
occurred in the Korean Peninsula, which exhibits a low frequency of mid- to large-level earthquakes [7].

A magnitude 5.8 earthquake occurred in Gyeongju, South Korea, at 20:32:54 on September 12,
2016; this earthquake was preceded by a 5.1 foreshock, followed by many aftershocks, the largest
of which (4.5) occurred at 11:33:58 on September 19, 2016 [8,9]. The ML5.8 Gyeongju Earthquake
was recorded as the largest earthquake since South Korea began measuring earthquakes in 1978 [8,9].
Tremors from this earthquake were detected in most parts of the country; although no surface ruptures
occurred, 23 people were injured and 5368 properties were destroyed [9,10].

In densely populated cities with large infrastructure, earthquake effects are easily amplified, and
the corresponding ripple effect can continue for long periods, causing a considerable economic blow
to the country [11]. To alleviate such losses in various areas, the management of natural disasters is
essential [12]. To promote the sustainability of disaster management, the overall degree of earthquake
damage can be reduced by identifying regions at high risk of earthquake occurrence and conducting
disaster response and preparation activities in these regions [13,14].

In the past several years, many studies of natural disasters have implemented various methods
to evaluate vulnerability and susceptibility, resulting in the development of risk-assessment maps.
These methods have included probabilistic and statistical methodologies [15–19] and machine learning
approaches [20–27]. Recent research has actively compared the suitability of machine-learning
methodologies [28–32]. Compared to active research on landslides or floods, fewer studies have been
conducted on seismic vulnerability.

Seismic vulnerability is best addressed by multi-criteria decision analysis and sustainable
development [33]. To evaluate seismic vulnerability, many studies have applied the analytical
hierarchy process (AHP) and multi-criteria decision analysis (MCDA) in conjunction with a geographic
information system (GIS). If multiple targets require evaluation, they are stratified and their importance
is quantified to determine the relative priorities of their criteria by using factor weighting [3,14,34–37].

To date, few studies of seismic vulnerability have applied machine-learning approaches, although
some have used this technique for data mining. Machine learning analyzes and predicts data based on
the automatic learning of statistical rules and patterns from large datasets [38], and its applicability has
been demonstrated in various fields [39]. Şengezer et al. (2008) [40] evaluated parameters affecting
earthquake damage using decision trees (DTs). Borfecchia et al. (2010) [41] analyzed urban seismic
vulnerability parameters using DT and artificial neural network (ANN) data mining. To evaluate
the seismic vulnerability of buildings, Tesfamariam and Liu (2010) [42] used support vector machine
(SVM), random forest (RF), and other categorization methods, whereas Guettiche et al. (2017) [43]
used association-rule learning (ARL). Riedel et al. (2015) [44] and Liu et al. (2019) [45] proposed
building seismic vulnerability prediction methods based on building characteristics using the SVM
and ARL approaches. Alizadeh et al. (2018) [2] studied the social vulnerability of Tabriz, Iran, using an
ANN-based seismic-threat model, and Ahmed and Morita (2018) [46] analyzed the seismic vulnerability
of residential buildings in Dhaka, Bangladesh, based on RF and DT approaches.

Studies based on machine learning have assessed the seismic vulnerability of target areas using
seismic factors, with a focus on buildings. Although these studies have typically used single factors,
such as geographic and building factors, few studies have considered the combined effects of multiple
factors. Few studies have assessed seismic vulnerability by creating models incorporating SVM kernels,
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which are among the most widely used methodologies that are used to examine vulnerability to
natural disasters.

Therefore, the objective of the present study was to evaluate and map seismic vulnerability
among all buildings in Gyeongju, South Korea. Model performance was compared and analyzed
based on four SVM kernels (linear, polynomial, radial basis function, and sigmoid), as well as logistic
regression (LR), using 15 sub-indicators related to geotechnical, physical, structural, and capacity
indicators. The accuracy of each model was verified using the receiver operating characteristic (ROC)
curve, and a seismic vulnerability map was produced to evaluate the target regions according to
administrative district.

2. Study Area and Data

2.1. Study Area

The target region of this study was Gyeongju, Gyeongsangbuk-do, South Korea (35◦39′–36◦04′ N,
128◦58′–129◦31′ E), which is bounded by the East Sea to the east; Cheongdo County and Yeongcheon City,
Gyeongsangbuk-do, to the west; Ulju County, Ulsan, to the south; and Pohang City, Gyeongsangbuk-do,
to the north. Comprising 23 districts, Gyeongju is 1324.82 km2 in area and has a population of 256,141
(Figure 1a,b) [47].

Of the total area, 67.4% is forested and 14.8% is farmland, and 17.8% is for other purposes (e.g.,
commercial, residential, and industrial districts) [47]. Several faults are distributed throughout the
region, including the Ulsan and Yangsan faults, and quaternary fault movement has been reported
along the Dongrae, Moryang, Miryang, and Ilkwang faults [48]. These geographic properties imply
that there is a high probability of earthquake occurrence in the future, which is expected to cause
secondary natural disasters.

According to historical records, 75 earthquakes have occurred in Gyeongju, with 21 instrumental
earthquakes having occurred prior to the ML5.8 Gyeongju Earthquake [10].

Gyeongju contains 396 cultural assets, including Yangdong Village, which is a UNESCO World
Heritage Site; therefore, this city has very high preservation value [49]. Several national infrastructure
facilities, including nuclear plants and nuclear-waste treatment facilities, are also located within the
region; thus, it is necessary to minimize and prevent secondary damage propagation in the event of an
earthquake by establishing preparatory measures.

2.2. Gyeongju Earthquake Inventory

The dependent variable used in this study is comprised of a dataset of the 3896 buildings damaged
by the 9.12 Gyeongju Earthquake. These buildings were converted to 9847 cells at a spatial resolution
of 10 m; 70% of the data (6893) were used as a training dataset to create the model, and 30% (2954)
were used to test model accuracy. The data were randomly sampled; we included the same numbers
of undamaged buildings (Figure 1c).

2.3. Spatial Database Preparation

To evaluate seismic vulnerability comprehensively, we considered all seismic-related factors. As a
preceding study to this study, Han and Kim (2019) [50] evaluated seismic vulnerabilities using the
analytic hierarchy process (AHP) technique. Factors were selected through prior study in relation to
seismic vulnerabilities, and the survey was conducted to weight the factors. Thus, we selected the
five main indicators to be geotechnical, physical, structural, and capacity factors. We then selected
15 sub-indicators related to these main indicators, and established a raster-type (10 m spatial resolution)
spatial database related to these factors. Finally, all buildings were converted to cells and used as
independent variables (Figure 2).
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Figure 1. (a) Study areas in Gyeongju, South Korea. (b) Administrative districts within Gyeongju (1: 
Angang-eup, 2: Gangdong-myeon, 3: Seo-myeon, 4: Hyungok-myeon. 5: Cheonbuk-myeon, 6: 
Geoncheon-eup, 7: Seondo-dong, 8: Seonggun-dong, 9: Hwangseong-dong, 10: Yonggang-dong, 11: 
Jungbu-dong, 12: Hwangoh-dong, 13: Dongcheon-dong, 14: Hwangnam-dong, 15: Wolseong-dong, 
16: Bodeok-dong, 17: Bulguk-dong, 18: Yangbuk-myeon, 19: Gampo-eup, 20: Sannae-myeon, 21: 
Naenam-myeon, 22: Oedong-eup, and 23: Yangnam-myeon). (c) Training and validation datasets. 

Figure 1. (a) Study areas in Gyeongju, South Korea. (b) Administrative districts within Gyeongju
(1: Angang-eup, 2: Gangdong-myeon, 3: Seo-myeon, 4: Hyungok-myeon. 5: Cheonbuk-myeon, 6:
Geoncheon-eup, 7: Seondo-dong, 8: Seonggun-dong, 9: Hwangseong-dong, 10: Yonggang-dong, 11:
Jungbu-dong, 12: Hwangoh-dong, 13: Dongcheon-dong, 14: Hwangnam-dong, 15: Wolseong-dong,
16: Bodeok-dong, 17: Bulguk-dong, 18: Yangbuk-myeon, 19: Gampo-eup, 20: Sannae-myeon, 21:
Naenam-myeon, 22: Oedong-eup, and 23: Yangnam-myeon). (c) Training and validation datasets.
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Figure 2. Fifteen sub-indicators related to geotechnical, physical, structural, and capacity
seismic characteristics.

2.3.1. Geotechnical Indicators

Geotechnical indicators are the most influential factors affecting the vulnerability of a city to
earthquake [36]. We considered three sub-indicators, among which slope and altitude cause secondary
damage by increasing the probability of rocks and structures falling as well as ground failure [13].
Groundwater level is used as an important factor in the impact of a seismic response in the event of a
large scale earthquake [51,52]; the groundwater level data were collected according to tubular well
locations, and interpolated throughout Gyeongju.

2.3.2. Physical Indicators

The epicenter, or location where an earthquake occurs, is the most important indicator related to
earthquake occurrence; the level of damage is different depending on ground condition or the structure
of the fault plane, on which the greatest damage often occurs at the epicenter. Therefore, we used
distance data from earthquake epicenters for January 2015 to April 2018, including the 9.12 Gyeongju
Earthquake. Peak ground acceleration (PGA) is the degree to which the ground shakes at the Earth’s
surface [10]; it is generally the most important indicator for evaluating seismic vulnerability because
it is related to the amount of fault activity [35]. In this study, raw data measured at each National
Weather Services observatory in South Korea were converted to acceleration data and interpolated
throughout Gyeongju [8,9]. We also used distance data from each fault to evaluate how the degree of
damage changes with the structure of the fault plane.
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2.3.3. Structural Indicators

The ML5.8 Gyeongju Earthquake resulted in 5368 cases of property damage; since then, the
importance of buildings with anti-seismic design has been recognized. Since the introduction of
anti-seismic design in South Korea in 1988, it has been mandatory only for buildings that are three
stories or higher [53]. As of November 2016, 29.9% of residential buildings and 23.7% of non-residential
buildings in Seoul were designed to be anti-seismic [53]. Because there is no guarantee that future
earthquakes will not exceed the magnitude of the 9.12 earthquake, most buildings in South Korea are
considered highly vulnerable. To assess their vulnerability, we identified four structural indicators of
seismic vulnerability: building age, number of floors, construction materials, and building density.
Construction materials included masonry, wood, concrete, steel, and a mixture of concrete and steel.

2.3.4. Capacity Indicators

Since disaster accommodation facilities are irregularly distributed, not all people have equivalent
access. Thus, it is difficult to predict the scale of damage that may be caused by a disaster that results
in considerable economic losses. To determine the accessibility of such facilities, we identified the
locations of social infrastructure facilities that offer aid in the event of an earthquake, and of hazardous
facilities that have the potential to cause huge damage. The degree of accessibility following a disaster
was analyzed by considering the physical distances to five indicators, including four types of social
infrastructure facility (hospital, fire station, police station, and road network) and one hazardous
facility (gas station).

3. Methodology

The detailed workflow for the production and evaluation of the seismic vulnerability map is
shown in Figure 3.
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3.1. Logistic Regression

The logistic regression (LR) model, developed by McFadden (1973) [54], is a multivariate regression
analysis model that describes the relationship between a bivariate dependent parameter and several
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independent parameters [55] through the estimation of an optimal model. The addition of a link
function suitable for a general linear regression model allows the parameter type to be continuous,
discrete, or mixed, thus obviating the requirement of a normal distribution [56,57]. Some studies
have shown that the LR model is more accurate than other types of models constructed for the
same purpose [31,58,59]. The LR model based on a general linear model can be derived from the
following equation:

y = b0 + b1x1 + b2x2 + b3x3 + · · ·+ bnxn (1)

P =
ey

1 + ey (2)

where y is the linear logistic model, b0 is the y-intercept, bn is the logistic coefficient of each factor, n is
the number of factors controlling a seismic event, x is the earthquake conditioning factor, and P is the
probability of damage (ranging from 0 to 1) in the event of an earthquake [31].

3.2. Support Vector Machine

The support vector machine (SVM) method is a supervised machine-learning method for
solving problems of complex categorization and regression based on statistical-learning theory
and structural-risk minimization principles [60–62].

The SVM was developed to determine an optimal hyperplane that can distinguish between two
classes and r using a training dataset. The hyperplane with the largest margin between the two classes
is the optimal hyperplane; the closest point to it is called a support vector [62].

For data that allow for linear separation xi, a group of training vectors should be considered
(i = 1, 2, . . . , n), which are categorized into two classes, such that yi = ±1. This process is shown in the
following set of equations [63].

1
2
‖ w ‖2 (3)

yi((w·xi) + b) ≥ 1 (4)

where w is a coefficient vector that defines the orientation of the hyperplane in the feature space and b
is the offset of the hyperplane from the origin [64,65].

A cost function using the Lagrangian multiplier is defined as follows:

L =
1
2
‖ w ‖2 −

n∑
i=1

λi(yi((w·xi) + b) − 1) (5)

where λi is the Lagrangian multiplier.
Because it is difficult to classify data linearly into various categories for regression, it is

permitted to transform a nonlinear space into a linear space for optimal separation of two classes [66].
The constraints can be revised by introducing slack variables ξi (ξi ≥ 0), and v(0, 1) is introduced to
explain misclassification.

yi(w·xi + b) ≥ 1− ξi (6)

L =
1
2
‖ w ‖2 −

1
vn

n∑
i=1

ξi (7)

Vapnik (1995) [60] explained the nonlinear decision-making border using the kernel function
K(xi,xj). In SVM, selection of the kernel function is very important; generally, four kernel types are
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used: linear (LN), polynomial (PL), radial basis function (RBF), and sigmoid (SIG), which are defined
as follows:

Linear : K(xi, xj) = XT
i X j,

PL : K(xi, xj) =
(
γXT

i X j + r
)d

, γ > 0,

RBF : K(xi, xj) = e−γ(xi−x j)
2
, γ > 0,

SIG : K(xi, xj) = tan h
(
γXT

i X j + r
)
,

(8)

where the γ term controls the width of the Gaussian kernel and is present in all functions except the
linear function, d is a degree term that applies only to the polynomial function, and r, a bias term in the
polynomial and sigmoid functions, is entered manually to improve the accuracy of SVM. Cost (C), a
common parameter applied to all functions, and is the reciprocal of the normalization parameter λ.
For each controlling factor, higher C values correspond to less influence.

4. Results

4.1. Model Validation

LR model creation and accuracy verification were performed using using IBM SPSS Statistics ver.
25.0 (Foundation for IBM Corp, Armonk, NY, USA). Based on the training dataset, we calculated the
coefficient between seismic vulnerability and seismic factors (Table 1), and used the test dataset to
create the LR model. The resulting model had a success rate of 0.649 and a prediction rate of 0.655
(Figure 4a,b).

We then used R ver. 3.6.0 (Foundation for Statistical Computing, Vienna, Austria) to create models
for each of the four SVM kernels (LN-SVM, PL-SVM, RBF-SVM, and SIG-SVM), and the models were
verified using SPSS. We used a dataset identical to LR; based on the training dataset, C and γ values
were adjusted and default values were applied to the d and r. The accuracy of the generated models
was determined using the ROC method to calculate the area under the curve (AUC). AUC values
closer to 1 indicate higher accuracy [64].

The success rates of the models based on the four kernel types using the training dataset (LN-SVM,
PL-SVM, RBF-SVM, and SIG-SVM models) were 0.649, 0.842, 0.998, and 0.630, respectively (Figure 4a).
The test dataset was then applied to the generated models to calculate their prediction accuracy.
The prediction accuracy values for the LN-SVM, PL-SVM, RBF-SVM, and SIG-SVM models were 0.651,
0.804, 0.919, and 0.629, respectively (Figure 4b). The success and prediction rates of the five models are
listed in Table 2.
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Table 1. Coefficients of the logistic regression model.

Sub-Indicators Logistic Coefficient Significance Coefficient

Slope 0.02403 0.000
Elevation 0.00122 0.004

Groundwater level −0.01183 0.000
Peak ground acceleration −5.47077 0.000

Distance to faults −0.00009 0.000
Distance to epicenters 0.00008 0.000

Age of buildings −0.00082 0.351
Number of floors −0.02691 0.013

Density of buildings −0.00032 0.000

Construction materials

Materials1 (masonry) 0.48755 0.744
Materials2 (concrete) 0.25250 0.866

Materials3 (wood) 0.43746 0.770
Materials4 (steel) 0.52131 0.727
Materials5 (mix) −0.14710 0.922

Distance to fire stations −0.00006 0.001
Distance to hospitals −0.00023 0.000

Distance to gas stations 0.00023 0.000
Distance to roads 0.00002 0.774

Distance to police stations 0.00014 0.000

Constant 1.00179

Table 2. Area under the curve (AUC) for the five models (unit: %).

LR LN-SVM PL-SVM RBF-SVM SIG-SVM

Success rate 64.9 64.9 84.2 99.8 63.0

Prediction
rate 65.5 65.1 80.4 91.9 62.9

LR: Logistic regression; LN-SVM: Linear-support vector machine; PL-SVM: Polynomial-support vector machine;
RBF-SVM: Radial basis function-support vector machine; SIG-SVM: Sigmoid-support vector machine.
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4.2. Seismic Vulnerability Mapping and Assessment

Five seismic-vulnerability maps were produced based on the four SVM kernel models and the LR
model. Maps obtained using the SVM models were based on predicted values, and the LR map was
produced by applying the logistic coefficient calculated above to the following equation:

LR map = 1.00179 + (0.02403 × Slope) + (0.00122 × Elevation)
+ (0.01183×Groundwater level) + (−5.47077 × PGA)

+ (−0.00009 × Distance to fault) + (−0.00008 × Distance to epicenter)
+ (−0.00082 × Building age) + (−0.02691 × Number of floors)
+ (−0.00032 × Building density) + (0.48755 × Material 1) + (0.25250 × Material 2)
+ (0.43746 × Material 3) + (0.52131 × Material 4) + (−0.14710 × Material 5)
+ (−0.00006 × Distance to fire station) + (−0.00023 × Distance to hospital)
+ (0.00023 × Distance to gas station) + (0.00002 × Distance to road)
+ (0.00014 × Distance to police station)

(9)

The seismic vulnerability maps were classified as safe, low, moderate, high, or very high.
The values of each map were normalized from 0 to 1 and then divided into five equal intervals to apply
grades 1 to 5 (Figure 5).

We then examined the percentages of buildings assigned to each grade in the vulnerability maps
(Table 3). In the LR map, the buildings in the “safe” class among the total 40,621 buildings were
2505 (6.17%), those in the “low” class were 4324 (10.64%), those in the “moderate” class were 11,537
(28.40%), those in the “high” class were 5454 (13.43%), and those in the “very high” class were 16,801
(41.36%). In the LN-SVM map, the buildings in the “safe” class were 24 (0.06%), those in the “low”
class were 4597 (11.32%), those in the “moderate” class were 12,063 (29.70%), those in the “high” class
were 20,346 (50.09%), and those in the “very high” class were 3591 (8.84%), whereas in the PL-SVM
map, the buildings in the “safe” class were 282 (0.69%), those in the “low” class were 15,636 (38.49%),
those in the “moderate” class were 24,624 (60.62%), those in the “high” class were 37 (0.09%), and those
in the “very high” class were 42 (0.10%). In the RBF-SVM map, the buildings in the “safe” class were
268 (0.69%), those in the “low” class were 18,571 (45.72%), those in the “moderate” class were 14,502
(35.70%), those in the “high” class were 7141 (17.58%), and those in the “very high” class were 139
(0.34%), whereas in the SIG-SVM map, those in the “safe” class were 97 (0.24%), those in the “low”
class were 5635 (13.87%), those in the “moderate” class were 19,739 (48.59%), those in the “high” class
were 14,867 (36.60%), and those in the “very high” class were 283 (0.70%).

Table 3. Distribution of building classes determined by the SVM and LR maps.

Model Safe Low Moderate High Very High Sum

LR
Number of buildings 2505 4324 11,537 5454 16,801 40,621

Ratio 6.17 10.64 28.40 13.43 41.36 100.00

LN-SVM
Number of buildings 24 4597 12,063 20,346 3591 40,621

Ratio 0.06 11.32 29.70 50.09 8.84 100.00

PL-SVM
Number of buildings 282 15,636 24,624 37 42 40,621

Ratio 0.69 38.49 60.62 0.09 0.10 100.00

RBF-SVM
Number of buildings 268 18,571 14,502 7141 139 40,621

Ratio 0.66 45.72 35.70 17.58 0.34 100.00

SIG-SVM
Number of buildings 97 5635 19,739 14,867 283 40,621

Ratio 0.24 13.87 48.59 36.60 0.70 100.00
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Finally, we examined the distribution of seismic vulnerability among the 23 administrative districts
of Gyeongju (Figure 6). Based on the LR map, the regions most vulnerable to earthquake (i.e., high and
very high classes) were districts 2, 5, and 12; based on the LN-SVM map, they were districts 11, 12, and
13; based on the RBF-SVM map, they were districts 11, 14, and 15; and based on the SIG-SVM map,
they were districts 11, 12, and 13. The safest regions (i.e., safe and low classes) based on the LR map
were districts 1, 3, and 8; based on the LN-SVM map, they were districts 1, 2, and 23; based on the
PL-SVM map, they were districts 19, 20, and 23; based on the RBF-SVM map, they were districts 1, 2,
and 13; and based on the SIG-SVM map, they were districts 1, 2, and 23.
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5. Discussion

We produced seismic vulnerability maps using five models based on SVM and LR techniques
and explored their functional differences. The LN-SVM, SIG-SVM, and LR models were very similar
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in terms of success and prediction rates. The negligible difference in accuracy between the training
and verification datasets may indicate underfitting problems for these two models, such as they are
too simplistic to extract data diversity. Therefore, the LN-SVM, SIG-SVM, and LR models may be
inappropriate for predicting seismic vulnerability. The success rates of the PL-SVM (84.2%) and
RBF-SVM (99.8 %) models were very high, and their prediction rates were also high, at 80.4% and
91.9%, respectively. These two models incorporate nonlinear SVM kernels, and would, therefore,
be useful for creating complex decision-making borders, even with a small number of features, and
are advantageous in that they operate smoothly for various datasets. The PL-SVM and RBF-SVM
models showed high accuracy using the training and verification datasets, and are therefore considered
reliable. Using the AUC of the ROC, the prediction accuracy of the functional models was determined.
The RBF-SVM model was the most reliable, followed by PL-SVM; the SIG-SVM model had the lowest
prediction efficiency, and is, therefore, unfit for evaluating seismic vulnerability.

The results of the present study are consistent with those of previous studies. Xu and Xu (2012) [59]
compared the performance of SVM kernels in spatial prediction models for landslides caused by
earthquakes, and found that the RBF kernel function (0.843) yielded the highest model accuracy,
followed by PL (0.837), LN (0.801), and SIG (0.655). Xu et al. (2016) [67] generated models using
ANN and SVM kernels, and found that the RBF (0.882) and PL (0.888) kernels had similarly high
accuracy values, followed by ANN (0.864), LN (0.795), and SIG (0.502). Feizizadeh et al. (2017) [62]
evaluated the accuracy of SVM kernels and reported that the RBF kernel function (0.893) was the
most appropriate for evaluating landslide susceptibility, whereas the SIG function (0.828) had the
lowest prediction accuracy. Hong et al. (2018) [68] performed flood susceptibility mapping using fuzzy
weight-of-evidence (fuzzy-WofE) and data-mining methods (SVM, LR, and RF), and found that the
SVM model based on the RBF kernel had the highest accuracy and the LR model was less accurate
than the other machine-learning methods.

The performance of the SVM model with respect to each kernel showed that the RBF kernel-based
SVM model had the highest prediction accuracy. The LR coefficient values confirmed the significance
of the factors. When significance coefficient values exceed 0.05, factors have less influence on the
seismic vulnerability of buildings. Herein, the significance coefficient values with respect to the age of
buildings and distance to roads were 0.351 and 0.774, respectively, and the corresponding factors were
considered inappropriate for analyzing seismic vulnerability. The construction material factors were
also considered inappropriate because their corresponding p-values all exceeded 0.05. The buildings
were between 1 and 562 years old. Of the 40,621 buildings considered in this study, 950 (2.34%) were
more than 100 years old and 121 (12.74%) of these were actually damaged, which is a high proportion.
However, these buildings were all one-story buildings, including several cultural assets and traditional
Korean-style houses. Further, buildings likely have less influence on seismic vulnerability because
they continue to undergo maintenance. Based on the construction material factors, 22,325 masonry-
and wood-based buildings were classified as very vulnerable and these buildings were all one to four
stories in height. The distance to roads ranged from 0 to 3.31 km. Of the 40,621 buildings considered
in this study, 39,762 (97.89%) were less than 1 km from a road. Because road accessibility was very
high for almost all buildings within the study area, distance is not a significant factor for evaluating
seismic vulnerability.

Subsequently, the maps obtained based on five models were compared. The LN–SVM and
SIG–SVM models produced similar risky and safe regions. Central Gyeongju was a risky region,
whereas northern and southwestern Gyeongju were safe regions. The outskirts of southeastern and
southwestern Gyeongju were also safe regions in the PL–SVM map. In the RBF–SVM map, central
Gyeongju was considered a vulnerable region, whereas most of the northern region was a safe region.
In the PL–SVM map, which classified risk into five levels, the majority of the buildings belonged to
low and moderate risk classes. Because only 0.19% of the buildings belonged to the high and very high
classes, which is negligible for evaluating risky regions, only four maps were evaluated. Angang-eup
District, which was considered to be a safe region in four maps excluding the PL–SVM map, is located
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to the north of Gyeongju. This area was far from the epicenter, and the majority of the buildings within
this area are less than 100 years old. Further, it is a flat region with an average slope with respect to the
ground surface of 0.97◦ and an average altitude of 28.63 m. However, central Gyeongju was evaluated
as a risky region in the majority of the maps. Additionally, 11–15 districts belonging to this region
had an average building density of 660.04, which is the greatest building density and is very high
compared with the building density of Angang-eup (1) (171.05). In addition, the average distance to
the epicenter in central Gyeongju (3.79 km) was shorter than the average distance in Angang-eup (1),
which was 19.29 km. Further, central Gyeongju had an average distance to faults of 0.74 km compared
with an average of 4.72 km for Angang-eup (1), indicating the presence of numerous faults near the
central region.

The seismic vulnerability evaluation presented here can be augmented by adding or excluding
other parameters, and this model can be applied to evaluate building vulnerability in other regions.

6. Conclusions

In this study, the seismic vulnerability of Gyeongju was analyzed by applying 15 seismic
sub-indicators related to geotechnical, physical, structural, and capacity indicators including slope,
elevation, groundwater level, PGA, building age, construction materials, building density, number
of floors, and distances to epicenter, fault, hospital, fire station, police station, road, and gas station.
This research is important because it considered various components in evaluating seismic vulnerability
and it showed that seismic vulnerability maps can be developed based on various models. Evaluation of
the significant factors using logistic regression revealed that building age, distance to roads, and
construction materials had less influence on the evaluation of seismic vulnerability in the relevant
region. These results can be used as an important reference for seismic vulnerability evaluations
in other regions or for selecting additional factors to be considered in the future. Further, the risky
and safe regions based on the five seismic vulnerability maps should be given priority in terms of
management. The seismic vulnerability map described here is useful for intuitively identifying regions
with high vulnerability. An evaluation of seismic vulnerability should help to manage the environment,
properties, buildings, and facilities to prepare for future earthquakes. These results can be used
as important basic data to establish earthquake-related policies, which are expected to reduce the
economic damage and fatalities caused by earthquakes.
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