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Abstract: This study introduces and analyses existing models of wind speed frequency distribution in
wind farms, such as the Weibull distribution model, the Rayleigh distribution model, and the
lognormal distribution model. Inspired by the shortcomings of these models, we propose
a distribution model based on an exponential polynomial, which can describe the actual wind
speed frequency distribution. The fitting error of other common distribution models is too large
at zero or low wind speeds. The proposed model can solve this problem. The exponential
polynomial distribution model can fit multimodal distribution wind speed data as well as unimodal
distribution wind speed data. We used the linear-least-squares method to acquire the parameters
for the distribution model. Finally, we carried out contrast simulation experiments to validate the
effectiveness and advantages of the proposed distribution model.

Keywords: wind farms; wind speed frequency distribution; exponential polynomial model;
linear-least-squares method

1. Introduction

Investment in renewable energy sources, including wind power plants, is of particular importance
because of the increased efficiency of clean energy, and the need to reduce pollution and fuel
consumption [1]. As wind generation technologies improve, this form of energy production becomes
a valuable alternative to conventional energy sources [2]. The proportion of energy generated by
wind is increasing due to recent technology and efficiency improvements, as well as government
funding [3]. An important problem in using wind power is their uncertain nature and characteristic of
being unforeseen [4]. To develop and utilise wind energy resources efficiently, the characteristics of
wind energy resources first need to be analysed and studied [5]. The assessment of energy resources
at wind farms is the foundation for development. Discovering the characteristics of wind speed
frequency distribution in wind farms is the key to the research of wind energy resources. The wind
speed frequency distribution refers to the probability density function of wind speed, which describes
the complete statistical properties of wind speeds displaying random behaviour [6].

The different descriptions of wind speed frequency distribution for wind farms directly reflects
the different conditions of wind energy resources at a site. Its rationality and accuracy will have a
direct influence on the final decisions of wind turbine selection, power generation estimation and
economic benefit evaluation of wind farms. There remain critical differences between the actual and
designed power generation of many wind farms with regards to the practical operation of the wind
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farm and its evaluation analysis after operation. One of the main reasons for this discrepancy is that
there is a significant error in the description of wind energy resources for wind farms [7]. It is therefore
of great significance to study wind speed frequency distribution models for better development of
wind farms.

Many scholars have studied and put forward models to fit the observed frequency distribution
of wind speed. Stewart proposed that Weibull distribution is very adaptable to the frequency
distribution of different shapes [8]. Hafzullah Aksoyv [9] and Azami Zaharim [10] thought that
wind speed frequency distribution can be fitted by either normal distribution, Weibull distribution,
or the autoregressive model, and put forward relevant adaptive conditions, but the error is much larger
than the actual distribution. Stanton E. Tuller [11] and others described the wind speed characteristics
of common, mixed and three-parameter Weibull distributions, but there are many problems emerging
in fitting at zero and low wind speed. Ahmad [12] thought that Weibull distribution cannot fit the
case of zero wind speed, so revised it and presented a new model, but it is fundamentally hard to
solve the problem using this means. Pishgar-Komleh [13] and others applied Weibull and Rayleigh
distribution functions to find out the best fitting tool to the wind speed data, but it can be observed
from results that at some wind speeds there are significant errors between the models and the observed
wind speed data. Soulouknga [14] et al. used Weibull distribution to make analysis of wind speed data
and wind energy potential and found that the Weibull shape parameter and scale parameter increase
with altitude. Vladislovas [15] and his collaborators investigated wind power density distribution
at locations with low and high wind speeds using the Weibull model and provided four numerical
methods for evaluating Weibull parameters. Asghar and Liu [16] proposed a hybrid intelligent learning
based adaptive neuro-fuzzy inference system to accurately estimate Weibull wind speed probability
density function.

All the above studies are based on the Weibull distribution model. The following studies have
proposed distributions other than the Weibull distribution model.

Kostas [17] et al. put forward the gamma probability distribution function to replace Weibull
distribution for the area under study, but it still failed to achieve the desired results. Calf [18] et al.
discovered that the wind speed frequency distribution usually covers three kinds of situations and
made use of the Dirichlet function to fit, but this function is quite complex. Loukatou [19] proposed and
tested an Ornstein-Uhlenbeck geometric Brownian motion model over continuous time to represent
the wind speed, avoiding the problems of using the Weibull distribution model. Elfarra and Kaya [20]
designed a novel way to define the probability density for wind speed data using splines and
validated that spline-based probability density functions produce a minimum fitting error for all
the analysed cases.

Therefore, many models for wind speed exist in the literature, but they all lack the accuracy to fit
measured data at zero and low wind speed.

Inspired by the above work, and aiming at the problem of a poor fit between the selected model
and measured data, especially the problem that the probability density is not zero at zero wind
speed and that there is a big gap between the theoretical calculation and measured data at low wind
speed, in this paper we propose an exponential polynomial model to describe and calculate wind
speed frequency distribution. The fitting effect is verified by comparison experiments based on the
measured data. The exponential polynomial can be transformed into a linear equation set with respect
to parameters, therefore, we adopt the linear-least-squares method to achieve the solution for the
exponential polynomial model.

In some cases, because the measured wind speed data has more than one mode in the probability
density, the conventional distributions, including Weibull, fail to fit the wind speed data. This highly
affects the technical and economic assessment of a wind energy project by causing crucial errors.
To address this problem, Elfarra and Kaya [20] made use of splines to define the probability density
for multimodal wind speed data and proved the validity of the method. In fact, the exponential
polynomial model presented in this paper can also fit the frequency distribution of multimodal wind
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speed. Meanwhile, there are differences in three main points from the literature [20]: (1) The piecewise
cubic polynomial is used for constructing a spline in the literature. When optimizing spline coefficients
the values of three functions need to be minimised, including the values of function at each node,
and its first derivative values at the first and last nodes. This makes the optimization problem much
more complex than that described in this paper. We do not need to calculate and minimise the first
derivative value, so it is simpler and easier to deal with. (2) From the literature, obtaining the optimum
splines requires the solution of a constrained optimization problem with five constraints, therefore
computation involving a lot of mathematical operations is necessary. The optimization problem based
on the proposed model has no constraints, so the amount of calculation is small. (3) The parameters in
the literature need to be initialised, while there is no need to set the initial value for the parameters in
the linear-least-squares method in this paper.

The three main contributions of this paper compared to past work are summarised as follows:

(1) The proposed exponential polynomial model is utilised as a novel method for modelling the
frequency distribution of wind speed. Our idea provides an effective strategy for fitting the
model to the observed frequency distribution at zero and low wind speed, better describing the
actual distribution of wind energy resources, and making up for the missing piece in the field.
Moreover, this work offers an analytical basis for the development of wind energy resources and
is helpful for wind farm construction.

(2) Although numerous approaches to solve parameters in the wind speed frequency distribution
model exist in the literature, we adopt the linear-least-squares method because of the special
form of the exponential polynomial model. The optimization algorithm is simple and requires
very little computation. The order of polynomial can be changed flexibly according to demand,
so that the fitting effect can be easily improved.

(3) The exponential polynomial distribution model can describe not only the frequency distribution
of unimodal wind speed, but also the frequency distribution of multimodal wind speed, thus
more accurately assessing wind energy resources for wind farms.

The remainder of this paper is organised as follows. Following the introduction in this section, we
introduce several typical distribution models for wind speed frequency distribution in Section 2.
In Section 3 we propose the exponential polynomial distribution model and offer a technique
based on the linear-least-squares method for solving parameters in the proposed distribution model.
We undertake the description of simulation experiments in Section 4 and show simulation results.
In Section 5, the results are analysed and discussed, demonstrating the advantage of the developed
distribution model. Finally, we conclude the paper in Section 6.

2. Frequency Distribution Models of Wind Speed

Wind speed frequency defines the frequency of wind speed arising in each designated interval and
can describe the conditions of wind energy resources at wind farm sites. It is an important parameter
index in wind energy resources assessment and wind farm design. According to the measured wind
speed, the formula for calculating wind speed frequency [21] is:

f (vi) =
i
n
× 100% (1)

where n is the number of wind speed series in the observation period, i is the number of wind speed
series in the wind speed interval, and vi is the ith wind speed section.

Wind farms are generally built in places with relatively rich wind resources such as plains,
coastal areas, and inland mountains. With different climates and geographical conditions at wind farm
sites, wind speed and wind speed frequency distribution parameters are random. Wind speeds vary
over time, creating a speed–time correlation. Therefore, the frequency distribution of wind speed can
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be statistically analysed and processed according to the measured wind speed based on increments
of time.

Because of the variety of wind speed characteristics and different forms of wind speed distribution,
multiple frequency distribution models of wind speed can be used to fit the distribution of wind
energy resources. There are many models to describe the characteristics of wind speed frequency
distribution which can be used to predict the wind speed frequency distribution over each month.
At present, the commonly used models are the Weibull distribution model, the Rayleigh distribution
model, and the log-normal distribution model.

2.1. The Weibull Distribution Model

The Weibull distribution model is the most classical model used to fit wind speed frequency
distribution [5,8–16]. The model has a strong adaptability to different frequency distribution and can
well describe wind speed distribution, especially when estimating wind speed frequency distribution.
It mainly includes the two-parameters Weibull distribution model and the three-parameters Weibull
distribution model.

The three-parameters Weibull model can generally describe the distribution of wind energy
resources. Its probability density function is as follows:

fw(v) =
k
c
(

v− γ

c
)

k−1
exp[−(v− γ

c
)

k
] (2)

where k is the shape parameter, 1 < k < 3, c is the scale parameter, and γ is the location parameter.
When γ = 0 is applied, model (2) can be simplified as a two-parameters Weibull distribution

model. Because of its simple form and convenient calculation, it is widely used in engineering.
Its probability density function is:

fw(v) =
k
c
(

v
c
)

k−1
exp[−(v

c
)

k
] (3)

The shape parameter k determines the shape of the distribution curve. When 0 < k < 1, f (v)
is a subtractive function about the wind speed; when k = 1, the distribution is of exponential type;
when k = 2, it is called Rayleigh distribution; and when k = 3.5, Weibull distribution is very close to
normal distribution. The larger the shape parameter k, the smaller the wind speed fluctuation. For very
violent winds, such as polar winds, the shape parameter values are generally very small. When c = 1,
it is called the standard Weibull distribution. The scale parameter c represents the time characteristics
of the wind speed and a specific correlation between wind speed distribution and average wind speed.

2.2. The Rayleigh Distribution Model

When k = 2 in the Weibull distribution model, it yields the Rayleigh distribution model, and its
distribution function of wind speed frequency is:

fR(v) =
π

2
v

v2
m

exp[−π

4
(

v
vm

)
2
] (4)

where vm is the mean wind speed over a certain period of time, with the calculation formula:

vm =
∫ ∞

0
v f (v)dv (5)

Combining with formula (3), we get:

vm = cΓ(1 +
1
k
) (6)
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Hence, using the Rayleigh distribution model, if vm is known, the wind speed frequency
distribution can be obtained.

2.3. The Log-Normal Distribution Model

In the initial stage of studying wind speed frequency distribution, the log-normal distribution
model is usually used to fit wind speed frequency, and the function is:

fN(v) =
1

vσ
√

2π
exp[
−(ln v− µ)2

2σ2 ] (7)

where σ is the shape parameter, and µ is the scale parameter. The calculation formulas of σ and µ are
respectively:

µ =
1
n

n

∑
i=1

ln vi (8)

σ2 =
1

n− 1

n

∑
i=1

(ln vi − µ)2 (9)

3. The Exponential Polynomial Distribution Model

Some researchers have investigated Weibull distribution more thoroughly. The fit of results for
the Weibull distribution are very good for the middle and high wind speed sections. However, there is
a big gap between the theoretical calculation and measured data for the low wind speed section,
especially in the zero-wind speed section. For example, the probability density of calculating zero
wind speed is zero using Weibull’s two-parameters model, but the measured results in many areas are
not zero (the probability of actual zero wind speed in Erguna Banner of Inner Mongolia is 24%) [22].
Rayleigh distribution is a simplified model of Weibull distribution, so it also has the same deficiency.

To overcome the shortcomings of the above models, in this paper we try to propose an exponential
polynomial model to describe the frequency distribution of wind speed. The mathematical description
is as follows:

p(v) = C exp(
n

∑
i=1

aivi) (10)

where C is the normalised constant, and n is the highest order of exponential polynomial. When i = 2,
it is a second order exponential polynomial model; when i = 3, it is a third order exponential
polynomial model, and so on. The constant ai is determined through a parameter estimation method
according to the measured wind speed distribution probability.

It is noticeable that model (10) does not equal zero when v = 0; this solves the problem that the
probability density is not zero for zero wind speed. Model (10) can therefore be used to represent the
frequency distribution of wind speed.

3.1. The Solution Algorithm Based on the Linear-Least-Squares Method

The wind speed frequency probability distribution parameters are important index parameters
to characterise the statistical characteristics of wind energy resources and are also important and
necessarily known parameters for wind farm planning [15,22–25].

In order to obtain the optimal parameters of the wind frequency distribution model,
the performance index function is designed as:

J =
b

∑
i=a

[pm(vi)− p(vi)]
2 (11)
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In formula (11), a and b are respectively the minimum and maximum of the average wind speed
over a different period of time, pm(vi) is the probability calculated by the wind speed frequency
distribution model and p(vi) is the measured wind speed probability when the wind speed is vi m/s.

According to Equation (10), the following polynomial is obtained:

n

∑
i=1

aivi= ln
p(v)

C
(12)

When v in Equation (12) is fixed by using sample points, Equation (12) becomes a linear equation
with respect to ai, so it can be solved through the linear-least-squares method. If we collect N + 1
points vi+1 from measured data, then the above formula will generate the following equation set:

n
∑

i=1
aiv0

i= ln p(v0)
C

n
∑

i=1
aiv1

i= ln p(v1)
C

...
n
∑

i=1
aivN

i= ln p(vN)
C

(13)

Thus we can acquire the solutions of ai using the linear-least-squares method. The linear-least-squares
method is simple and has an obvious computational advantage. When optimizing parameters, there is
also no need to set the initial value for the parameters in the linear-least-squares method [26].

Here it needs to be noticed that when solving the equation set (13) for the parameters with
the linear-least-squares method, the number of data points selected must be more than that of the
parameters, that is, N > n. Otherwise, there is no solution.

3.2. The Algorithm Flow for Parameters

The algorithm flow for parameters solving ai is as follows:
Step 1: Take n = 1 as the initial value of the order n and suppose that there exists a small positive

number ε.
Step 2: Take data points {vi, p(vi)} from the measured wind speed and the responding

distribution probability.
Step 3: By solving the equation set (13) using the least-squares method ai is acquired.

Step 4: Substitute ai into p(v) = C exp(
n
∑

i=1
aivi), and calculate the performance index J; if J > ε,

renew the value of n according to n = n + 1, and then return to Step 3. Otherwise, end the loop and
the current n value is the order of the exponential polynomial that we need.

Step 5: Record ai and calculate the distribution model of wind speed frequency from (10).

4. Simulations

To validate the proposed distribution model, we conducted simulation experiments based on
measured data with two different distributions: unimodal distribution and multimodal distribution.

By utilizing the linear-least-squares method, we sought an optimal solution to the problem,
such as the optimal value of ai, minimizing the performance index J, or optimizing the frequency
distribution model of wind speed to approximate the actual frequency distribution.

(1) Unimodal wind speed distribution

The data were collected from a wind tower at the height of 80 m in a mountainous area at an
altitude above 1000 m, in the central part of China, from January to December 2013. The anemometer
recorded a set of data every 10 min, and there were 52,560 groups of data after correction. Following
calculation the annual average wind speed was found to be 5.05 m/s. Here the frequency distribution
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of wind speed was calculated from the measured data from July. Then the Weibull distribution
model, Rayleigh distribution model, log-normal distribution model and the exponential polynomial
distribution model proposed in this paper were used to fit the measured data.

Through simulations, the comparison between wind speed frequency distribution for each model
and the measured distribution is shown in Figure 1.
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Figure 1. Comparison of frequency distribution of wind speed for each model in July.

The measured distribution probability and the calculation distribution probabilities of each model
are shown in Table 1. The measured distribution density of wind speed is f (vi)/%, fW(vi)/% is
the calculation density of the Weibull distribution model, fR(vi)/% is the calculation density of the
Rayleigh distribution model, fR(vi)/% is the calculation density of the log-normal distribution model,
and fE(vi)/% is the calculation density of the exponential polynomial distribution model.

Table 1. Comparisons of wind speed frequency between measured data and model calculations in July.

Number
i

Wind Speed
Section
vi (m/s)

Mean
Wind Speed

vm (m/s)
f(vi)/% fW(vi)/% fR(vi)/% fN(vi)/% fE(vi)/%

1 0–1 0.5 3.11 1.68 1.86 0.20 3.11
2 1–2 1.5 4.14 5.13 5.36 6.14 4.14
3 2–3 2.5 5.33 8.16 8.30 12.02 5.32
4 3–4 3.5 10.66 10.40 10.39 13.61 10.69
5 4–5 4.5 11.98 11.66 11.50 12.68 11.97
6 5–6 5.5 12.46 11.92 11.67 10.83 12.38
7 6–7 6.5 11.85 11.30 11.03 8.86 12.03
8 7–8 7.5 9.79 10.04 9.80 7.11 9.65
9 8–9 8.5 7.66 8.4 8.24 5.65 7.72
10 9–11 9.5 7.28 6.66 6.58 4.47 7.17
11 10–11 10.5 5.96 5.00 5.01 3.54 6.23
12 11–12 11.5 4.21 3.57 3.64 2.80 3.91
13 12–13 12.5 1.90 2.43 2.53 2.23 2.05
14 13–14 13.5 1.41 1.57 1.68 1.78 1.34
15 14–15 14.5 1.05 0.97 1.07 1.43 1.076
16 15–16 15.5 0.67 0.57 0.66 1.15 0.67
17 16–17 16.5 0.31 0.32 0.38 0.93 0.31
18 17–18 17.5 0.20 0.17 0.22 0.76 0.20
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The fitting error of each model for different wind speed section is calculated using the formula:

e(vi) = |pm(vi)− p(vi)| (14)

The calculated results are given in Table 2.

Table 2. Comparisons of the fitting error among four models in July.

Number
i

Wind Speed
Section
vi (m/s)

eW(vi)/% eR(vi)/% eN(vi)/% eE(vi)/%

1 0–1 1.43 1.25 2.91 0
2 1–2 0.99 1.22 2.00 0
3 2–3 2.83 2.97 6.69 0.01
4 3–4 0.26 0.27 2.95 0.03
5 4–5 0.32 0.95 0.70 0.01
6 5–6 0.54 0.96 1.63 0.08
7 6–7 0.55 0.18 2.99 0.18
8 7–8 0.25 0.01 2.68 0.14
9 8–9 0.74 0.58 2.01 0.06

10 9–11 0.62 0.70 2.81 0.11
11 10–11 0.96 0.95 2.42 0.27
12 11–12 0.64 0.57 1.41 0.30
13 12–13 0.53 0.63 0.33 0.15
14 13–14 0.16 0.27 0.37 0.07
15 14–15 0.08 0.02 0.38 0.03
16 15–16 0.10 0.01 0.48 0
17 16–17 0.01 0.07 0.62 0
18 17–18 0.03 0.02 0.56 0

Figure 2 provides the results of various n values: n = 5, n= 9, n = 13. We know that as the order
of the exponential polynomial increases, the error between pm(vi) and p(vi) becomes smaller and
smaller, and the fitting result also becomes more accurate.
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When n = 13, the exponential polynomial distribution model fits the measured data very well,
the normalised constant is C = 0.0102, and the parameters in Equation (10) are respectively:

a0 = −6.5762
a1 = 49.5920
a2 = −71.3296
a3 = 52.8481
a4 = −23.3786
a5 = 6.7090
a6 = −1.3094
a7 = 0.1783
a8 = −0.01711
a9 = 0.0001151
a10 = −5.312× 10−5

a11 = 1.601× 10−6

a12 = −2.837× 10−8

a13 = 2.24× 10−10

(15)

From (10), we obtain the exponential polynomials frequency distribution model of wind speed:

p(v) = 0.0102 exp(−6.5762 + 49.5920v− 71.3296v2+52.8481v3 − 23.3786v4

+6.7090v5 − 1.3094v6 + 0.1783v7 − 0.01711v8 + 0.0001151v9

−5.312× 10−5v10 + 1.601× 10−6v11 − 2.837× 10−8v12 + 2.24× 10−10v13)

(16)

The measured data for each month is fitted with the Weibull distribution model, the Rayleigh
distribution model, the log-normal distribution model and the exponential polynomial distribution
model. Fitting error accuracy for each month over the whole year is calculated according to formula
(11), namely the value of J, as shown in Table 3.

Table 3. Fitting error accuracy comparison of various models.

Month
Mean

Wind Speed
vm (m/s)

JW JR JN JE

1 4.64 0.0015 0.0021 0.0103 3.2164 × 10−5

2 5.43 0.0020 0.0027 0.0178 5.8530 × 10−5

3 5.58 0.0011 0.0014 0.0096 1.6742 × 10−5

4 5.34 0.0018 0.0021 0.0119 4.7190 × 10−5

5 4.07 0.0013 0.0021 0.0098 2.0962 × 10−5

6 4.42 0.0015 0.0017 0.0106 2.6678 × 10−5

7 6.49 0.0014 0.0016 0.0106 2.6640 × 10−5

8 5.64 0.0011 0.0025 0.0102 1.4310 × 10−5

9 5.35 0.0019 0.0017 0.02430 2.9308 × 10−5

10 4.44 0.0025 0.0013 0.0212 3.6812 × 10−5

11 4.11 0.0013 0.0100 0.0055 1.8920 × 10−5

12 4.80 0.0013 0.0030 0.0088 2.0639 × 10−5

In Table 3, JW, JR, JN and JE, respectively, represent the fitting error accuracy of the Weibull
distribution model, the Rayleigh distribution model, the log-normal distribution model and the
exponential polynomial distribution model.

(2) Multimodal wind speed distribution
To further verify the effectiveness of the exponential polynomial model, we compared it to

a study [20] where splines were used as wind speed frequency distribution functions, mainly for
multi-modal wind speed distribution. From the simulation results, the model proposed in the literature



Sustainability 2019, 11, 665 10 of 13

can adequately fit the measured data, whether for unimodal or multimodal wind speed distribution.
But the disadvantage of this model is that it is limited by many constraints and needs to be initialised
when calculating the parameters of the model. Here, we carried out fitting experiments based on
the measured data of multimodal wind speed distribution using the exponential polynomial model.
The simulation results are shown in Figure 3.
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Figure 3. Comparison results when n = 5, n= 10, n = 15 for multimodal.

When n = 15, the normalised constant is C = 0.0127, and the parameters in Equation (10) are
listed as follows: 

a0 = 21.91
a1 = −76.5
a2 = 129.6
a3 = −115.2
a4 = 63.18
a5 = −23.17
a6 = 5.963
a7 = −1.108
a8 = 0.1513
a9 = −0.01527
a10 = 0.001137
a11 = −6.157× 10−5

a12 = 2.359× 10−6

a13 = −6.058× 10−8

a14 = 9.351× 10−10

a15 = −6.558× 10−12

(17)
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Substituting ai into p(v) = C exp(
n
∑

i=1
aivi), the exponential polynomial frequency distribution

model of wind speed can be obtained:

p(v) = 0.0102 exp(21.91− 76.5v + 129.6v2 − 115.2v3 + 63.186v4

−23.17v5 + 5.963v6 − 1.1083v7 + 0.1513v8 − 0.01527v9

+0.001137v10 − 6.157× 10−5v11 + 2.359× 10−6v12 − 6.558× 10−8v13

+9.351× 10−10v14 − 6.558× 10−12v15)

(18)

5. Results Analysis

From Figure 1 in the simulation results, the fitting effect of the log-normal distribution model is
the worst of the four distribution models. The Weibull distribution and Rayleigh distribution models
are better than the log-normal distribution model. The fitting of the two models is somewhat close,
especially at low and high wind speed, indicating that Rayleigh distribution is a special case of Weibull
distribution. The exponential polynomial distribution model is prominently the best in fitting effect,
and its absolute advantage lies in the excellent fitting at low wind speed, while the other three models
all have a big gap between measured distribution and the distribution model. In addition, the fitting
result of the exponential polynomial distribution model is also better than the other models at a high
wind speed in Figure 1.

From Tables 1 and 2, it is apparent that the calculated probability of the exponential polynomial
distribution model is closest to the measured probability overall, and the responding error is also
smallest among the four distribution models. Encouragingly, for the low wind speed section of 0–1 m/s
and 1–2 m/s in Table 2, the error between the calculated wind speed probability of the exponential
polynomial model and the measured wind speed probability is 0, which fully illustrates the outstanding
advantage of the proposed model. Contrarily, the calculated probability for the log-normal distribution
model is farthest from the measured probability, and the error is largest. With regards to the Weibull
and Rayleigh distribution models, the calculated probability of the former is relatively closer to the
measured probability than that of the latter, and this is also demonstrated by the error in Table 2,
which is the reason that Weibull distribution is often considered to be a better model for describing
wind speed frequency distribution in much of the literature, except for the problems with zero and
low wind speed. A more important aspect to consider for wind farm design is that the error is low
when the potential power production is high, which is reflected by the 0 error for the high wind speed
section of 15–16 m/s, 16–17 m/s and 17–18 m/s in Table 2.

Table 3 provides the fitting error accuracy of the four models for annual wind speed. The error
accuracy of the distribution model proposed in this paper is far less than that of the other three models,
with the error accuracy reaching 10−5. This indicates that the fitting effect is the best. The fitting error
accuracy of the Weibull distribution model is the second best, and that of the log-normal distribution
model is the worst. So, among the four models the exponential polynomial distribution model is the
most suitable model for wind speed frequency distribution. At the same time, we noticed that in
September and October the fitting of the Weibull distribution model to the measured data was worse
than that of the Rayleigh distribution model, which is probably due to the variable wind direction and
instability of mountain winds during these two months.

Figure 3 shows that the exponential polynomial distribution model can also fit the measured
wind speed data with multimodal distribution. In order to achieve even better fitting results the order
of the exponential polynomial model can be set much higher. This is an advantage that other models
cannot surpass, especially for the case of multimodal wind speed distribution.

6. Conclusions

In this paper we put forward an exponential polynomial distribution model to describe and
calculate the frequency distribution of wind speed. The proposed distribution model not only solves
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the problem that the probability density is not zero at zero wind speed, but also improves the problem
of a big gap between model calculation and measured data at low wind speed. This can reproduce
the non-vanishing probability of 0 or almost 0 wind speed much better, which is useful in wind farm
design, because one can estimate the hours of wind below the wind turbine cut-in. At the same time,
the distribution model has smaller errors at high wind speed, which is much more significant for the
higher potential power production.

Moreover, the exponential polynomial distribution model can fit multimodal distribution wind
speed data as well as unimodal distribution wind speed data. With an increase to the order of the
exponential polynomial, the fitting effect is correspondingly improved. Although the number of
parameters required is large for the best fitting effect, it is very convenient to calculate by adopting the
linear-least-squares method.

To further improve the practicability of the model, future work includes tests on different data
sets, such as different time periods for the same location or investigating different locations.
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