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Abstract: In this paper, we investigate inventory and order strategies of a two-echelon supply chain,
which is composed of two unreliable suppliers that are subject to random disruption. We develop the
gross weighted profit benchmark model and the service level constrained model of the supply chain,
respectively. We derive the retailer’s optimal order quantity and analyze the retailer’ optimal order
policy and also obtain the analytical closed-form solutions. In addition, some numerical examples are
provided to illustrate the effect of disruption time, disruption probability and fill rate on the optimal
decisions and expected profit.
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1. Introduction

In today’s globalized economic environment, supply chains are more vulnerable to unforeseen
disruptions. Supply uncertainty, that exists in many industries, including semiconductors, electronic
fabrication and assembly, food processing, bio-pharmaceutical, and resource based industries such as
mining and agriculture (Xu and Lu [1]). These disruptions may be caused by natural disasters, labor
strikes, transportation disruptions, storms, etc. Supply disruption will result in the loss of corporate
interests and reputation, and decrease reliability of the downstream supply chain, and hence damage
the sustainability of the supply chain. For example, Ericsson lost 400 million Euros after his main
supplier’s semiconductor plant caught fire in 2000, and Apple missed many customer orders during a
supply shortage of Dynamic Random Access Memory(DRAM) chips after an earthquake hit Taiwan
in 1999 (Li and Chen [2]). An unforeseen labor strike occurred in 2002, 29 ports on the West coast
of the United States were shut down urgently, which led to the closure of the New United Motor
Manufacturing production factory (Baghalian et al. [3]). Automotive plants worldwide suspended
production because of a destructive earthquake and subsequent tsunami in early 2011 in Japan, and
Japan-based Toyota was hit particularly hard, with factories on several continents standing still and
domestic production plummeting by half. The massive flooding in Thailand in 2011 halted the
production of a vast majority of the world’s hard disk manufacturers (Giri and Bardhan [4]). These
examples suggest that supply disruptions pose great challenges to the procurement managers and
exert some serious effects on supply chain management, therefore, supply disruption is becoming a
major concern in the supply chain management.

In recent years, supply chain management has played an increasingly important role in supply
chain design, and have been paid quite a lot of attention from both academics and practitioners.
Scholars have obtained a series of impressive and practical results in the study of supply chain
management. Interested readers may refer to Tang [5], Tang and Musa [6], Xanthopoulos et al. [7],
Fahimnia et al. [8], Yan et al. [9], Ro et al. [10], Kirilmaz and Erol [11], Reimann et al. [12], and
Akkermans and Wassenhove [13]. Our paper is mainly motivated by the work of Xanthopoulos et al. [7],
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who proposed generic single period inventory models for capturing the trade-off between inventory
policies and disruption risks in a dual-sourcing supply chain network under both unconstrained and
service level constraints, and the two suppliers have different procurement prices and disruption
probabilities. In their model, they regard the actual delivered quantity as a constant percentage of the
order quantity, while we view it as a random variable that depends on disruption time and model
a dual-sourcing supply chain system containing two suppliers suffering from the risk of random
supply disruption.

This paper contributes to the literature containing two parts. First, we build a two-echelon supply
chain model, consisting of two unreliable suppliers and one retailer, and the two suppliers are exposed
to random supply disruption, then we get the retailer’s optimal order quantity and order policy, and
obtain the analytical closed-form solutions. Second, we investigate the effects of disruption time,
disruption probability and fill rate on optimal decisions and expected profit of the supply chain by
using numerical analysis.

The remainder of this paper is organized as follows: Section 2 reviews the related literatures.
Section 3 describes the model and introduces some notations and assumptions used in this study.
The model is presented in Section 4. Section 5 presents some numerical examples to illustrate the
model. Finally, in Section 6, we draw conclusions from our analysis and give some suggestion for the
future research directions. All technical proofs are deferred to the appendix for smoothness.

2. Literature Review

Supply uncertainty is usually characterized by three approaches (He et al. [14]). The first approach
is the random yield model in which the delivered quantity by the supplier is a random fraction of
the quantity ordered by the retailer. The second approach models the supply uncertainty as the
“all-or-nothing”. In this scenario, the supplier can deliver either the entire amount ordered or nothing.
The third approach models the supply uncertainty with a stochastic lead-time or a stochastic capacity.
This study addresses the problem of identifying the optimal order quantity and expected profit for
a dual-sourcing with random yield (random supply disruption). Therefore, our paper relates to the
literature on (random) supply disruption, dual-sourcing, and on how to manage the uncertainty and
the risks in the supply chains.

The first stream reviews the literature on (random)supply disruption. Weiss and Rosenthal [15]
developed a structure about an optimal policy for EOQ inventory system and presented a procedure
model when considering disruption in supply or demand. Anupindi and Akella [16] derived
the optimal ordering policy for the supply process between a buyer and two unreliable suppliers.
Tomlin [17] examined the optimal strategy for a single product system with two suppliers: one is
unreliable, cheap and another is reliable but expensive. Schmitt et al. [18] and Chen et al. [19] extended
the work of Tomlin [17] to study the system with stochastic demand. Schmitt et al. [18] studied the
common impacts of discrete event uncertainty (disruptions) and continuous sources of uncertainty
(stochastic demand or supply yield) on optimal inventory settings. Chen et al. [19] considered a
periodic-review inventory system with two suppliers and determined optimal solutions to particular
model. Serel [20] explored an extension of the single-period (newsboy) inventory problem when supply
was uncertain. Qi et al. [21] investigated a continuous-review inventory problem for a retailer who
faces random disruptions both internally and externally (from its supplier). He et al. [14] investigated
two competing manufacturers using these procurement strategies in the presence of supply disruption
risks and analyzed the joint pricing and ordering decisions of both manufacturers by using the game
theoretic framework. Xu and Lu [1] studied the joint inventory and pricing decisions before the selling
season of firm by considering a price-setting newsvendor model with random yield, and investigated
the effect of yield randomness on optimal decisions and expected profit. Li and Li [22] studied a
dual-sourcing problem when facing supply disruption risk and consider the loss-averse behavior of
the firm.
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The second stream of the literature consists of papers that study the dual-sourcing supply
chain. Tomlin and Wang [23] developed a single period dual-sourcing model with yield uncertainty.
Yu et al. [24] evaluated the impacts of supply disruption risks on the choice between the famous single
and dual sourcing methods in a two-stage supply chain with an on-stationary and price-sensitive
demand. Iakovou et al. [25] proposed a single period stochastic inventory decision-making model,
that could be employed for capturing the trade-off between inventory policies and disruption risks
for an unreliable dual sourcing supply network for both the capacitated and uncapacitated cases,
and they obtained some important managerial insights and evaluated the merit of contingency
strategies in managing uncertain supply chains. Zhu and Fu [26] explored the trade-off between
ordering policies and disruption risks in a dual-sourcing network under specific (or not) service level
constraints, assuming that both supply channels were susceptible to disruption risks. Zhu [27] studied
a dual-sourcing problem of a firm in the face of supply disruptions from two suppliers: local and
overseas, and characterized the optimal dynamic policy that simultaneously determines sourcing
decisions to minimize the expected total discounted cost under four different scenarios of disruption
source and information availability. Xiao et al. [28] studied a manufacturer marketing a product
through a dual-channel supply chain, comprised of an online channel and a brick-mortar retail channel.
Chao et al. [29] invested the joint pricing and inventory replenishment problem for a periodic-review
inventory system with random demand and dual suppliers and characterized the firm’s optimal
policies. Li [30] explored the optimal procurement problem for a firm sourcing from two unreliable
suppliers with different types of supply risks. One supplier confirms with an “all-or-nothing” type of
disruption with a certain probability, the other supplier subjects to a random yield of the firm’s order.

The next stream of literature relates to manage the supply chain and mitigate supply chain
risks. Huang et al. [31] examined the strategic use of dual-sourcing and backup supply options in a
two-stage dynamic programming model for one period to mitigate supply risk. Li et al. [32] combined
a penalty term in writing contracts with the provision of financial assistance was carrot and stick used
by a manufacturer to deal with supply disruption. Ray and Jenamani [33] studied a two-echelons
supply chain with a risk-averse buyer and multiple unreliable suppliers under newsvendor setting
by designing a mean-variance objective function to maximize the buyer’s expected profit while
minimizing its variance. Aldaihani and Darwish [34] considered a newsvendor model which allowed
the vendor to place an initial order that satisfied a predetermined fill rate. Fera et al. [35] analysed
and categorized the themes related to the production issues of additive manufacturing technology
to reduce the risks in supply chains. Hajmohammad and Vachon [36] developed a framework for
managing supplier sustainability risk by taking a conceptual theory building approach, integrated
supply chain disruptions and sustainability, and presented four distinct risk management strategies.
Martino et al. [37] identified risk factors in supply chains by adopting the Analytic Network Process
approach(ANP). Fera et al. [38] defined a system dynamics model to assess competitiveness coming
from the positioning of the order in different supply chain locations. Lutz et al. [39] examined
buyer-supplier relationship resilience associated with a psychological contract breach by the buying
organization. Ta et al. [40] examined the critical role of trustworthiness in the financial supply chain
relationships in the event of a contract breach. Fera et al. [41] presented a novel approach to classify
and analyze the production of specific products to mitigate supply chain risks by using additive
manufacturing or subtractive manufacturing.

Most existing studies assumed that the actual delivered quantity is deterministic (a constant
percentage of the order quantity) or one of the two suppliers is subject to random disruption. However,
in the actual operation of the supply chain, only when the supply chain is interrupted can we know the
exact constant, and at the beginning of the decision cycle, we can’t know the interruption information,
therefore, it is hard to determine the constant. In fact, the constant is also a random variable, we can’t
even determine its distribution. In the management of supply chain disruption, almost all decisions
are made in a random environment. Different from the previous literatures, we introduce a random
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variable to model the delivered quantity of two suppliers under random demand, and further analyze
the order policies of retailer and obtain the optimal quantity.

3. Model Descriptions, Notations, and Assumptions

To analyze the impact of disruption time on optimal decisions and expected profit, we consider a
dual-sourcing supply chain system consisting of two suppliers and one retailer under a single selling
period. The two unreliable suppliers have different disruption probability pi(i = 1, 2), offering the
same product to a common retailer who faces random customer demand, and the retailer sells the
product to customer with the selling price s. Assume that the length of the selling period is L, and
disruption time T is a positive random variable. If there is no disruption, each supplier’s delivery
quantity during the selling period is Qi(i = 1, 2). When a disruption occurs at t ∈ (0, L), the actual
quantity received by retailer is tQi/L(i = 1, 2), which will be available to satisfy the market demand,
and the actual delivered quantity is also a random variable. Denote cumulative distribution function
and probability density function of T by G(t) and g(t), respectively, and the customer demand, X, is
uncertain, and the cumulative distribution function and probability density function are F(x) and
f (x), respectively. In addition, in our model, goods return, emergency replenishment orders and
second purchasing are not allowed. Unit cost of suppliers, unit salvage cost and unit shortage cost
are ci(i = 1, 2), r and k, respectively, and we assume that s > ci > r and k > 0. The above model is
illustrated in Figure 1.

Supplier 1

Supplier 2

Reatiler Market Demand
HH

H
HHY
H
HHHHj

��
����

��
��
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Q1
t1
L Q1

t2
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Figure 1. The dual-sourcing supply chain system.

Relevant notations and symbols used in our model are explained in Table 1.

Table 1. List of notations and symbols.

Decision Variables

Qi order quantity of supplier i (i = 1, 2)

Parameters

X market demand
s unit selling price
r unit salvage price
k unit shortage cost
L selling period
f (x) density function of X
F(x) cumulative function of X
ci unit cost of supplier i (i = 1, 2)
Ti disruption time of supplier i (i = 1, 2)
pi disruption probability of supplier i (0 ≤ pi ≤ 1)
gi(ti) density function of disruption time Ti (i = 1, 2)
Gi(ti) cumulative function of disruption time Ti (i = 1, 2)
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4. Model

4.1. Benchmark Model

In this section, we consider the benchmark model in the presence of the random supply disruption.
We first obtain the gross expected profit function, then analyze the retailer’s optimal order decision.

When none of the two suppliers faces a disruption, the expected profit Π0(Q1, Q2) is given by

Π0(Q1, Q2) =
∫ Q1+Q2

0
[sx− c1Q1 − c2Q2 + r(Q1 + Q2 − x)] f (x)dx

+
∫ ∞

Q1+Q2

[s(Q1 + Q2)− c1Q1 − c2Q2 − k(x−Q1 −Q2)] f (x)dx.

When only Supplier 1 faces a disruption at time T1, the expected profit Π1(Q1, Q2) is

Π1(Q1, Q2) =
∫ L

0

∫ t1Q1
L +Q2

0

[
sx− c1t1Q1

L
− c2Q2 + r(

t1Q1

L
+ Q2 − x)

]
f (x)g1(t1)dxdt1

+
∫ L

0

∫ ∞

t1Q1
L +Q2

[
s(

t1Q1

L
+ Q2)−

c1t1Q1

L
− c2Q2 − k(x− t1Q1

L
−Q2)

]
· f (x)g1(t1)dxdt1.

Similarly, when only Supplier 2 faces a disruption at time T2, the expected profit Π2(Q1, Q2) can
be expressed as

Π2(Q1, Q2) =
∫ L

0

∫ Q1+
t2Q2

L

0

[
sx− c1Q1 −

c2t2Q2

L
+ r(Q1 +

t2Q2

L
− x)

]
f (x)g2(t2)dxdt2

+
∫ L

0

∫ ∞

Q1+
t2Q2

L

[
s(Q1 +

t2Q2

L
)− c1Q1 −

c2t2Q2

L
− k(x−Q1 −

t2Q2

L
)

]
· f (x)g2(t2)dxdt2.

And when Supplier 1 and Supplier 2 face disruption occurs at time T1 and T2, respectively,
the expected profit Π3(Q1, Q2) is given by the following expression

Π3(Q1, Q2) =
∫ L

0

∫ L

0

∫ t1Q1+t2Q2
L

0

[
sx− c1t1Q1 + c2t2Q2

L
+ r(

t1Q1 + t2Q2

L
− x)

]
· f (x)g1(t1)g2(t2)dxdt1dt2

+
∫ L

0

∫ L

0

∫ ∞

t1Q1+t2Q2
L

[
s(t1Q1 + t2Q2)

L
− c1t1Q1 + c2t2Q2

L
− k(x− t1Q1 + t2Q2

L
)

]
· f (x)g1(t1)g2(t2)dxdt1dt2.

Therefore the total weight expected profit Π(Q1, Q2) of the supply chain is

Π(Q1, Q2) = (1− p2)[(1− p1)Π0(Q1, Q2) + p1Π1(Q1, Q2)]

+p2[(1− p1)Π2(Q1, Q2) + p1Π3(Q1, Q2)].

Denote the optimal order quantity by Q∗1 , Q∗2 , we have the following Proposition 1.
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Proposition 1. The expected profit Π(Q1, Q2) is jointly concave in Q1 and Q2. There exists the optimal order
quantities Q∗1 , Q∗2 and maximum value Π(Q1, Q2), which can be derived by the following equations

(1− p1)(1− p2)F(Q1 + Q2) +
p1(1− p2)

L

∫ L

0
t1F(

t1Q1

L
+ Q2)g1(t1)dt1

+(1− p1)p2

∫ L

0
F(Q1 +

t2Q2

L
)g2(t2)dt2 +

p1 p2

L

∫ L

0

∫ L

0
t1F(

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2

=
s + k− c1

s + k− r

(
1− p1 +

p1µ1

L

)
,

(1− p1)(1− p2)F(Q1 + Q2) + p1(1− p2)
∫ L

0
F(

t1Q1

L
+ Q2)g1(t1)dt1

+
(1− p1)p2

L

∫ L

0
t2F(Q1 +

t2Q2

L
)g2(t2)dt2 +

p1 p2

L

∫ L

0

∫ L

0
t2F(

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2

=
s− c2 + k
s− r + k

(
1− p2 +

p2µ2

L

)
,

where, µ1=E[T1], µ2=E[T2].

The proof of Proposition 1 is given in the Appendix A.

4.2. Service Level Constraint Model

In benchmark model, we do not consider the impact of service level constraints on the whole
supply chain, while in practice, to mitigate the supply risks, Type II (fill rate) service level is among the
key factors considered by a buyer when choosing a supplier. Fill rate β refers to the fraction of the
stochastic demand that is satisfied from the delivered quantity of products. In our optimization model,
we analyze the problem of maximizing the total expected profit of the supply chain system which is
subject to the fill rate constrain. The results can help us to understand the influences of the fill rate on
the retailer’s performances.

The optimal problem with fill rate constraint can be summarized as follows

(Lβ) : max Π(Q1, Q2)

subject to: β > β0

β = 1− Expected number of stockout units
Mean demand

= 1− E(n(Q1, Q2))

µ

where

E(n(Q1, Q2)) = (1− p1)(1− p2)
∫ ∞

Q1+Q2

(x−Q1 −Q2) f (x)dx

+p1(1− p2)
∫ L

0

∫ ∞

t1Q1
L +Q2

(
x− t1Q1

L
−Q2

)
f (x)g1(t1)dxdt1

+(1− p1)p2

∫ L

0

∫ ∞

Q1+
t2Q2

L

(
x−Q1 −

t2Q2

L

)
f (x)g2(t2)dxdt2

+p1 p2

∫ L

0

∫ L

0

∫ ∞

t1Q1+t2Q2
L

(
x− t1Q1 + t2Q2

L

)
f (x)g1(t1)g2(t2)dxdt1dt2.

Proposition 2 illustrates the optimization of (Lβ).



Sustainability 2019, 11, 698 7 of 14

Proposition 2. (Lβ) is a convex programming for Q1 and Q2. The global optimal solutions of Q∗1 ,Q∗2 and γ∗β
are given by calculating the following formula

(1− p1)(1− p2)F(Q1 + Q2) +
p1(1− p2)

L

∫ L

0
t1F(

t1Q1

L
+ Q2)g1(t1)dt1

+(1− p1)p2

∫ L

0
F(Q1 +

t2Q2

L
)g2(t2)dt2 +

p1 p2

L

∫ L

0

∫ L

0
t1F(

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2

=
s + k− c1 +

γβ

µ

s + k− r +
γβ

µ

(
1− p1 +

p1µ1

L

)
, (1)

(1− p1)(1− p2)F(Q1 + Q2) + p1(1− p2)
∫ L

0
F(

t1Q1

L
+ Q2)g1(t1)dt1

+
(1− p1)p2

L

∫ L

0
t2F(Q1 +

t2Q2

L
)g2(t2)dt2 +

p1 p2

L

∫ L

0

∫ L

0
t2F(

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2

=
s− c2 + k +

γβ

µ

s− r + k +
γβ

µ

(
1− p2 +

p2µ2

L

)
, (2)

1− 1
µ

[
(1− p1)(1− p2)

∫ ∞

Q1+Q2

(x−Q1 −Q2) f (x)dx

+p1(1− p2)
∫ L

0

∫ ∞

t1Q1
L +Q2

(
x− t1Q1

L
−Q2

)
f (x)g1(t1)dxdt1

+(1− p1)p2

∫ L

0

∫ ∞

Q1+
t2Q2

L

(
x−Q1 −

t2Q2

L

)
f (x)g2(t2)dxdt2

+p1 p2

∫ L

0

∫ L

0

∫ ∞

t1Q1+t2Q2
L

(
x− t1Q1 + t2Q2

L

)
f (x)g1(t1)g2(t2)dxdt1dt2

]
= β0. (3)

The proof of Proposition 2 is given in the Appendix A.

5. Numerical Examples

In this section, we present some examples to further illustrate the implications of obtained results.

Example 1. Assume that the market demand X, disruption time T1 and T2 are uniformly distributed over
the intervals [a, b], [0, L] and [0, L], respectively, where b > a > 0. The basic parameter values are given as
a = 100, b = 1000, L = 25, s = 20, k = 10, r = 3, c1 = 6, c2 = 4, p1 = 0.3, p2 = 0.6.

The expected profit function Π is jointly concave in Q1, Q2 as showed in Figure 2, which is consistent
with the theoretical result in Proposition 1, and the optimal solutions are Q∗1 = 447.576, Q∗2 = 683.932 and
Π = 6427.84.

200
400 600 800 1000

Q1

200
400

600
8001000

Q2

0

2000

4000

6000

P

Figure 2. Variation of Π with respect to Q1, Q2.

When other parameters are fixed, it can be seen from Figure 3 that Q1 increases as salvage price r, shortage
cost k and selling price s increase, respectively, and Q2 increases as the salvage price r increases and decreases as
shortage cost k and selling price s increases. In real world, when the shortage cost or selling price is relatively
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large, the retailer would place more order on the reliable supplier to mitigate supply risks or get more profit.
In addition, when the salvage price is relatively large, the retailer will increase the order quantity placed on both
suppliers regardless of the impact of cost and disruption probability.

5 10 15 20

600

800

1000

1200

1400

1600

1800

Q2

Q1

(a)

10 20 30 40

400

500

600

700

800
Q2

Q1

(b)

15 20 25 30 35 40

300

400

500

600

700

800

Q2

Q1

(c)

Figure 3. Variations of Q1 and Q2 with respect to r, k and s. (a) The impact of r on Q1 and Q2. (b) The
impact of k on Q1 and Q2. (c) The impact of s on Q1 and Q2.

When other parameters are constant, while p1 or p2 is changed, Table 2 illustrates the impact of disruption
probability on the optimal order quantity and expected profit. The results show that when two suppliers have
the same distribution of disruption time, the optimal quantity decreases with the increase in the disruption
probability, that means the retailer will prefer the more reliable supplier to mitigate the supply chain risks in this
case . When the distribution of disruption time and disruption probability of the two suppliers are same, the
retailer would prefer a more cheaper supplier. In addition, an increase in the disruption probability leads to a
decrease in the total expected profit of supply chains. This is true because it is more likely to receive nothing from
suppliers with a higher disruption probability.

Table 2. The effect of disruption probability on the supply chain system.

p1 p2 Q∗
1 Q∗

2 Π

0.4 0.4 257.98 829.40 6757.2
0.4 0.5 349.14 773.28 6530.1
0.4 0.6 419.83 735.94 6353.9
0.5 0.4 240.52 857.76 6735.2
0.6 0.4 228.90 879.75 6718.2
0.7 0.4 222.57 896.72 6705.0

The following example illustrates the effect of the disruption time on the supply chain.

Example 2. Assume that the market demand X is uniformly distributed in the interval [a, b], where b > a > 0,
disruption time T1 and T2 follow truncated distributions such that

g1(t1) =

{
αe−αt1

1−e−αL , 0 ≤ t1 ≤ L,

0, otherwise.
g2(t2) =

{
γe−γt2

1−e−γL , 0 ≤ t2 ≤ L,

0, otherwise.

Denote µ1 = E[T1], µ2 = E[T2], and in the numerical analysis, we take a = 200, b = 1000, L = 15, s = 30,
k = 9, r = 8, p1 = 0.6, p2 = 0.6, c1 = 13, c2 = 13.

Table 3 shows that the earlier disruption happens at one supplier, the fewer the optimal quantity received by
the supplier, and the fewer expected profit obtained by retailer when the two suppliers have the same disruption
probability, which shows that the disruption time happened more later in a period will play a small effect on the
supply chain system. This observation is intuitive because when a disruption occurs early in one channel, the
actual delivered quantity will decrease, and the retailer will increase the order quantity in the other channel to
avoid the risk of disruption.
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Table 3. The effect of disruption time on the supply chain system.

α γ µ1 µ2 Q∗
1 Q∗

2 Π

4 3 0.25 0.33 623.18 635.04 2566.0
5 3 0.20 0.33 619.05 638.07 2537.6
6 3 0.17 0.33 616.28 640.07 2518.8

To end this section, we present an example to illustrate the effect of fill rate on the optimal order
quantity Q∗1 , Q∗2 and the optimal profit Π.

Example 3. Assume that the market demand X, disruption time T1 and T2 are uniformly distributed over the
intervals [a, b], [0, L] and [0, L], respectively, where b > a > 0. And a = 200, b = 500, s = 45, k = 15, r = 10,
c1 = 21, c2 = 24, p1 = 0.4, p2 = 0.3, L = 10.

Table 4. The effect of fill rate on the supply chain system.

β Q∗
1 Q∗

2 Π

0.890 300.26 186.78 5607.9
0.895 300.26 186.78 5607.9
0.900 299.02 190.00 5607.6
0.905 294.81 200.99 5601.4
0.910 290.16 213.12 5585.6
0.915 284.91 226.80 5556.4
0.920 278.73 242.92 5506.5

The order quantity keeps unchanged when the values of β0 range from 0% to 89%, and there are no feasible
Q∗1 , Q∗2 satisfying constraint condition β > β0 when the values of β0 more than 92%, thus we just list the values
of β0 from 89% to 92% in such a setting. It can be seen from Table 4 that the retailer will decrease the quantity
placed on the cheaper but less reliable supplier as the fill rate increases, conversely, retailer will increase the order
quantity from reliable but expensive supplier. While the expected profit decreases as the fill rate increases.

6. Conclusions

Supply disruption has become a major topic having a drastic effect on supply chains. Also,
it presents a real challenge for the risk management of supply disruption. In this paper, we investigate
the order strategies of a two-echelon supply chain system under random supply disruption risks.
Two models are developed to study the retailer’s ordering decisions. We also get the respective
analytical closed-form solutions of the optimal order quantity and maximize the expected profit.
Several managerial findings in this note are summarized as follows. First, when the shortage cost or
selling price is relatively large, the retailer would prefer the more reliable supplier. Second, the earlier
a disruption happens in a selling period, the bigger effect it has on the supply chain, and therefore, the
retailer should decrease the quantity placed on the supplier to mitigate the disruption risks. Third,
as fill rate increases, the retailer shifts his decisions from the cheaper but less reliable supplier to the
more reliable and expensive supplier. The aim of this paper is to help managers of supply chains
adjust their order plans in time and effectively protect themselves against the supply disruption risks,
so as to achieve a sustainable development.

This work can be extended in several ways in the future research. We just consider single period
single product model which can be extended to the case of multiple types of products or multi-period.
Multi-sourcing is considered as a common practice to hedge against supply disruption risks, it is
interesting to extend the proposed model to the multi-sourcing. In addition, it is also of great interest
to explore the different supply chain contracts.
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Appendix A

Proof of Proposition 1. We can derive the respective first order partial derivatives of Πi(Q1, Q2),
(i = 0, 1, 2, 3) with respect to Q1 and Q2 as the following,

∂Π0(Q1, Q2)

∂Q1
= (r− s− k)F(Q1 + Q2) + (s− c1 + k),

∂Π1(Q1, Q2)

∂Q1
=

1
L

[
(r− s− k)

∫ L

0
t1F(

t1Q1

L
+ Q2)g1(t1)dt1 + (s− c1 + k)µ1

]
,

∂Π2(Q1, Q2)

∂Q1
= (r− s− k)

∫ L

0
F(Q1 +

t2Q2

L
)g2(t2)dt2 + (s− c1 + k),

∂Π3(Q1, Q2)

∂Q1
=

1
L

[
(r− s− k)

∫ L

0

∫ L

0
t1F(

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2 + (s− c1 + k)µ1

]
,

∂Π0(Q1, Q2)

∂Q2
= (r− s− k)F(Q1 + Q2) + (s− c2 + k),

∂Π1(Q1, Q2)

∂Q2
= (r− s− k)

∫ L

0
F(

t1Q1

L
+ Q2)g1(t1)dt1 + (s− c2 + k),

∂Π2(Q1, Q2)

∂Q2
=

1
L

[
(r− s− k)

∫ L

0
t2F(Q1 +

t2Q2

L
)g2(t2)dt2 + (s− c2 + k)µ2

]
,

∂Π3(Q1, Q2)

∂Q2
=

1
L

[
(r− s− k)

∫ L

0

∫ L

0
t2F(

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2 + (s− c2 + k)µ2

]
.

Hence the first order partial derivatives of Π(Q1, Q2) can be expressed as

∂Π(Q1, Q2)

∂Q1
=

[
(1− p1)(1− p2)F(Q1 + Q2) +

p1(1− p2)

L

∫ L

0
t1F(

t1Q1

L
+ Q2)g1(t1)dt1

+
p1 p2

L

∫ L

0

∫ L

0
t1F(

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1 dt2 + (1− p1)p2

·
∫ L

0
F(Q1 +

t2Q2

L
)g2(t2)dt2

]
(r− s− k) + (s− c1 + k)

(
1− p1 +

p1µ1

L

)
and

∂Π(Q1, Q2)

∂Q2
=

[
(1− p1)(1− p2)F(Q1 + Q2) + p1(1− p2)

∫ L

0
F(

t1Q1

L
+ Q2)g1(t1)dt1

+
p1 p2

L

∫ L

0

∫ L

0
t2F(

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2 +

(1− p1)p2

L

·
∫ L

0
t2F(Q1 +

t2Q2

L
)g2(t2)dt2

]
(r− s− k) + (s− c2 + k)

(
1− p2 +

p2µ2

L

)
.
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And then the second order partial derivatives of Π(Q1, Q2) are

∂2Π(Q1, Q2)

∂Q2
1

=

[
(1− p1)(1− p2) f (Q1 + Q2) +

p1(1− p2)

L2

∫ L

0
t2
1 f (

t1Q1

L
+ Q2)g1(t1)dt1

+(1− p1)p2

∫ L

0
f (Q1 +

t2Q2

L
)g2(t2)dt2

+
p1 p2

L2

∫ L

0

∫ L

0
t2
1 f (

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2

]
(r− s− k) < 0,

∂2Π(Q1, Q2)

∂Q2
2

=

[
(1− p1)(1− p2) f (Q1 + Q2) + p1(1− p2)

∫ L

0
f (

t1Q1

L
+ Q2)g1(t1)dt1

+
(1− p1)p2

L2

∫ L

0
t2
2 f (Q1 +

t2Q2

L
)g2(t2)dt2

+
p1 p2

L2

∫ L

0

∫ L

0
t2
2 f (

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2

]
(r− s− k) < 0,

and

∂2Π(Q1, Q2)

∂Q2∂Q1
=

[
(1− p1)(1− p2) f (Q1 + Q2) +

p1(1− p2)

L

∫ L

0
t1 f (

t1Q1

L
+ Q2)g1(t1)dt1

+
(1− p1)p2

L

∫ L

0
t2 f (Q1 +

t2Q2

L
)g2(t2)dt2

+
p1 p2

L2

∫ L

0

∫ L

0
t1t2 f (

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2

]
(r− s− k) < 0,

where the above three inequalities are true because (r− s− k), f , and gi(i = 1, 2) are negative according
to the assumption made in Section 3.

The first and second order determinants of the Hessian matrix are

|D1| =
∂2Π(Q1, Q2)

∂Q2
1

< 0,

and

|D2| =
∂2Π(Q1, Q2)

∂Q2
1

∂2Π(Q1, Q2)

∂Q2
2

−
(

∂2Π(Q1, Q2)

∂Q2∂Q1

)2

= (s + k− r)2 (K1 + K2) > 0,

where both

K1 =

[
p1(1− p1)(1− p2)

2

L2 f (Q1 + Q2)
∫ L

0
(L− t1)

2 f (
t1Q1

L
+ Q2)g1(t1)dt1

+
p2(1− p2)(1− p1)

2

L2 f (Q1 + Q2)
∫ L

0
(L− t2)

2 f (Q1 +
t2Q2

L
)g2(t2)dt2

+
p1 p2(1− p1)(1− p2)

L2 f (Q1 + Q2)
∫ L

0

∫ L

0
(t1 − t2)

2 f (
t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2

+p1 p2(1− p1)(1− p2)
∫ L

0

∫ L

0
(

t1t2

L2 − 1)2 f (Q1 +
t2Q2

L
) f (

t1Q1

L
+ Q2)g1(t1)g2(t2)dt1dt2

+p2(1− p2)p2
1

∫ L

0

∫ L

0

∫ L

0
(

ut2

L2 −
t1

L
)2 f (

uQ1

L
+ Q2) f (

t1Q1 + t2Q2

L
)g1(u)g1(t1)g2(t2)dudt1dt2

+p1(1− p1)p2
2

∫ L

0

∫ L

0

∫ L

0
(

t1v
L2 −

t2

L
)2 f (Q1 +

vQ2

L
) f (

t1Q1 + t2Q2

L
)g2(v)g1(t1)g2(t2)dvdt1dt2

]
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and

K2 =
1

2L2

[
p2

1(1− p2)
2
∫ L

0
du
∫ L

0
(t1 − u)2 f (

t1Q1

L
+ Q2) f (

uQ1

L
+ Q2)g1(t1)g1(u)dt1

+(1− p1)
2 p2

2

∫ L

0
dv
∫ L

0
(t2 − v)2 f (Q1 +

vQ2

L
) f (Q1 +

t2Q2

L
)g2(t2)g2(v)dt2 +

p2
1 p2

2
L2

·
∫ L

0
du
∫ L

0
dv
∫ L

0

∫ L

0
(t1v− t2u)2 f (

t1Q1 + t2Q2

L
)g1(t1)g2(t2) f (

uQ1 + vQ2

L
)g1(u)g2(v)dt1dt2

]
are positive by noting that f , and gi(i = 1, 2) are positive. Thus, we complete the proof.

Proof of Proposition 2. We need to show that the objective function to be maximized should be
concave, and the fill rate constraint function should be convex. Obviously, Π(Q1, Q2) is concave in
Q1 and Q2 according to Proposition 1, we just need to prove the convexity of the fill rate constraint
function. Note that

Πβ(Q1, Q2) = β0 − 1 +
E(n(Q1, Q2))

µ
.

The first and second order determinants of the Hessian matrix are

|D1| =
∂2Πβ(Q1, Q2)

∂Q2
1

=
1
µ

[
(1− p1)(1− p2) f (Q1 + Q2) +

p1 p2

L2

∫ L

0

∫ L

0
t2
1 f (

t1Q1 + t2Q2

L
)g1(t1)g2(t2)dt1dt2

+(1− p1)p2

∫ L

0
f (Q1 +

t2Q2

L
)g2(t2)dt2 +

p1(1− p2)

L2

∫ L

0
t2
1 f (

t1Q1

L
+ Q2)g1(t1)dt1

]
> 0,

and

|D2| =
∂2Πβ(Q1, Q2)

∂Q2
1

∂2Πβ(Q1, Q2)

∂Q2
2

−
(

∂2Πβ(Q1, Q2)

∂Q2∂Q1

)2

=
1

µ2 (K1 + K2) > 0.

Therefore, we prove that Πβ(Q1, Q2) is convex.
The Lagrangian relaxation of problem (Lβ) is

L∗β(Q1, Q2, γβ) = Π(Q1, Q2)− γβ(β0 − β)

= (1− p1)(1− p2)Π0(Q1, Q2) + p1(1− p2)Π1(Q1, Q2)

+(1− p1)p2Π2(Q1, Q2) + p1 p2Π3(Q1, Q2)− γβ(β0 − 1 +
E(n(Q1, Q2))

µ
).

The first order conditions of above equation with respect to Q1, Q2 and γβ are given by
Equations (1)–(3). It is easy to obtain that the solution of the first order conditions of the
Lagrangian relaxation problem gives the global maximum value for problem (L∗β) and subsequently to
problem (Lβ).
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