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Abstract: With the integration of wind energy into electricity grids, wind speed forecasting plays
an important role in energy generation planning, power grid integration and turbine maintenance
scheduling. This study proposes a hybrid wind speed forecasting model to enhance prediction
performance. Variational mode decomposition (VMD) was applied to decompose the original
wind speed series into different sub-series with various frequencies. A least squares support vector
machine (LSSVM) model with the pertinent parameters being optimized by a bat algorithm (BA)
was established to forecast those sub-series extracted from VMD. The ultimate forecast of wind
speed can be obtained by accumulating the prediction values of each sub-series. The results show
that: (a) VMD-BA-LSSVM displays better capacity for the prediction of ultra short-term (15 min)
and short-term (1 h) wind speed forecasting; (b) the proposed forecasting model was compared
with wavelet decomposition (WD) and ensemble empirical mode decomposition (EEMD), and the
results indicate that VMD has stronger decomposition ability than WD and EEMD, thus, significant
improvements in forecasting accuracy were obtained with the proposed forecasting models compared
with other forecasting methods.

Keywords: Wind speed forecasting; variational mode decomposition (VMD); least squares support
vector machine (LSSVM); bat algorithm (BA)

1. Introduction

Wind power has been recognized as one of the most major and efficient renewable energy
and has been extensively applied throughout the world [1]. With the rapid development of wind
power generation, wind speed forecasting has become a hot issue in the field of power generation
research, due to its important role in energy generation planning, power grid integration and turbine
maintenance scheduling [2]. For example, a 10% deviation in the expected wind speed leads to
an approximate 30% deviation in the expected wind power generation because the power potential is
proportional to the cubic power of the wind speed [3]. Therefore, it is of great importance to develop
relatively accurate wind speed forecasting models.

In the technical literature, the short-term wind speed forecasting methods can be classified into
four categories: (a) the physical model; (b) the traditional statistical model; (c) the artificial intelligent
(AI) model; and (d) the hybrid model [4].
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The physical model relies on the information stated in the numerical weather forecast [5].
This model was established with many complicated factors such as pressure, temperature, obstacles and
roughness, which are usually difficult to utilize in practical applications [6]. The traditional statistical
model based on the mature statistical equations to obtain the potential evolution rule [7,8]. The most
commonly used traditional statistical models for wind speed forecasting include the autoregressive
model (AR) [9], autoregressive moving average (ARMA) [10] and autoregressive integrated moving
average model (ARIMA) [11]. Liebl [12] proposed a new statistical perspective using a functional
factor model for modeling and forecasting electricity spot prices that accounts for the merit order
model. Statistical models have simple principles and high efficiencies. However, the prediction
accuracy of low-order statistical models is relatively low, while high-order model parameters are
tremendously difficult to obtain. As for the AI methods, artificial neural networks (ANN) [13], support
vector regression (SVR) [14], regularized extreme learning machine (RELM) [15] and Least square
support vector machines (LSSVM) [16] might be the most frequently used models for wind speed
forecasting, and empirical analysis shows that they are superior to traditional linear models. Yeh [17]
proposed a parameter-free simplified swarm optimization for ANN training for time-series prediction
and demonstrated its robustness and efficiency. Santamaría-Bonfil et al. [18] employed the SVR
model and their results showed that the proposed model was more accurate than the persistence
and auto-regressive models in medium short-term wind speed and wind power forecasting. Zhou et
al. [16] built a LSSVM based model for one-step ahead wind speed forecasting, and obtained relatively
accurate results compared to the persistence approach.

However, up until now, using only an artificial intelligence model does not provide satisfactory
prediction accuracy due to the non-stationary nature of the original wind speed series for training the
forecasting model [19]. To overcome this non-stationary problem and further improve the forecasting
accuracy, many studies have proposed a hybrid model. One approach is to combine multiple intelligent
algorithms to form a new hybrid model. The parameter optimization algorithms can improve the
performance of the prediction algorithms by searching for the optimal parameters [20]. Amjady and
Keynia [21] constructed a hybrid method composed of cascaded forecasters where each forecaster
consists of a neural network (NN) and an evolutionary algorithms (EA). Wang et al. [22] proposed the
LSSVM model whose parameters are tuned by an artificial intelligence (PSOSA) model, and it was
built to make forecasts. Liu et al. [23] developed a hybrid model for wind speed forecasting, where the
CSO algorithm was used to optimize the parameters of the SVM model. It is recognized that these
heuristic optimization algorithms can search the global optimal and obtain the optimal parameters [24].
Another approach is to add signal decomposition techniques to the hybrid model, which aims to further
decompose the non-linear wind speed time series into more stationary and regular subseries. The signal
decomposition techniques used in wind speed prediction mainly include wavelet decomposition (WD),
wavelet packet decomposition (WPD), empirical mode decomposition (EMD), ensemble empirical
model decomposition (EEMD), and variational mode decomposition (VMD). Niu et al. [25] developed
a hybrid model based on the WD-SVM optimized by a genetic algorithm (GA). The WD was applied to
reduce the high-frequency components, the GA was incorporated into SVM for parameter optimization.
The results indicated that proposed method is more efficient than a SVM-GA model without WT.
Wang et al. [26] proposed a wind speed forecasting method based upon EEMD and an optimized
BP neural network (GA-BP) for on-line short term (1 h) and ultra-short term (10 min) wind speed
forecasting, and computational results have shown good performance of EEMD. Zhou et al. [27]
employed a new decomposition-optimization model created by integrating VMD, the backtracking
search algorithm (BSA), and RELM to enhance forecasting accuracy. Liu et al. [28] built up a model
which applied both a WT and EMD decomposition method. Wang et al. [29] presented a hybrid
model based on the FEEMD (fast ensemble empirical mode decomposition), VMD, BP and FA (firefly
algorithm). The FEEMD was used to decompose the original series into several sub-series, while the
VMD was used to further decompose high frequency sub-series. The results showed that the proposed
model excelled compared to the FEEMD-FA-BP model and the VMD-FA-BP model.



Sustainability 2019, 11, 652 3 of 18

The application of signal processing technology in wind speed prediction enhances the prediction
performance. WD has good time-frequency localization characteristics, but the decomposition effect
depends on the choice of the basis function, and the adaptability is poor. Besides, there are some
problems in EMD, such as endpoint effect and over envelope. EEMD is an improved method of EMD,
which reduces the phenomenon of mode aliasing. Recently, VMD, which is a new signal decomposition
technology has been proposed by [30]. Compared with the recursive element screening mode of EMD
and EEMD, VMD decomposes the signal into non-recursive and variational mode. It has been stated
that VMD has a better theoretical foundation compared to the sequential iterative sifting of EMD.
It was also demonstrated that VMD has some advantages in tone separation and is less sensitive to
noise and sampling [31].

The principal purpose of this study was to investigate a more accurate forecasting method for
wind speed. A hybrid model based on VMD-bat algorithm (BA)-LSSVM was employed to forecast
wind speed. Noticeably, in this work the two parameters of LSSVM were fine-tuned by the BA to ensure
the generalization and the learning ability of LSSVM. In addition, different models (EEMD-BA-LSSVM,
WD-BA-LSSVM, BA-LSSVM, PSO-LSSVM and LSSVM) were developed for comparative analysis.
The proposed model is composed of three steps: (a) VMD is adopted to decompose the raw wind
speed series into a discrete number of components with different frequencies; (b) LSSVM optimized
by BA is employed to forecast each component; (c) the ultimate forecast result of wind speed can be
obtained by accumulating the prediction values of each components.

The main contributions of this study are as follows: (a) VMD, as a competitive signal
decomposition method to decompose the nonlinear features of the wind speed signals, is firstly
combined with LSSVM optimized by BA to forecast wind speed; and (b) The proposed forecasting
model was compared with EEMD-BA-LSSVM and WD-BA-LSSVM, and VMD was found to be more
thorough and stable than WD and EEMD in the high frequency decomposition of wind speed series,
which enhanced the accuracy of wind speed prediction to a certain extent. Few papers have compared
and analyzed the application of various signal processing techniques in wind speed prediction.
This paper fills the gap.

The rest of this paper is organized as follows: Section 2 describes the modelling approaches.
In Section 3 a hybrid model is constructed that is designed to forecast wind speed. Then, in Section 4
the proposed model is examined by experimental and comparative analysis. Finally, Section 5 provides
some conclusions of the entire research.

2. Methods

The research methodology used in this paper includes: variational mode decomposition, ensemble
empirical mode decomposition, wavelet decomposition, least squares support vector machine and the
bat algorithm. A brief description of those methods is outlined as follows.

2.1. Variational Mode Decomposition

VMD was proposed by Dragomiretskiy and Zosso in 2014 [30], and it is a newly developed
multi-resolution for non-recursive signal processing. The VMD can adaptively decompose a real-valued
signal f (t) into a discrete number of band-limited intrinsic mode function (BIMF) uk with specific
sparsity properties. Each BIMF uk is compact around a center pulsation ωk which is determined
along with the process of decomposition and its bandwidth is estimated by using the H1 Gaussian
smoothness of the shifted signal. Thus, the process of decomposition is implemented by settling
a constrained variational problem:

min
{

K
∑

k=1
‖∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jwt

k‖2
2

}
s.t.

K
∑

k=1
uk = f (t)

(1)
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Making use of both a quadratic penalty term and Lagrangian multipliers λ, the above constrained
problem can be converted to the unconstrained one which is easier to address. The augmented
Lagrangian is described as follows:

L({uk}, {ωk}, λ) = α
K
∑

k=1

∥∥∥∥∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jwt

k‖2
2+
∥∥∥ f (t)−

K
∑

k=1
uk(t)‖2

2

+〈λ(t), f (t)−
K
∑

k=1
uk(t)〉

(2)

where α denotes the balancing parameter of the data-fidelity constraint. The alternate direction method
of multipliers (ADMM) can be used to solve Equation (1). Therefore, it is implied that updating uk,
ωk and λk in two directions is conducive for realizing the analysis process of VMD, and the solutions
of uk , ωk and λk can be calculated as follows:

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûn
k (ω) +

(
λ̂(ω)/2

)
1 + 2α(ω−ωk)

2 (3)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(4)

λ̂n+1
k (ω) = λ̂n

k (ω) + τ

(
f̂ (ω)−∑

i 6=k
ûn+1

k (ω)

)
(5)

where f̂ (ω), ûn
k (ω), λ̂(ω) and ûn+1

k (ω) represent the Fourier transforms of f (t), and n denotes the
number of iterations.

The termination condition of the VMD algorithm is presented as follows:

∑k ‖ûn+1
k − ûn

k ‖
2
2

‖ûn
k ‖

2
2

< ε (6)

where ε is tolerance of convergence criterion.
BIMF uk can be obtained from the entire decomposition process for VMD according to the

following steps:
Step 1: Initialize parameters for VMD method including

{
u1

k
}

,
{

ω1
k
}

, and λ1, and set iteration
number n = 1.

Step 2: Calculate ûn+1
k (ω) and ωn+1

k using the Equations (3) and (4).
Step 3: Update the Lagrangian multiplier λk in terms of Equation (5).
Step 4: Given the tolerance of the convergence criterion ε > 0, if the convergence condition of

Equations (6) is satisfied, the iteration is stopped, otherwise n increases to n + 1 and returns to step 2.
Then, the final BIMF can be obtained. The main variables of VMD are listed in Table 1.

Table 1. Main variables involved in variational mode decomposition (VMD).

Variable Meaning Variable Meaning

f (t) real-valued signal ωk center pulsation
uk band-limited intrinsic mode function λ Lagrangian multipliers

2.2. Ensemble Empirical Mode Decomposition

EMD, originally proposed by Huang [32], is a powerful signal decomposition technology that aims
to decompose complicated signals into several intrinsic mode function (IMF) components. However,
sometimes EMD cannot correctly decompose the raw data sequences. These IMFs extracted by EMD
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have lost their physical meanings and weaken the regularity. Compared with EMD, EEMD has good
performance in non-stationary signal decomposition. EEMD adds a white noise series to the raw signal
f (t) to eliminate the mode mixing, obtaining the IMFs through the EMD procedures. The computation
steps of the EEMD algorithm are described as follows:

Step 1: Calculate f i(t) = x(t) + ni(t), where ni(t)(i = 1, 2, 3 . . . , N) represent the random white
Gaussian noise series.

Step 2: Decompose the series xi(t) using the EMD technology to obtain IMF modes
im f i

m (m = 1, 2, 3 . . . , N).
Step 3: Compute the mean of the corresponding series im f i

m(t) as follows:

im fm(t) =
1
N

N

∑
i=1

im f i
m(t) (7)

Step 4: Repeat the above mean procedure to complete the process of EEMD. The decomposed
results of the original signal series x(t) will be obtained as follows:

x(t) =
k

∑
m=1

im fm(t) + rk(t) (8)

where im fm(t), (m = 1, 2, 3 . . . , k) are the IMFs decomposed by EEMD, rk(t) denotes the
corresponding residue. The main variables of EEMD are listed in Table 2.

Table 2. Main variables involved in ensemble empirical mode decomposition (EEMD).

Variable Meaning Variable Meaning

f (t) raw signal rk(t) residue
im f i

m intrinsic mode function ni(t) random white Gaussian noise series

2.3. Wavelet Decomposition

WD is a signal decomposition technique with more applications. The basic principle is to
decompose the non-stationary discrete wind speed sequence f (t) into a high frequency detail sequence(
d1, d2, . . . , dJ

)
with different frequencies and a low frequency approximation sequence aJ according

to the multi-resolution idea proposed by Mallat [33]. J is the maximum number of decomposition
layers. A 4-layer decomposition is usually performed using the db4 wavelet base. The decomposition
process is: {

aj+1 = H
(
aj
)

dj+1 = G
(
dj
) (9)

where aj, dj are the low frequency signal and high frequency signal, respectively, of the original signal
at the resolution 2−j, which are the components of the original signal on different adjacent frequency
segments; H is the low pass filter; G is the high pass filter. The decomposition process utilizes two
decimations so that each layer of the decomposition signal is half the pre-decomposition signal data,
and two interpolation reconstructions are required to restore the signal length, as in equation (10).{

AJ = (H∗)jaj

DJ = (H∗)j−1G∗dj
(10)

H∗ and G∗ are the dual operators of H and G, respectively. After reconstructing
(
d1, d2, . . . , dJ

)
and aJ , the detail sequence D1, D2, . . . , DJ and the approximate sequence AJ are obtained. The main
variables of WD are listed in Table 3.
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Table 3. Main variables involved in wavelet decomposition (WD).

Variable Meaning Variable Meaning

f (t) raw signal AJ approximate sequence
DJ detail sequence

2.4. Least Squares Support Vector Machine

The LSSVM, put forward by Suykens [34], is a variation of the standard support vector machine
(SVM), adopting the loss function different from SVM and minimizing the square error. A quadratic
programming problem can be transformed into linear equations by replacing inequality constraints
with equality constraints, greatly reducing the computational complexity. In the LSSVM model,
for a given training sample set S = {(xi, yi)| i = 1, 2, 3, . . . , t}, where xi is the ith input of sample space
Rinput, yi is the ith output of sample space Routput, t is the size of the training sample. Then, the optimal
decision function is framed by using the high dimensional feature space. The decision function can be
expressed as follows:

f (x) = ωT ϕ(x) + b (11)

where ϕ(x) represents the nonlinear mapping function from input space to high dimensional feature
space, ω is weight, b is bias, and f (x) is the prediction value.

The structural risk minimization can be described as follows:

R =
1
2
‖ω‖2 + cRemp (12)

where ‖ω‖2 suggests the complex degree of the model, c is the regularization parameter, controlling
the degree of punishment beyond the error samples, Remp is the empirical risk function, the objective
function of LSSVM is obtained as follows:

minZ(ω, ξ) =
1
2
‖ω‖2 + c

t

∑
i=1

ξ2
i (13)

s.t. yi = ωϕ(xi) + b + ξi i = 1, 2, 3, . . . , t

where ξi is the error, the Lagrange function can be defined as follows:

L(ω, b, ξ, λ) =
1
2
‖ω‖2 + c

t

∑
i=1

ξ2
i −

t

∑
i=1

λi[ωϕ(xi) + b + ξi − yi] (14)

where λi(1, 2, 3, . . . , t) are the Lagrange multipliers.
According to the Karush-Kuhn-Tucker (KKT) conditions, Equation (11) is shown as follows:

ω−
t

∑
i=1

λiξ
2
i = 0

t
∑

i=1
λi = 0, λi − cξi = 0

ωϕ(xi) + b + ξi − yi = 0

(15)

In the light of Equation (11), the optimization problem can be converted into the process of solving
linear equations, which is presented as follows:[

0 IT

I J + 1
C

][
b
λ

]
=

[
0
y

]
(16)
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where I = [1, 1, . . . , 1]T is a t× 1 dimensional column vector, λ = [λ1, λ2, . . . , λt]
T , y = [y1, y2, . . . , yt]

T ,
Jij = ϕ(xi)

T ϕ
(

xj
)
= G

(
xi, xj

)
, K is the kernel function which satisfies the condition of Mercer, the final

form of the LSSVM model emerges as follows:

f(x) =
t

∑
i=1

λi K
(

xi, xj
)
+ b (17)

In this research, the radial basis function (RBF) is selected as the kernel function, as shown in
Equation (18):

G
(

xk, xj
)
= exp

(
−
‖xk−xj‖2

2σ2

)
(18)

where σ2 is the parameter of the kernel function.
Thus, there are two parameters, the regularization parameter c and the kernel parameter

σ2, determining the LSSVM model. In previous studies, experimental comparison, grid searching
methods and cross validation methods were applied to optimize the two parameters, but they are all
time-consuming and inefficient. Therefore, this paper adopts a BA to optimize the two parameters,
which can enhance and further the adaptability of the model and effectively improve the forecasting
accuracy. The main variables of the LSSVM are listed in Table 4.

Table 4. Main variables involved in the least squares support vector machine (LSSVM).

Variable Meaning Variable Meaning

f (x) prediction value ξi Error
xi Input λi Lagrange multipliers
yi Output ‖ω‖2 complex degree
c regularization parameter σ2 parameter of the kernel function

2.5. The Bat Algorithm (BA)

The BA is a novel meta-heuristic algorithm inspired by the echolocation behavior of bats. The BA
offers an excellent way to optimize and classify a selection of complicated problems [35]. The basic
flow of the BA can be generalized by the pseudo code listed in Algorithm 1.

Algorithm 1. Pseudo code of the Bat Algorithm.

(1) Initialize the position of bat population xi = (1,2, . . . , n) and vi
(2) Initialize pulse frequency fi at xi, pulse rates ri and the loudness Ai
(3) While (t < maximum number of iterations)
(4) Generate new solutions by adjusting frequency
(5) Update the velocities and solutions
(6) If (rand > ri)
(7) Select a solution among the best solutions
(8) Generate a local solution around the selected best solution
(9) End if
(10) Generate a new solution by flying randomly
(11) If (rand < Ai & f (xi) < f (x∗))
(12) Accept the new solutions
(13) Increase ri and reduce Ai
(14) End if
(15) Rank the bats and find the current best x∗

(16) End while
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3. Wind Speed Forecasting Models

In this section, the proposed model (VMD-BA-LSSVM) is described in detail. The flowchart of the
presented model is given in Figure 1. The following three parts constitute the hybrid model.Sustainability 2019, 11, x FOR PEER REVIEW 8 of 18 
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Part one: Data preprocessing. The VMD approach is employed to decompose the original wind
speed series into a discrete number of components with different frequencies that are respectively
denoted by BIMF1, BIMF2, . . . , BIMFN. The aim of this technique is to diminish the non-stationary
character of the series for the high precision short-term forecast.

Part two: Training and validation of the model. In this study, forecasting for each component is in
the light of LSSVM-BA model, the basic steps can be described as follows:

Step 1: Parameter setting
The main parameters of BA are initial population size n, maximum iteration number N, original

loudness A, pulse rate r, location vector x, and speed vector v.
Step 2: Initialize population
Initialize the bat population’s position, each bat location strategy is a component of

(
γ, σ2),

which can be defined as follows:

x = xmin + rand(1, d)× (xmax − xmin) (19)

where the dimension of the bat population: d = 2.
Step 3: Update parameters
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Calculate the fitness value of population, find the current optimal solution and update the pulse
frequency, velocity and position of bats as follows:

fi = fmin + ( fmax − fmin)× β (20)

vt
i = vt−1

i +
(
xt

i − x∗
)
× fi (21)

xt
i = xt−1

i + vt
i (22)

where β denotes uniformly random numbers, β ∈ [0, 1]; fi is the search pulse frequency of the bat i,
fi ∈ [ fmin, fmax]; vt

i and vt−1
i are the velocities of the bat i at time t and t − 1, respectively; further,

xt
i and xt−1

i represent the location of the bat i at time t and t − 1, respectively; x∗ is the present optimal
solution for all bats.

Step 4: Update loudness and pulse frequency
Produce a uniformly random number rand, if rand > ri, disturb the optimal strategy randomly

and acquire a new strategy; if rand < Ai and f (x) > f (x∗), then the new strategy can be accepted,
the ri and Ai of the bat are updated as follows:

At+1
i = αAt

i (23)

rt+1
i = r0

i [1− exp(−γt)] (24)

where α and γ are constants.
Step 5: Output the global optimal solution
The current optimal solution can be obtained by relying on the rank of all fitness values of the bat

population. Repeat the steps from Equation (20) to Equation (22) until the maximum iterations are
completed and output the global optimal solution. Therefore, a wind speed forecasting model can
be generated. In addition, the LSSVM approach is adopted to model the training set, and the mean
square errors of the true values and forecasting values are adopted as the fitness functions of the BA.
Then, the group of parameters of LSSVM is optimized by BA for the minimum fitness value. Finally,
the LSSVM model with optimal parameters can be developed to predict the wind speed.

Part three: Wind speed forecasting. In this part, the LSSVM approach with the parameters
optimized by the BA is employed to predict each BIMF decomposed by VMD. Then, the ultimate
forecast result of wind speed can be obtained by accumulating the prediction values of each BIMF.

4. Experimental Results and Comparative Analysis

Experimental results are analyzed in this section to illustrate the effectiveness of the proposed
method in a comparative analysis. Case 1 utilizes the proposed method for ultra-short term (15 min)
wind speed forecasting, and in Case 2, a short term (1 h) wind speed forecasting is discussed to verify
the generalization ability of the model.

4.1. Study Area and Data Set

Two case studies are analyzed in this section to illustrate the effectiveness of the proposed method.
The actual wind speed series of a real wind farm with installed capacity of 33.25 MW in Jiangsu
Province of China were chosen as the research object. Fifteen-minute wind speed data from 00:00
November 1, 2013 to 23:45 November 7, 2013 were chosen as the Case I study. One-hour wind speed
data from 1:00 December 3, 2013 to 00:00 December 31, 2013 were chosen as the Case 2 study to discuss
its generalization ability. In each Case, the 1st–576th observation and 577st–672th observations are
respectively adopted as the training and test data. Training data corresponds to input x in Equation (1),
the predicted value f (x) obtained in Equation (1) was compared with the test data. The original wind
speed series for the two cases are shown in Figure 2. Table 5 demonstrates the descriptive statistics for
the wind speed series.
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Figure 2. Two original wind speed series. (a) Wind speed series for 15 min; (b) Wind speed series for
1 h.

Table 5. Descriptive statistics of wind speed series.

Case Data Set Statistics

Minimum
(m/s)

Maximum
(m/s)

Mean
(m/s)

Median
(m/s)

Standard Deviation
(m/s)

15 min Training data 0.11 8.8 4.278 4.35 1.978
Test data 1.85 7.73 5.016 5.335 1.455

1 h Training data 0 12.31 5.594 5.476 2.5
Test data 3.4 11.36 6.81 6.902 1.617

4.2. Performance Criteria of Prediction Accuracy

In this paper, the root mean square error (RMSE), mean absolute error (MAE) and mean absolute
percentage error (MAPE) were employed as evaluation criteria to quantitatively assess the forecasting
performance of the proposed model:

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (25)

MAE =
1
n

n

∑
i=1
|xi − x̂i| (26)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣ × 100% (27)

where xi is the actual data at i, and x̂i is the corresponding predictive data. i = 1, 2, . . . , n.

4.3. Original Wind Speed Series Decomposition Results

In order to improve the forecasting performance of wind speed series, this paper firstly adopts
signal decomposition technique to decompose the original wind speed series into several components,
and the data decomposition results of these two wind speed series (15 min and 1 h) are listed in
Figures 3 and 4. Figures 3a and 4a are wind speed sequences decomposed by VMD; it is obvious that
each wind speed series is decomposed into 8 components, which are respectively denoted by BIMF1,
BIMF2, . . . , BIMF8. α = 2000 and τ = 0.3 to ensure the fidelity of the data decomposition. For the
comparative analysis, EEMD and WD were also used to decompose the wind speed series. The number
of decompositions is automatically generated in the recursive process with the decomposition process
using EEMD, and wind speed series is decomposed into 8 intrinsic mode functions (IMF) components
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and 1 residual (RES). The results of EEMD are shown in Figures 3b and 4b. Figures 3c and 4c show the
results of WD with 4-layer decomposition and reconstruction using db 4 wavelet base. The wind speed
series are decomposed into an approximation component A1 and 4 detail components, which are
denoted by D1, D2, D3, D4.

Observing the component characteristics after signal decomposition, the components of VMD,
EEMD and WD range in order from higher frequency to lower frequency. It is generally believed that
the high frequency component is the random part of wind speed. Some lower frequency components
have strong sinusoidal fluctuation characteristics and can be considered as periodic components of
wind speed. The last low frequency part is the trend term of wind speed, which reflects the trend of
the wind speed series. From Figure 3, we can see that the amplitude fluctuation of the high frequency
component obtained by VMD is approximately between [−1,1]. The amplitude of the high frequency
component of EEMD fluctuates greatly, and it ranges from [−2,2]. The fluctuation of the high frequency
component of WD is the largest, which is [−5.5]. This shows that VMD decomposes the high frequency
part more thoroughly than EEMD and WD.
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4.4. Parameter Settings

Previous studies based on the LSSVM model for forecasting have indicated that the performance
of the LSSVM approach depends on its parameters and the kernel function. The BA is a population
intelligent optimization algorithm that is used to search the optimal parameters of LSSVM. In this
paper, RBF was chosen as the kernel function of the LSSVM algorithm, which decreases the complexity
of the model and improves the training speed. Thus, the regularization parameter c and kernel
parameter σ2 can obtain the optimal values using the reliable, automatic searching ability of BA.
The main parameters of the BA are listed in Table 6. Table 7 shows the optimal parameters (c, σ2) of
each sub-series in the LSSVM models obtained using the BA approach for VMD, EEMD, and WD.
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Table 6. Main parameters of the bat algorithm (BA).

Parameters Values Parameters Values

Initial population size 10 Minimum frequency 0
Initial loudness 0.25 Maximum frequency 5

Pulse rate 0.5 Max-iteration number 50

Table 7. The optimal parameters in the LSSVM model for VMD, EEMD and WD.

VMD EEMD WD

Components c σ2 Components c σ2 Components c σ2

BIMF1 0.1898 14.8432 IMF1 0.098 9.5004 A1 0.1696 10.1624
BIMF2 12.3084 1.0987 IMF2 0.2118 0.0239 D1 0.0014 8.1789
BIMF3 1.3475 0.4603 IMF3 0.2942 0.0532 D2 13.6794 10.1307
BIMF4 5.6934 2.2004 IMF4 24.51 2.4311 D3 4.5363 0.4641
BIMF5 8.4486 4.7532 IMF5 1983.8 0.1635 D4 0.0092 11.1173
BIMF6 0.811 6.835 IMF6 28.3727 0.303
BIMF7 9.1664 0.8689 IMF7 80.9834 0.3148
BIMF8 8.8698 9.4069 IMF8 3.87 0.5182

RES 0.728 0.0892

4.5. Comparative Analysis of Different Models

In order to demonstrate the advantages of the VMD-BA-LSSVM model, LSSVM, PSO-LSSVM,
BA-LSSVM, WD-BA-LSSVM, EEMD-BA-LSSVM models are taken as the comparison models.

4.5.1. Case 1: Ultra Short-Term (15 min) Wind Speed Forecasting

The values for MAPE, MAE and RMSE of the proposed and various comparison models are
presented in Table 8. Compared with other forecasting models, the proposed model displays better
prediction of wind speed, and achieves good forecasting performance. This conclusion can be further
verified by the results shown in Figure 5, which present the fit and absolute error between the predicted
wind speed and actual wind speed. To further analyze the performance and differences between the
models, the specific analysis is shown below.

Table 8. Error comparison among different forecasting models in Case 1I.

Case 1 Error
Model
LSSVM PSO-LSSVM BA-LSSVM WD-BA-LSSVM EEMD-BA-LSSVM VMD-BA-LSSVM

Fifteen
Minutes

MAPE 20.99% 19.69% 15.44% 14.93% 3.42% 1.03%
MAE 0.92 0.8708 0.6873 0.6972 0.1538 0.0427
RMSE 1.0866 0.9858 0.8764 0.8094 0.2035 0.0543

(1) Optimal parameters. Figure 5a–c shows that the prediction accuracy of BA-LSSVM and
PSO-LSSVM is higher than LSSVM, and the predicted wind speed series is consistent with the
variation trend of the original wind speed. It shows that the prediction accuracy of the LSSVM
model can be improved by optimizing the kernel parameters. Table 8 shows that the prediction
accuracy of BA-LSSVM is higher than that of PSO-LSSVM. It shows that the BA algorithm has better
search ability and convergence speed than the PSO algorithm, and the prediction accuracy of LSSVM
kernel parameters optimized by BA algorithm is higher. The improved LSSVM models have better
performance than a single LSSVM approach. The primary reason for this may be that the process of
automatic searching is added to the improved LSSVM model, which equips the LSSVM model with
better learning and generalization ability so that it easily acquires the global optimal solution.



Sustainability 2019, 11, 652 14 of 18

Sustainability 2019, 11, x FOR PEER REVIEW 14 of 18 

 

 
Figure 5. The forecasting results from various models (15 min). (a) LSSVM model; (b) PSO-LSSVM 
model; (c) BA-LSSVM model; (d) WD-BA-LSSVM model; (e) EEMD-BA-LSSVM; (f) VMD-BA-LSSVM. 

(2) Absolute error. From the error distribution in Figure 5, the error value of VMD-BA-LSSVM 
fluctuates very little near zero. Although EEMD-BA-LSSVM fluctuates less than WD-BA-LSSVM, BA-
LSSVM, PSO-LSSVM and LSSVM, and gets better prediction results, it was found that VMD-BA-
LSSVM has better follow up to the original wind speed series than EEMD-BA-LSSVM, and the error 
value is also the smallest among all the models. This fully shows that the proposed algorithm has 
high accuracy and great advantages in wind speed prediction.  

(3) Signal decomposition technique. From Table 8 and Figure 5(c–f), the prediction accuracy of 
VMD-BA-LSSVM, EEMD-BA-LSSVM and WD-BA-LSSVM based on signal decomposition is better 
than that of traditional prediction models without signal decomposition. It shows that signal 
decomposition technology can effectively reduce the non-stationary characteristics of wind speed 
series. Among the three signal decomposition models, VMD-BA-LSSVM is better than WD-BA-
LSSVM and EEMD-BA-LSSVM, and the prediction accuracy evaluation index is the best in each 
comparison model. This is because the decomposition ability of the three signal decomposition 
techniques differs when the high frequency part of the wind speed series is decomposed. In WD-BA-
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(2) Absolute error. From the error distribution in Figure 5, the error value of VMD-BA-LSSVM
fluctuates very little near zero. Although EEMD-BA-LSSVM fluctuates less than WD-BA-LSSVM,
BA-LSSVM, PSO-LSSVM and LSSVM, and gets better prediction results, it was found that
VMD-BA-LSSVM has better follow up to the original wind speed series than EEMD-BA-LSSVM,
and the error value is also the smallest among all the models. This fully shows that the proposed
algorithm has high accuracy and great advantages in wind speed prediction.

(3) Signal decomposition technique. From Table 8 and Figure 5c–f, the prediction accuracy
of VMD-BA-LSSVM, EEMD-BA-LSSVM and WD-BA-LSSVM based on signal decomposition is
better than that of traditional prediction models without signal decomposition. It shows that signal
decomposition technology can effectively reduce the non-stationary characteristics of wind speed series.
Among the three signal decomposition models, VMD-BA-LSSVM is better than WD-BA-LSSVM and
EEMD-BA-LSSVM, and the prediction accuracy evaluation index is the best in each comparison model.
This is because the decomposition ability of the three signal decomposition techniques differs when the
high frequency part of the wind speed series is decomposed. In WD-BA-LSSVM, the high-frequency
variation of each component is the largest, which affects the prediction accuracy of the model to
a certain extent. The MAPE value is 14.93%. The high frequency range of each component in
EEMD-BA-LSSVM is smoother than that in WD, thus, the prediction accuracy of EEMD-BA-LSSVM
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is higher than that of WD-BA-LSSVM, and the MAPE value is 3.42%. The wind speed sequence in
VMD-BA-LSSVM changes steadily after decomposition, which makes the prediction accuracy of each
component better, thereby, the integrated results can further improve the prediction accuracy of the
model. The MAPE value of VMD-BA-LSSVM is only 1.03%.

The above analysis shows the superiority of the proposed method in ultra short-term wind
speed forecasting.

4.5.2. Case 2: Short-Term (1 h) Wind Speed Forecasting

In order to further verify the generalization ability of the forecasting method proposed in this
paper, short-term (1 h) wind speed forecasting was conducted and is discussed in this section. On the
basis of Case 1, BA-LSSVM, WD-BA-LSSVM, EEMD-BA-LSSVM and VMD-BA-LSSVM were used
to predict wind speed. By comparing Figure 6a–d, the forecasting results of VMD-BA-LSSVM are
better than that of EEMD-BA-LSSVM, WD-BA-LSSVM and BA-LSSVM. It is obvious that signal
processing technology can significantly improve the accuracy of wind speed prediction. The results of
the proposed hybrid VMD and BA-LSSVM model is much better than that of the hybrid EEMD or WD
and BA-LSSVM model most of the time. The improved BA-LSSVM model is able to forecast the trend
in the wind speed series, but the prediction accuracy is unsatisfactory. Table 9 presents the results of
the four models, and similar conclusion as that in Case 1 can be made here, that is, the proposed model
is also suitable for short-term (1 h) wind speed forecasting.
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Table 9. Error comparison among different forecasting models in Case 2.

Case 2 Error
Model

BA-LSSVM WD-BA-LSSVM EEMD-BA-LSSVM VMD-BA-LSSVM

One hour
MAPE 14.42% 9.50% 2.23% 1.56%
MAE 0.9283 0.6463 0.1585 0.1015
RMSE 1.1309 0.8026 0.2715 0.1367

5. Conclusions

In order to enhance the efficient and accurate prediction of wind speed, a hybrid model is
proposed in this paper. First, the VMD technique was employed to decompose the original wind
speed series. Then, the relevant parameters of the proposed model were optimized by a BA. Finally,
the hybrid VMD and BA-LSSVM model with excellent learning and generating abilities was developed
to forecast wind speed. EEMD and WD were also employed to compare the application of various
signal processing techniques in wind speed forecasting models. In Case 1, the MAPE, MAE and RMSE
of the proposed model were 1.03%, 0.0427 and 0.0543, respectively. In Case 2, the MAPE, MAE and
RMSE of the proposed model were 1.56%, 0.1015 and 0.1367, respectively. The hybrid VMD and
BA-LSSVM model is much better than the traditional LSSVM, PSO-LSSVM, BA-LSSVM models and
the hybrid EEMD, WD and BA-LSSVM model.

The superiority of the proposed hybrid model over other models may be accounted for by
the following aspects: (a) Signal decomposition technique plays an essential role in wind speed
forecasting. Therefore, VMD was employed to decompose the original wind speed series. Besides,
the decomposition effects of VMD, EEMD and WD were also analyzed in this paper, and we found
that the forecasting performance of wind speed series can be greatly augmented by using an VMD
technique; (b) The parameters of the LSSVM models play an important role in wind speed forecasting.
Therefore, the BA algorithm was employed to optimize the parameters of the LSSVM model, and it was
concluded that BA-LSSVM is better than PSO-LSSVM and LSSVM in learning and generalization ability;
(c) The hybrid model comprehensively captures the characteristics of the original wind speed series,
whilst the single models only reflect the trend of the wind speed series with limited prediction accuracy.

Therefore, the proposed hybrid model clearly performs better than the other single or hybrid
models as shown by the MAE, RMSE and MAPE criteria, and it is suitable for ultra short-term (15 min)
and short-term (1 h) wind speed forecasting.
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