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Abstract: Pricing multi-asset options has always been one of the key problems in financial
engineering because of their high dimensionality and the low convergence rates of pricing algorithms.
This paper studies a method to accelerate Monte Carlo (MC) simulations for pricing multi-asset
options with stochastic volatilities. First, a conditional Monte Carlo (CMC) pricing formula is
constructed to reduce the dimension and variance of the MC simulation. Then, an efficient martingale
control variate (CV), based on the martingale representation theorem, is designed by selecting
volatility parameters in the approximated option price for further variance reduction. Numerical tests
illustrated the sensitivity of the CMC method to correlation coefficients and the effectiveness and
robustness of our martingale CV method. The idea in this paper is also applicable for the valuation of
other derivatives with stochastic volatility.

Keywords: conditional Monte Carlo; variance reduction; multi-asset options; stochastic volatility;
martingale control variate
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1. Introduction

In the last 40 years, financial derivatives have become increasingly important in finance. They are
actively traded on many exchanges throughout the world, and are entered into by financial institutions,
fund managers, and corporate treasurers in the over-the-counter market. They are especially important
for market anticipants because they can be used to transfer a wide range of risks in the economy from
one entity to another. Efficient use of financial derivatives can certainly promote financial and social
sustainability. For instance, there are many different types of energy and agricultural commodity
derivatives that are designed and used to contest weather and market risks, and to protect the benefit
and reduce the potential loss of anticipants. Another example is that the real options approach is very
popular in valuing the real estate sustainable investment. Conversely, inappropriate use of derivatives
may cause great, even global, disasters, for example, the credit crisis that started in 2007. As pointed
out by Hull [1], “we have now reached the stage where those who work in finance, and many who
work outside finance, need to understand how derivatives work, how they are used, and how they
are priced.”

The accurate and fast pricing of financial derivatives is one of the most important things in
financial engineering since many of the problems in economics and finance eventually turn into the
pricing of financial derivatives. For example, Kim et al. [2] decided the optimal investment timing
using rainbow options valuation for economic sustainability appraisement. Yoo et al. [3] determined
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an optimum combination of financial models including options to achieve a sustainable profit for
overseas investment projects. The pioneering work of Black and Scholes [4] and Merton [5] lay the
foundations for option pricing models. It is well known that the stochastic volatility model can
be used to generalize the constant volatility assumption in the Black–Scholes model to capture the
character of empirical observations from financial markets, such as the observed volatility smile and
the leptokurtic features of the asset return distribution [6,7]. Stochastic volatility models describe
volatility behavior with another stochastic differential equation. There are many studies on stochastic
volatility models, such as those of Hull and White [8], Scott [9], Stein and Stein [10], Ball and Roma [11],
Heston [12], Schöbel and Zhu [13], and Hagan et al. [14]. In addition to these one-factor stochastic
volatility models, Fouque et al. [15–18] proposed a multi-factor mean-reverting stochastic volatility
model. A comprehensive treatment of stochastic volatility models can be found in Reference [19].

Multi-asset options refer to a wide variety of contingent claims whose payoff depends on the
overall performance of more than one underlying asset. Usually, they can be grouped into three
categories: rainbow options, basket options, and quanto options. The prices of rainbow options rely
on price changes of underlying assets, such as exchange options, outperformance options, spread
options, chooser options, max-call options, and their variations. Basket options prices are always
determined by the average price of underlying assets, while the value of a quanto option depends on
the performance of domestic and foreign underlying assets. Jiang [20] introduced the concepts and
constructed the pricing models of multi-asset options in detail, where the volatilities were constant.
The pricing problem of multi-asset options pricing is essentially equivalent to a high dimensional
integral. It is challenging to compute such a high dimensional integral, especially when the number of
underlying assets is large, or stochastic volatilities are considered in the model.

There are mainly three pricing methods for multi-asset options: the analytic approximation
method, the fast Fourier transformation (FFT) method, and the MC simulation method. The analytic
approximation method typically constructs an approximate pricing model for the original problem that
results in a closed form solution, and this method is always elegantly designed to the original problem.
Several studies focus on this approach, for instance, those by Turnbull and Wakeman [21], Curran [22],
Milevsky and Posner [23], Ju [24], Zhou and Wang [25], Alexander and Venkatramanan [26],
Datey et al. [27], Brigo et al. [28], Borovkova et al. [29], Deelstra et al. [30,31], and Li et al. [32].
The main disadvantage of the analytic approximation method is that the size of the error is unknown
and there is no way to systematically reduce it. The FFT method, which was prosed by Carr and
Madan [33], has successfully been used in option pricing problems with a low dimension because of
its high efficiency (see Carr and Wu [34], Heston [12], Grzelak et al. [35–37], and He and Zhu [38]).
However, the FFT method depends on the availability of a characteristic function (usually in an
affine framework), which is not always promised in a general stochastic volatility model. It is also
difficult to apply the FFT method to high dimensional problems due to their dimensionality. Thus,
for higher dimensional options, the most practical method seems to be MC simulations. Kim et al.
[2] and Yoo et al. [3] also used MC simulations to price the embedded option prices in valuation real
investment projects since the high dimension of problem. MC uses the sample mean as an estimator
for the expectation of a random variable. Its speed of convergence is not influenced by the dimension
of the problem. In addition, it allows for a simple error bound, given by the central limit theorem.

The major drawback of an MC simulation is that its convergence rate is quite slow, that is,
O(m−1/2), where m is the number of samples in MC simulation. As a result, often the main challenge
in developing an efficient MC method is to find an effective variance reduction technique. There are a
lot of studies about how to improve the efficiency of an MC simulation, and we refer the reader to
Glasserman [39] and relevant references therein for a detailed discussion on various variance reduction
techniques. Kemna and Vorst [40] presented one of the classical works on accelerating MC simulations.
They used the geometric average option as a CV to price the arithmetic average option, which proved
to be very successful. For a European multi-asset option pricing problem, Barraquand [41] proposed
a “quadratic resampling” method by matching the moments of the underlying assets to reduce the
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variance of the MC simulation. Pellizari [42] designed a CV method called mean Monte Carlo to gain
variance reduction of an MC simulation. The key of their success was that a Black–Scholes formula
could be obtained when all underlying assets except for one were replaced by their mean. Borogovac
and Vakili [43] proposed a “database Monte Carlo” CV method that avoids computing the expectation
of CV, but the database, constructed in advance, requires huge calculations. Dingeç and Hörmann [44]
exploited the property that the geometric average price was larger than the arithmetic average price to
construct a CV by conditioning the payoff on the assumption that the geometric average of all prices
was larger than the strike price. The expectation of their CV was computed by numerical methods,
and their numerical tests for Asian options and basket options showed a great accelerating effect on the
MC simulations. Liang et al. [45] designed a CV for European multi-asset options based on principal
component analysis. Sun and Xu [46] used the CMC method with the importance sampling technique
to accelerate MC simulations for basket options. There are some other approaches to speed up MC
simulations, such as the quasi-Monte Carlo method [39,47–52], and parallelized implementations of
MC simulations on CPUs/GPUs [53–58].

However, there is little research on variance reduction of MC simulations in pricing multi-asset
options with stochastic volatilities. Du et al. [59] proposed a variance reduction method in multi-asset
options under stochastic volatility models by matching the moments of the volatilities. Although their
method shows great variance reduction of MC simulations, there are some restrictions to it. (1) All
underlying assets are assumed to be driven by one stochastic volatility factor, which is not reasonable
in practice. A more reasonable model is to assume that each underlying asset is driven by its own
stochastic volatility factor (see Antonelli et al. [60], Shiraya and Takahashi [61], and Park et al. [62]).
(2) Their moment matching technique greatly depends on the Hull–White stochastic volatility model,
and is not applicable to general stochastic volatility models. (3) They only conducted numerical tests
for options with two assets, which is not general enough for most multi-asset options.

In this paper, we aim to develop an efficient dimension and variance reduction method for MC
simulations in pricing European multi-asset options with general stochastic volatilities. In our pricing
framework, the underlying asset is assumed to be driven by its own stochastic volatility process,
and full correlations between factors are allowed. The stochastic volatility model, which could be
the Hull–White [8] or Heston [12] models, is quite general, such that our pricing model has a wide
range of applicability. Our dimension and variance reduction method is built on the idea developed
by Liang and Xu [63], who designed a CMC simulation with martingale CV to price single-asset
European options with stochastic volatility. Our main contributions are: (1) A CMC pricing framework
is deduced for European multi-asset options with general stochastic volatility models, which results
in dimension and variance reduction. (2) A martingale CV based on a martingale representation
theorem is combined with the CMC to obtain further variance reduction of the MC simulations. (3) The
algorithm was tested on typical multi-asset options, such as exchange options, basket options (which
can be more than two assets), and quanto options, showing the broad applicability and high efficiency
of our method.

The paper is organized as follows. In Section 2, we introduce the pricing model of multi-asset
options with stochastic volatilities. In Section 3, we deduce the CMC pricing framework, prove the
martingale presentation theorem, and construct the martingale CV in detail. We present numerical
tests and their results in Section 4, to evaluate the efficiency of our proposed method. Finally, we
conclude the paper in Section 5.

2. Pricing Model

In this section, we give the pricing model of multi-asset options with stochastic volatilities.
Specifically, in a risk-neutral world, let Si(t) be the price of the ith underlying asset (i = 1, 2, · · · , n) at
time t, which we assume obeys the following stochastic differential equations:
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dSi(t)
Si(t)

= (r− δi)dt + fi(Yi(t))dWi(t), (1)

dYi(t) = µi(t, Yi(t))dt + gi(t, Yi(t))dZi(t), (2)

where r is the constant risk-free interest rate and δi is the continuous dividend rate. Yi is the stochastic
variance, and the functions fi(y), µi(t, y), and gi(t, y) determine the specific volatility model, which can
be quite general. dWi(t), and dZi(t) are standard Brownian noise terms, and the covariance between
them is captured as follows:

cov(dWi(t), dWj(t)) = ρijdt, i 6= j, (3)

cov(dWi(t), dZi(t)) = ρidt, i = 1, 2, · · · , n, (4)

cov(dWi(t), dZj(t)) = 0, i 6= j, (5)

cov(dZi(t), dZj(t)) = 0, i 6= j. (6)

where the correlation coefficients ρij, ρi are constant.
Equation (3) indicates that the underlying assets are correlated. Equations (4) and (5) indicate that

any underlying asset is driven by only one stochastic variance factor and is not directly affected by the
other stochastic variance factors. Equation (6) indicates that the random stochastic variance factors are
mutually independent, but this assumption could be relaxed allowing for correlated random processes.
Several popular stochastic volatility models are collected in Table 1.

Table 1. Models of stochastic volatility.

Reference ρi fi(y) µi(t, y) gi(t, y)

Hull–White [8] 0
√

y µy σy
Scott [9] 0 ey a(θ − y) σ

Stein–Stein [10] 0 |y| a(θ − y) σ
Ball–Roma [11] 0

√
y a(θ − y) σ

√
y(2aθ > σ2)

Heston [12] 6= 0
√

y a(θ − y) σ
√

y(2aθ > σ2)
Hagan et al. [14] 6= 0 y 0 σy

Notes: µ is the drift of Hull–White stochastic volatility model. σ is the volatility of stochastic volatility.
a is the rate of mean reversion and θ is the long-term mean of stochastic volatility. All parameters
µ, a, θ, σ here are constants. The functions µi(t, y), gi(t, y) here have no explicit dependence of time t.

In the following, we introduce our notations for convenience. The underlying asset vector is
S(t) = (S1(t), · · · , Sn(t))′, and the stochastic variance vector is Y(t) = (Y1(t), · · · , Yn(t))′, where ′

represents the transpose of a vector or matrix. Additionally, the correlation matrix is given by Γ = (ρij).
Suppose the payoff function of the European multi-asset option at maturity T is given by:

h(S1(T), S2(T), · · · , Sn(T)) =: h(S(T)). (7)

Denote V(t, s, y) as the value of a European multi-asset option with stochastic volatilities at time
t; then, by the no-arbitrage pricing principle we obtain:

V(t, s, y) = E
[
e−r(T−t)h(S(T)) | S(t) = s, Y(t) = y]

]
, (8)

where E[·] is the expectation in a risk-neutral world. Given the initial asset price S(0) and initial
variance Y(0), the European option price at the initial time is actually:

V(0, S(0), Y(0)) = E[e−rTh(S(T))]. (9)

MC simulation can be used to compute the option price based on Equation (9) (please see
Glasserman [39]). Suppose the number of samples in MC simulation is m. Firstly, for the jth sample,
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we need to simulate the processes of the Brownian motions W(j)
i (t) and Z(j)

i (t), i = 1, 2, · · · , n to get
the processes of Y (j)(t) and S(j)(t) and the discounted payoff V(j) = e−rTh(S(j)(T)), j = 1, 2, · · · , m.
Then, we average the samples of discounted payoff and use the sample mean V = 1

m ∑m
j=1 V(j) as an

estimation of the option price. The law of large numbers guarantees the convergence of MC simulation.
The central limit theorem guarantees that the standard error—the standard deviation of sample mean

V—from MC simulation has a form of Std = var(V(j))√
m . The standard error can be used to measure how

far the sample mean is likely to be from the option price or to make confidence intervals of the option
price, for instance, a 95% confidence interval V ± 1.96Std. It also indicates that the MC simulation has
a convergence rate as O(m−1/2), which is rather low. Thus, in the next section, using a similar idea as
in Liang and Xu [63], we propose our efficient CMC simulation framework with martingale CV for
this option pricing problem.

If the stochastic volatility fi(Yi(t)) in Equation (1) is replaced by a constant volatility σi, we can
obtain the dynamic process of an underlying asset with constant volatility as follows:

dSi(t)
Si(t)

= (r− δi)dt + σidWi(t), i = 1, 2, · · · , n. (10)

The correlations between dWi(t) are defined by Equation (3). Jiang [20] carefully studied
the explicit expression for a European multi-asset option value with constant volatility. Denote
VBS(t, S(t); σ, Γ) as the corresponding price at time t, where the volatility vector is σ = (σ1, σ2, · · · , σn)′.
However, an analytic solution exists only for some specific options [20], such as exchange options,
outer performance options, spread options, two dimension chooser options, basket options with a
geometric average price, and quanto options. We give the specific expression for some of these in the
numerical tests.

3. Dimension and Variance Reduction

In this section, we apply the acceleration methods of Liang and Xu [63] to price European
multi-asset options with stochastic volatilities. The idea is that a martingale CV can be combined with
the CMC method to reduce the variance of an MC simulation.

3.1. CMC Method

CMC can be used to reduce the variance of an MC simulation. Willard [64] initially put forward
the CMC simulation to price options with stochastic volatilities. His method is feasible for those
options that have a closed-form solution under the constant volatility model. Drimus [65] used CMC
to analyze the variance products under the log-Ornstein–Uhlenbeck (log-OU) model. Boyle et al. [66]
also used the CMC approach in pricing a down-and-in call option with a discretely monitored barrier.
Broadie and Kaya [67] applied the CMC to accelerate exact simulations of the stochastic volatility
with affine jump diffusion processes. Yang et al. [68] employed the CMC to reduce the variance of
MC simulations when calculating the prices and greeks of barrier options. Dingeç and Hörmann [44]
and Sun and Xu [46] combined CMC simulations and other variance reduction techniques to price
basket options.

When we consider computing the expectation E[Y] of a random variable Y, the conditional
expectation E[Y|X] of Y on some other variable X is also an unbiased estimator of E[Y]. This results
from the double expectation formula E[Y] = E [E[Y|X]], and the variance decomposition formula [69]:

var(Y) = var (E[Y|X]) + E[var(Y|X)] ≥ var(E[Y|X]),

which indicates that the variance of E[Y|X] is always smaller than that of Y. The so-called CMC
method uses the conditional expectation of the random variable E[Y|X] instead of that of the original
random variable Y, which can obviously reduce variance. The key is that we need to have a closed
form of E[Y|X].
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Now, we intend to deduce the CMC pricing formula for the pricing problem of Equation (8).
The most important thing is to obtain the conditional expectation of the discounted payoff e−rTh(S(T))
on other random variables or stochastic information. First, a Cholesky decomposition of Brownian
noise dWi(t) is conducted according to Equation (4):

dWi(t) = ρidZi(t) +
√

1− ρ2
i dZ̃i(t), (i = 1, 2, · · · , n), (11)

where dZi(t) and dZ̃i(t) are independent standard Brownian noises, which means that:

cov(dZi(t), dZ̃i(t)) = 0, (i = 1, 2, · · · , n). (12)

If we denote the vectors dW(t) = (dW1(t), · · · , dWn(t))′, dZ(t) = (dZ1(t), · · · , dZn(t))′,
and dZ̃(t) = (dZ̃1(t), · · · , dZ̃n(t))′, then Equation (11) can be rewritten to:

dW(t) = diag(ρ)dZ(t) + diag(q)dZ̃(t). (13)

where ρ = (ρ1, · · · , ρn)′, q =
(√

1− ρ2
1, · · · ,

√
1− ρ2

n

)′
, and diag(v) is a diagonal matrix, with

diagonal values from the vector v. According to Equations (12) and (13), it is obvious that:

cov(dW(t)) = diag(ρ)2dt + diag(q)cov(dZ̃(t))diag(q). (14)

Notice that Equation (3) implies:

cov(dW(t)) = Γdt. (15)

We can solve for the covariance of dZ̃(t) by Equations (14) and (15) as:

cov(dZ̃(t)) = diag(q)−1
(

Γ− diag(ρ)2
)

diag(q)−1dt =: Γ̃dt. (16)

The entries of matrix Γ̃ are

Γ̃ii = 1, Γ̃ij =
ρij√

1− ρ2
i

√
1− ρ2

j

(i 6= j). (17)

To ensure the matrix Γ̃ is well-defined, the condition of correlation coefficients |ρi| < 1, |Γ̃ij| < 1
should be satisfied.

Then, applying the Itô formula to ln(Si(t)), with the help of Equations (1) and (11), results in:

d ln(Si(t)) =
(

r− δi − 1
2 f 2

i (Yi(t))
)

dt + ρi fi(Yi(t))dZi(t) +
√

1− ρ2
i fi(Yi(t))dZ̃i(t), (i = 1, 2, · · · , n).

(18)
Integrating both sides of the above equation from t to T results in:

Si(T) = Si(t)ξi(t, T) exp
(
(r− δi)(T − t)− 1−ρ2

i
2

∫ T
t f 2

i (Yi(s))ds +
√

1− ρ2
i

∫ T
t fi(Yi(s))dZ̃i(s)

)
, (19)

where

ξi(t, T) = exp
(
−1

2
ρ2

i

∫ T

t
f 2
i (Yi(s))ds + ρi

∫ T

t
fi(Yi(s))dZi(s)

)
. (20)

Note that ξi(t, T) is actually an exponential martingale with expectation E[ξi(t, T)] = 1.
Let σ̄i(t, T) denote the average volatility of underlying asset Si on the interval [t, T], which is

given by:

σ̄i(t, T)2 =
1

T − t

∫ T

t
f 2
i (Yi(s))ds. (21)
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It is observed that, given the information of stochastic processes {Z1(t), Z2(t), · · · , Zn(t)},
the quantities ξi(t, T), and σ̄i(t, T)(i = 1, 2, · · · , n) are totally determined. The pricing problem
of Equation (8) then becomes the expectation of random variables {Z̃1(t), Z̃2(t), · · · , Z̃n(t)}. Assume
there exists a Black–Scholes formula with constant volatilities. Then, calculating expectations with
{Z̃1(t), Z̃2(t), · · · , Z̃n(t)} gives us the CMC pricing formula of a European multi-asset option with
stochastic volatility, as follows:

V(t, S(t), Y(t)) = E
[
VBS (t, S(t) · ξ(t, T); q · σ̄(t, T), Γ̃

)]
. (22)

where · is the dot product of two vectors, ξ(t, T) = (ξ1(t, T), · · · , ξn(t, T))′, and
σ̄(t, T) = (σ̄1(t, T), · · · , σ̄n(t, T))′.

Compared with the MC formula in Equation (8), we now only need to simulate the n random
variables {Z(t)} instead of the 2n random variables {W(t), and Z(t)}. Thus, the dimension and
variance are reduced by the properties of the CMC.

3.2. Martingale Control Variate (CV)

To further reduce the simulation variance of the variable VBS (t, S(t) · ξ(t, T); q · σ̄(t, T), Γ̃
)

in
Equation (22), a general martingale CV is proposed to combine with the CMC simulation. Some brief
introductions about the CV method are given at first (for more details and references, please refer to
Glasserman [39]).

When the CV method is used to compute the expectation E[Y], the CV estimator is:

Y(b) = Y− b(X− E[X]),

where X is called a CV and E[X] is the closed-form expectation of X. The constant b can be selected
as b∗ = cov(X, Y)/var(X) to minimize the variance of the CV estimator with an optimal variance
reduction ratio R2 = var(Y)/var(Y(b∗)) = 1/(1− ρ2

XY). The efficiency of the CV method can be
measured by the variance reduction ratio R2 or the standard error reduction ratio R. The success of
the CV depends on high correlations with the naive variable Y and the availability of its expectation
E[X]. Thus, the CV is always elegantly designed to a specific problem. In this paper, a martingale
whose expectation equals to zero is used as a CV, which avoids any extra effort needed to obtain
its expectation.

To construct an efficient CV in the CMC framework, a martingale representation theorem for the
stochastic volatility pricing model of Equations (1) and (2) is proved in the following theorem.

Theorem 1 (Martingale Representation Theorem). If the underlying assets satisfy Equations (1) and (2), the
European multi-asset option price at the initial time V(0, S(0), Y(0)) with payoff h(S(T)) can be expressed as:

e−rTh(S(T))−V(0, S(0), Y(0)) =
∫ T

0 e−rt
(

∑n
i=1 Si(t) fi(Yi(t)) ∂V

∂Si
dWi(t) + ∑n

i=1 µi(t, Yi(t)) ∂V
∂Yi

dZi(t)
)

, (23)

which can be rewritten in vector form as:

e−rTh(S(T))−V(0, S(0), Y(0)) =
∫ T

0 e−rt ((S(t) · f (Y(t)) · ∇SV)′dW(t) + (µ(t, Y(t)) · ∇Y V)′dZ(t)) , (24)

where f (Y(t)) = ( f1(Y1(t)), · · · , fn(Yn(t)))′, µ(t, Y(t)) = (µ1(t, Y1(t)), · · · , µn(t, Yn(t)))′,
∇SV = ( ∂V

∂S1
, · · · , ∂V

∂Sn
)′, and ∇Y V = ( ∂V

∂Y1
, · · · , ∂V

∂Yn
)′.

Proof. Applying Itô’s formula to e−rtV(t, S(t), Y(t)) yields:

d
(
e−rtV(t, S(t), Y(t))

)
= e−rtLVdt + e−rt

(
n

∑
i=1

Si(t) fi(Yi(t))
∂V
∂Si

dWi(t) +
n

∑
i=1

µi(t, Yi(t))
∂V
∂Yi

dZi(t)

)
,
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where

LV =
∂V
∂t

+
1
2

n

∑
i,j=1

ρijSiSj fi(Yi) f j(Yj)
∂2V

∂Si∂Sj
+

n

∑
i=1

ρiSi fi(Yi)µi(t, Yi)
∂2V

∂Si∂Yi

+
1
2

n

∑
i=1

g2
i (t, Yi)

∂2V
∂Y2

i
+

n

∑
i=1

(r− δi)Si fi(Yi)
∂V
∂Si

+
n

∑
i=1

µi(t, Yi)
∂V
∂Yi
− rV.

Furthermore, LV = 0 because of the Feynman–Kac formula [69], and thus:

d
(
e−rtV(t, S(t), Y(t))

)
= e−rt

(
n

∑
i=1

Si(t) fi(Yi(t))
∂V
∂Si

dWi(t) +
n

∑
i=1

µi(t, Yi(t))
∂V
∂Yi

dZi(t)

)
.

Now, by integrating both sides of the above equation on the interval [0, T], and noticing that
V(T, S(T), Y(T)) = h(S(T)), we obtain the conclusion of the martingale representation theorem.

The martingale representation theorem gives us inspiration to construct efficient CVs.
For simplicity, denote:

X =
∫ T

0
e−rt ((S(t) · f (Y(t)) · ∇SV)′dW(t) + (µ(t, Y(t)) · ∇Y V)′dZ(t)

)
, (25)

The martingale expression in Equation (23) indicates that the variance of e−rTh(S(T)) in the MC
simulation is totally determined by the martingale X. Thus, the martingale X plays the role of a perfect
CV for an MC simulation. Fouque and Han [18] actually gave a similar representation in their work,
and used the martingales as a CV to price single-asset options under a specific multi-factor stochastic
volatility model. This can be understood in financial terminology. The martingale CV corresponds
to a continuous delta hedge strategy taken by a trader who sells the option. The integrands of the
martingale would, in theory, be the perfect delta hedges. Even though perfect replication by delta
hedging under stochastic volatility models is impossible, the variance of replication error is directly
related to the variance induced by the martingale CV method.

For the CMC pricing framework, taking the conditional expectation of both sides of Equation (23)
based on the information {Z(t), 0 ≤ t ≤ T}, results in:

VBS (t, S(t) · ξ(t, T); q · σ̄(t, T), Γ̃
)
−V(0, S0, Y0) = X̂, (26)

where
X̂ = E [X|Z(t), 0 ≤ t ≤ T] . (27)

We can determine the expression for X̂ by first substituting the Cholesky decomposition,
Equation (11), into the expression of X in Equation (25). Then, we compute the expectations about
{Z̃1(t), Z̃2(t), · · · , Z̃n(t)} as:

X̂ =
∫ T

0
e−rt(ρ · F1(t))′dZ(t) +

∫ T

0
e−rtF2(t)′dZ(t), (28)

where

F1(t) = E[S(t) · f (Y(t)) · ∇SV|Z(s), 0 ≤ s ≤ t], (29)

F2(t) = E[µ(t, Y(t)) · ∇Y V|Z(s), 0 ≤ s ≤ t]. (30)

Equation (26) shows that the variance of VBS (t, S(t) · ξ(t, T); q · σ̄(t, T), Γ̃
)

is totally determined
by the zero martingale X̂, since V(0, S0, Y0) is a constant. This indicates that X̂, theoretically, is a perfect
CV for VBS (t, S(t) · ξ(t, T); q · σ̄(t, T), Γ̃

)
in CMC simulations. It is a pity that we have no explicit
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expression of this perfect zero martingale, since there is no exact expression for V(t, s, y). A possible
solution is that we approximate the option price V(t, s, y) with a Black–Scholes option price along
with some carefully selected volatility parameters. In the following, we show our approach.

Given the information {Z(s), 0 ≤ s ≤ t}, the conditional expectation of S(t) can be computed by
Equation (19) as:

Ŝ(t) = E[S(t)|Z(s), 0 ≤ s ≤ t] = e(r−δ)tS(0) · ξ(0, t). (31)

We intend to use VBS(t, S(t); θ, Γ) as an approximation of V(t, S(t), Y(t)), where θ is a constant
vector whose values should be carefully selected. The partial derivatives can thus be approximated as:

∇SV(t, S(t), Y(t)) ≈ ∇SVBS(t, S(t); θ, Γ),

∇Y V(t, S(t), Y(t)) ≈ ∇Y VBS(t, S(t); θ, Γ) = 0.

Now, given the information {Z(s), 0 ≤ s ≤ t}, by using the approximated derivatives and
substituting S(t) with Ŝ(t) in Equations (29) and (30), F1(t) can be approximately expressed as:

F̂1(t) = Ŝ(t) · f (Y(t)) · ∇SVBS(t, Ŝ(t); θ, Γ). (32)

Notice that ∇Y VBS(t, Ŝ(t); θ, Γ) = 0, so F̂2(t) ≈ 0.
In the end, we obtain our martingale CV:

X̃ =
∫ T

0
e−rt(ρ · F̂1(t))′dZ(t). (33)

The value of the constant volatility vector θ should be determined if we want to use the martingale
X̃ as a CV. Fouque and Han [18] illustrated a method for pricing a single-asset option with multi-factor
volatility. They picked the long-term mean of the volatility as the volatility parameter in their specific
multi-factor model. However, they did not offer a solution for non-mean-reverting stochastic volatility
models, such as the Hull–White model.

In this paper, we set parameter θ = f (E[Y(t)]). The idea is that, on the interval [t, T], the
stochastic variance Y(t) is approximated by the expectations of their initial state E[Y(t)]. This results
in a corresponding approximated stochastic volatility f (E[Y(t)]). We hope that the dynamic behavior
of the approximated process with such parameters is similar to the original process.

Remark 1. It is difficult to use the CMC pricing formula of Equation (22) if the analytic solution of a European
multi-asset option price under constant volatility does not exist. However, we can still construct a martingale
CV for an MC simulation in those cases.

According to the martingale representation theorem (Theorem 1), the variance of e−rTh(S(T)) in an
MC simulation is totally determined by the zero martingale X (see Equation (23)). We can select a value
Vapprox(t, S(t); θ, Γ) with a constant volatility parameter θ as the approximation of option price V(t, S(t), Y(t))
under a stochastic volatility model. Following the idea in the CMC framework, we select θ = f (E[Y(t)]). Thus,
the partial derivatives can be approximated as:

∇SV(t, S(t), Y(t)) ≈ ∇SVapprox(t, S(t); θ, Γ),

∇Y V(t, S(t), Y(t)) ≈ ∇Y Vapprox(t, S(t); θ, Γ) = 0.

Furthermore, the martingale CV is:

X̃ =
∫ T

0
e−rt (ρ · S(t) · f (Y(t)) · ∇SVapprox(t, S(t); θ, Γ))′ dZ(t).

Taking the arithmetic average basket option with stochastic volatilities as an example, we can use
the geometric average basket option with constant volatilities as an approximation and then construct the
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corresponding CV. It is expected that, for a more accurate approximated price Vapprox(t, S(t); θ, Γ), a larger
variance reduction ratio can be obtained by the corresponding martingale CV.

4. Numerical Tests

In this section, we present some numerical tests designed for the typical multi-asset options—
including the exchange options, basket options and quanto options—to emphasize the efficiency of
our method.

4.1. Exchange Options

The exchange option, which was first studied by Margrabe [70], empowers its holder with the
right to exercise it by comparing the difference between the prices or the rates of return of two
underlying assets. Its payoff is:

hexcha(S1(T), S2(T)) = max(S2(T)− S1(T), 0). (34)

If the underlying assets evolute with constant volatilities σ1 and σ2, the exchange option has a
pricing formula at time t, as shown by Margrabe [70] and Jiang [20] as follows:

VBS−excha(t, S1, S2) = e−δ2(T−t)S2N(−d2)− e−δ1(T−t)S1N(−d1), (35)

where

d1 =
ln S1

S2
+
(

δ2 − δ1 +
1
2 (σ

2
1 − 2ρ12σ1σ2 + σ2

2 )
)
(T − t)√

(σ2
1 − 2ρ12σ1σ2 + σ2

2 )(T − t)
, (36)

d2 = d1 −
√
(σ2

1 − 2ρ12σ1σ2 + σ2
2 )(T − t), (37)

and N(x) = 1√
2π

∫ x
−∞ e−

t2
2 dt is the cumulative distribution function of a standard normal variable.

It is easy to derive the derivatives:

∂

∂S1
VBS−excha(t, S1, S2) = −e−δ1(T−t)N(−d1),

∂

∂S2
VBS−excha(t, S1, S2) = e−δ2(T−t)N(−d2).

We assumed the stochastic volatilities obey the Heston model, for i = 1, 2:

dSi(t)
Si(t)

= (r− δi)dt +
√

Yi(t)dWi(t),

dYi(t) = ai(θi −Yi(t))dt + σi

√
Yi(t)dZi(t).

The parameters should satisfy the Feller condition [71] to guarantee the positiveness of variance,
i.e., 2a1θ1 > σ2

1 and 2a2θ2 > σ2
2 . We used a truncated Euler discrete scheme [39,72,73] with equal time

intervals to simulate the Heston process in our tests.
At first, we wanted to examine the acceleration effect of a CMC simulation compared with

a traditional MC simulation. We fixed the parameters S1(0) = S2(0) = K = 30, r = 0.05, T = 1,
δ1 = δ2 = 0, a1 = a2, σ1 = σ2 = 0.2, Y1(0) = 0.01, Y2(0) = 0.04, θ1 = 0.015, and θ2 = 0.05.
Additionally, we took the number of time steps N = 100, and the number of simulations m = 100,000

in all numerical simulations. Note that
∣∣∣∣ ρ12√

1−ρ2
1

√
1−ρ2

2

∣∣∣∣ < 1 should be satisfied from Equation (17).
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Taking ρ12 = 0 for simplicity, the numerical results with different correlation coefficients are recorded
in Tables 2 and 3.

Table 2. Exchange option: Estimated prices for MC and CMC with different correlation coefficients.

ρ1|ρ2 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

−0.75 2.8083 2.8218 2.8336 2.8436 2.8519 2.8587 2.8639
−0.50 2.8169 2.8294 2.8402 2.8493 2.8567 2.8623 2.8663
−0.25 2.8248 2.8362 2.8459 2.8539 2.8603 2.8649 2.8678
0.00 2.8317 2.8420 2.8505 2.8573 2.8625 2.8661 2.8680 VMC
0.25 2.8372 2.8462 2.8536 2.8594 2.8635 2.8660 2.8667
0.50 2.8413 2.8492 2.8554 2.8600 2.8630 2.8644 2.8641
0.75 2.8440 2.8508 2.8558 2.8592 2.8612 2.8615 2.8601

−0.75 2.8153 2.8294 2.8420 2.8528 2.8616 2.8684 2.8731
−0.50 2.8253 2.8377 2.8486 2.8578 2.8651 2.8703 2.8735
−0.25 2.8340 2.8446 2.8539 2.8615 2.8672 2.8709 2.8725
0.00 2.8413 2.8503 2.8579 2.8639 2.8679 2.8700 2.8700 VCMC
0.25 2.8473 2.8546 2.8606 2.8649 2.8674 2.8678 2.8661
0.50 2.8519 2.8576 2.8620 2.8647 2.8654 2.8641 2.8608
0.75 2.8550 2.8592 2.8620 2.8630 2.8621 2.8591 2.8539

Notes: ρ1 is the correlation coefficient between the first underlying asset and its volatility; ρ2 is the
correlation coefficient between the second underlying asset and its volatility; VMC is the estimated
price for MC simulation; and VCMC is the estimated price for CMC simulation.

Table 3. Exchange option: Numerical results for MC and CMC with different correlation coefficients.

ρ1|ρ2 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

−0.75 0.0132 0.0137 0.0143 0.0148 0.0153 0.0159 0.0164
−0.50 0.0132 0.0137 0.0142 0.0148 0.0153 0.0158 0.0164
−0.25 0.0131 0.0137 0.0142 0.0147 0.0153 0.0158 0.0164
0.00 0.0131 0.0136 0.0141 0.0147 0.0152 0.0158 0.0163 StdMC
0.25 0.0130 0.0135 0.0141 0.0146 0.0152 0.0157 0.0163
0.50 0.0130 0.0135 0.0140 0.0146 0.0151 0.0157 0.0163
0.75 0.0129 0.0134 0.0140 0.0145 0.0151 0.0156 0.0162

−0.75 0.0088 0.0065 0.0049 0.0045 0.0058 0.0084 0.0119
−0.50 0.0081 0.0055 0.0036 0.0032 0.0049 0.0077 0.0115
−0.25 0.0076 0.0048 0.0025 0.0020 0.0042 0.0073 0.0112
0.00 0.0074 0.0045 0.0019 0.0011 0.0039 0.0071 0.0110 StdCMC
0.25 0.0075 0.0046 0.0020 0.0012 0.0039 0.0072 0.0111
0.50 0.0078 0.0050 0.0027 0.0021 0.0043 0.0074 0.0113
0.75 0.0084 0.0057 0.0036 0.0031 0.0048 0.0078 0.0116

−0.75 1.5014 2.1268 2.9394 3.2711 2.6283 1.8898 1.3762
−0.50 1.6372 2.4911 3.9677 4.6222 3.1339 2.0450 1.4323
−0.25 1.7336 2.8222 5.5991 7.3682 3.6300 2.1571 1.4677
0.00 1.7692 2.9943 7.3944 13.0340 3.9300 2.2070 1.4805 R = StdMC

StdCMC

0.25 1.7385 2.9276 7.0000 11.8935 3.8805 2.1900 1.4714
0.50 1.6551 2.6807 5.2352 7.0184 3.5503 2.1170 1.4433
0.75 1.5402 2.3701 3.9081 4.7380 3.1223 2.0066 1.4001

Notes: ρ1 is the correlation coefficient between the first underlying asset and its volatility; ρ2 is the
correlation coefficient between the second underlying asset and its volatility; StdMC, StdCMC are the
standard errors of estimated prices from the MC and CMC simulations respectively; and R = StdMC

StdCMC
is the ratio of standard errors.

Table 2 records the estimated option values calculated by the MC and CMC simulations, which
are denoted as VMC and VCMC, respectively. The upper part of Table 3 records the standard errors of
an MC simulation, denoted as StdMC. The standard errors are almost the same for various correlation
coefficients, and increase slightly with correlation ρ2 while decreasing with ρ1. The exchange option
can be seen as a call option on asset S2 for fixed S1; a higher correlation ρ2 implies a larger variation
in the price of asset S2, thus resulting in a larger value of the option price and a larger simulation
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variance. Similar analysis can be conducted with respect to correlation ρ1 by regrading the exchange
option as a put option on asset S1 for fixed S2.

The middle part of Table 3 records the standard errors of a CMC simulation, denoted as StdCMC.
Obviously, the standard CMC errors are always smaller than MC. It is interesting that a standard CMC
error rapidly declines as correlation coefficient ρ1 or ρ2 tends to zero. Thus, the ratio of the standard
errors of a CMC simulation to an MC simulation reduces. We denote this ratio as R = StdMC/StdCMC

and present its values at the bottom of Table 3. R becomes larger when the correlation coefficient is
getting closer to the original point, and decays rapidly in the opposite direction. For example, for
ρ1 = ρ2 = 0, 0.25, 0.5, and 0.75, the reduction ratios of the standard error are 13.0340, 3.8805, 2.1170,
and 1.4001, respectively. This can be explained by Equation (11); the CMC simulation removes the
randomness that is independent from the stochastic variances Y1, Y2, and its quantity is proportional to√

1− ρ2
1, or

√
1− ρ2

2. In other words, a larger variance reduction ratio is promised when the absolute
value of ρ1 or ρ2 is smaller. This property indicates that a CMC simulation is more competitive when
the correlation between the underlying asset and stochastic volatility is weak.

We also investigated the computational costs of the MC and CMC methods. The computational
platform for this paper was an Intel i5-6200U CPU, 2.30 GHz, 8 GB memory, and the software
environment was Matlab R2018a for Windows 10. It took 50.88 s to calculate all of the data in the upper
part of Table 3 and 25.85 s for the middle part, which means that the time cost of a CMC simulation is
almost half that of an MC simulation. This is because the MC method needs to simulate four random
variables, {W1(t), W2(t), Z1(t), and Z2(t)}, while the CMC method only needs to simulate two random
variables, {Z1(t), and Z2(t)}.

Taking the variance reduction ratio into consideration, the speed up ratio of a CMC simulation to

an MC simulation is defined as Std2
MC

Std2
CMC
· tMC

tCMC
. Thus, when correlation ρ1 = ρ2 = 0, the speed up ratio

of the CMC is 13.03402 · 50.88
25.85 = 334.38. Even for the case of a larger correlation ρ1 = ρ2 = 0.75, the

speed up ratio of the CMC is 1.40012 · 50.88
25.85 = 3.86, which improves the efficiency of the MC simulation

by roughly 75%. In summary, the CMC simulation enjoys the advantages of saving time and having a
great variance reduction ratio, especially when the correlation coefficients are small.

We next tested the efficiency of our martingale CV method. As a contrast, we constructed another
CV for the stochastic model, as suggested by Ma and Xu [74]. Consider dummy assets whose prices
S̃i(t), (i = 1, 2, · · · , n) satisfy the following stochastic differential equations:

dS̃i(t)
S̃i(t)

= (r− δi)dt + σ̃i(t)dWi(t),

where σ̃i(t) is a determined function. The covariance of dWi(t) is given by Equation (3). It can be
computed by matching the first two moments of the underlying asset prices as σ̃2

i (t) = E[ f 2
i (Yi(t))].

In the case of a Heston stochastic volatility model:

σ̃2
i (t) = E[Yi(t)] = θi + (Yi(0)− θi)e−ait, i = 1, 2.

We used the payoff hexcha(S̃1(T), S̃2(T)) as a CV to the MC method, and we called this CV method
a function CV method. The corresponding exchange option price can be computed using Equation (35)
by replacing σ2

1 + σ2
2 − 2ρ12σ1σ2 in Equations (36) and (37) with the average volatility on the interval

[0, T] given by:
1
T

∫ T

0
E[Y1(t)] + E[Y2(t)]− 2ρ12

√
E[Y1(t)]E[Y2(t)]dt.

We changed the values of the correlation coefficients and kept the other parameters fixed as before.

Remember that
∣∣∣∣ ρ12√

1−ρ2
1

√
1−ρ2

2

∣∣∣∣ < 1. The detailed results are shown in Table 4.
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Table 4. Exchange option: Numerical results for CVs with different correlation coefficients.

ρ12 ρ1 = ρ2 StdMC StdMar StdFun R1 R2

−0.5 −0.6 0.0160 0.0015 0.0039 10.3761 4.1166
−0.4 0.0163 0.0013 0.0040 12.2233 4.0626
−0.2 0.0166 0.0012 0.0041 13.9129 4.0540
0.0 0.0170 0.0011 0.0042 15.0719 4.0821
0.2 0.0173 0.0013 0.0042 13.2504 4.1410
0.4 0.0176 0.0016 0.0042 11.1433 4.2271
0.6 0.0180 0.0019 0.0041 9.5880 4.3348

0.0 −0.75 0.0132 0.0014 0.0039 9.6978 3.4035
−0.50 0.0137 0.0012 0.0040 11.2209 3.4318
−0.25 0.0142 0.0010 0.0041 14.6458 3.4829
0.00 0.0147 0.0009 0.0041 16.2942 3.5500
0.25 0.0152 0.0011 0.0042 13.3596 3.6291
0.50 0.0157 0.0015 0.0042 10.2764 3.7178
0.75 0.0162 0.0017 0.0043 9.6550 3.8097

0.5 −0.6 0.0106 0.0010 0.0038 10.9374 2.8023
−0.4 0.0110 0.0009 0.0040 12.9115 2.7755
−0.2 0.0115 0.0006 0.0041 17.7294 2.7910
0.0 0.0119 0.0006 0.0042 19.8106 2.8424
0.2 0.0123 0.0008 0.0042 14.7523 2.9285
0.4 0.0127 0.0012 0.0042 10.7868 3.0531
0.6 0.0131 0.0012 0.0041 10.6183 3.2264

Notes: ρ12 is the correlation coefficient between the first underlying asset and the second underlying
asset; ρ1 is the correlation coefficient between the first underlying asset and its volatility; ρ2 is the
correlation coefficient between the second underlying asset and its volatility; StdMC, StdMar, StdFun
are the standard errors from the MC method, the martingale CV method and the function CV method
respectively; R1 = StdMC/StdMar; and R2 = StdMC/StdFun.

In Table 4, StdMC, StdMar, and StdFun are the standard errors from the MC simulation, the
martingale CV method, and the function CV method, respectively. R1 = StdMC/StdMar is the
standard error reduction ratio of the martingale CV method compared to the MC simulation, and
R2 = StdMC/StdFun is the the standard error reduction ratio of the function CV method compared to
the MC simulation.

It is obvious that the standard error reduction ratio of the CMC is much larger than that of the
function CV method, the former falling in 9–20 while the latter being about 3 or 4. Table 4 also shows
that, for a fixed ρ1 = ρ2, the standard errors of the MC simulation, martingale CV method, and function
CV method decrease with the correlation value of ρ12. For a fixed ρ12, the standard errors of the MC
simulation and function CV method increase with the value of ρ1 = ρ2 while the martingale CV
method decreases with the absolute value of ρ1 = ρ2, which is mainly caused by the properties of the
CMC. Thus, the standard error reduction ratio of the martingale CV method also decreases with the
absolute value of ρ1 = ρ2.

The computing times for all values of the MC, the martingale CV, and the function CV methods
are 22.33, 22.26, and 25.50 s, respectively. The time costs of the MC method and the martingale CV
method are almost the same, while the function CV method is slightly slower. Thus, the martingale CV
method proposed in our paper is superior to the function CV method, when considering the variance
reduction ratio and the time cost.

Fixing the parameters ρ12 = 0, and ρ1 = ρ2 = 0.5, we next examined the effects of the
volatility parameters for the stochastic volatility. In the Heston stochastic volatility model, the
Feller condition should be satisfied [71]; thus, σ1 <

√
2a1θ1 =

√
2 · 2 · 0.015 = 0.2449, and

σ2 <
√

2a2θ2 =
√

2 · 2 · 0.05 = 0.4472. Numerical results of these tests are shown in Table 5.
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Table 5. Exchange option: Numerical results for CVs with different volatilities of the stochastic volatilities.

σ1 σ2 StdMC StdMar StdFun R1 R2

0.2 0.1 0.0151 0.0013 0.0030 11.7123 4.9767
0.2 0.0157 0.0015 0.0042 10.2764 3.7178
0.3 0.0163 0.0018 0.0057 9.0825 2.8678
0.4 0.0169 0.0021 0.0073 8.1624 2.3279

0.05 0.2 0.0157 0.0014 0.0034 11.2239 4.5840
0.10 0.0157 0.0014 0.0036 10.9406 4.3545
0.15 0.0157 0.0015 0.0039 10.6170 4.0447
0.20 0.0157 0.0015 0.0042 10.2764 3.7178

Notes: σ1 is the volatility of the first stochastic volatility; and σ2 is the volatility of the second
stochastic volatility.

As shown in Table 5, the standard errors of the three simulation methods all increase with
increasing volatilities of stochastic volatilities. Standard error reduction ratios also decline with the
volatility of the stochastic volatilities. However, our martingale CV method is much more efficient
than the function CV method, especially in the case of large volatility.

4.2. Basket Options

The payoff of the basket option at maturity depends on the average price of the underlying assets.
Since the basket option with arithmetic average price does not have a closed-form price, even with
constant volatility, we considered the geometric average basket option whose payoff at time T is:

hGeomBasket(S(T)) = max

(
n

∏
i=1

Sαi
i (T)− K, 0

)
, (38)

where n is the number of underlying assets, αi ≥ 0 are the weights of each underlying asset with
∑n

i=1 αi = 1, and K is the strike price.
The geometric average basket option has a closed-form solution if the underlying assets have

constant volatilities as σ1, · · · , σn. Denote:

σ̂2 =
n

∑
i,j=1

αiαjσiσjρij,

δ̂ =
n

∑
i=1

αi

(
δi +

σ2
i

2

)
− σ̂2

2
.

The geometric average basket option price at time t is given by Jiang [20]:

VBS−GeomBasket(t, S) = Sα1
1 · · · S

αn
n e−δ̂(T−t)N(d1)− Ke−r(T−t)N(d2), (39)

where

d1 =
ln S

α1
1 ···S

αn
n

K +
(

r− δ̂ + 1
2 σ̂2
)
(T − t)

σ̂
√

T − t
,

d2 = d1 − σ̂
√

T − t.

Thus, the derivatives are:

∂

∂Sj
VBS−GeomBasket(t, S) = e−δ̂(T−t)N(d1)αjS−1

j

n

∏
i=1

Sαi
i , j = 1, 2, · · · , n.
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For a basket option with n underlying assets, we still used the Heston stochastic volatility model
and function CV method as a comparison. The expectation of the corresponding CV can be calculated

using Equation (39) by substituting σiσj with 1
T
∫ T

0

√
E[Yi(t)]E[Yj(t)]dt. We fixed the parameters

r = 0.05, T = 1, K = 30, Si(0) = 30, δi = 0, ai = 2, and σi = 0.2 (i = 1, 2, · · · , n). We allocated
equal weights for the underlying assets, which means that αi = 1/n. For the initial value of the
stochastic volatility, we took a linear interpolation between 0.12 and 0.32 for the n assets. In other words,
the initial variance vector was Y(0) = (0.12, 0.32)′ for n = 2 and Y(0) = (0.12, 0.152, 0.22, 0.252, 0.32)′

for n = 5. We took the long-term mean of stochastic variance as θi = (
√

Yi(0) + 0.05)2, which was
θ = (0.152, 0.352)′ for n = 2, for example. For the correlations between Brownian noises, we took
ρij = ρ0(i 6= j) for simplicity. To guarantee the positive definiteness of the matrix Γ = (ρij), the

parameter ρ0 should satisfy −1/(n− 1) < ρ0 < 1. In addition,

∣∣∣∣∣ ρij√
1−ρ2

i

√
1−ρ2

j

∣∣∣∣∣ < 1 is needed for the

proper definition of Γ̃. Thus, we set ρij = ρ0 = 0(i 6= j) at first. We fixed the number of time steps to
N = 100 and the number of simulations to m = 100,000. We tested the acceleration effects of the CVs
for different correlation coefficients ρi. Numerical results are shown in Table 6.

Table 6. Geometric average basket option: Numerical results for CVs with different correlation coefficients.

n ρi StdMC StdMar StdFun R1 R2

2 −0.75 0.0110 0.0012 0.0021 9.2740 5.2542
−0.50 0.0112 0.0009 0.0021 12.8705 5.2650
−0.25 0.0115 0.0004 0.0022 27.4754 5.2935
0.00 0.0117 0.0004 0.0022 30.5615 5.3375
0.25 0.0120 0.0005 0.0022 23.5176 5.3968
0.50 0.0122 0.0010 0.0022 11.9347 5.4719
0.75 0.0124 0.0013 0.0022 9.2236 5.5629

5 −0.75 0.0068 0.0009 0.0013 7.6660 5.1178
−0.50 0.0069 0.0006 0.0013 11.7653 5.1320
−0.25 0.0069 0.0002 0.0013 27.9824 5.1434
0.00 0.0070 0.0001 0.0014 110.3248 5.1544
0.25 0.0071 0.0003 0.0014 25.1755 5.1663
0.50 0.0071 0.0006 0.0014 11.1250 5.1785
0.75 0.0072 0.0010 0.0014 7.4879 5.1952

10 −0.75 0.0049 0.0008 0.0010 6.3077 5.0690
−0.50 0.0049 0.0005 0.0010 10.4984 5.0820
−0.25 0.0049 0.0002 0.0010 26.5073 5.0928
0.00 0.0050 1.7 × 10−5 0.0010 291.4214 5.1023
0.25 0.0050 0.0002 0.0010 24.2257 5.1104
0.50 0.0050 0.0005 0.0010 10.0253 5.1192
0.75 0.0050 0.0008 0.0010 6.1413 5.1310

Notes: n is number of underlying assets; and ρi is correlation coefficient between the ith underlying
asset and its volatility.

Table 6 again shows that StdMar, the standard error of the martingale CV method, decreases as
the correlation coefficients ρi tends to zero, resulting in a greater standard error reduction ratio R1 in
those cases. For example, R1 goes from 30 to 9 when |ρi| goes from 0 to 0.75. On the other hand, the
simulation error StdFun and, thus, the corresponding reduction ratio R2 of the function CV method are
not sensitive to the correlation coefficient. The reduction ratio is around 5 in all cases. Considering
the number of underlying assets, the reduction ratio of the martingale CV slightly decreases as the
number of assets n becomes larger, except for the ρi = 0 cases. For example, the reduction ratios of
the martingale CV method are 9.2740, 7.6660, and 6.3077 for n = 2, 5, and 10, respectively, and for
ρi = −0.75. On the other hand, the ratios are 30.5615, 110.3248, and 291.4214 for the ρi = 0 case. As a
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contrast, the performance of the function CV method is more stable with different n. It is obvious that
our martingale CV is much more efficient than the function CV method.

Next, we fixed ρi = 0.5(i = 1, 2, · · · , n) and changed the value of σi, the volatility of the stochastic
volatility. For convenience, we took an equal σi for every underlying asset. The results are recorded in
Table 7.

Table 7. Geometric basket option: Numerical results for CVs with different volatilities of the
stochastic volatility.

n σi StdMC StdMar StdFun R1 R2

2 0.1 0.0177 0.0013 0.0011 13.7479 15.6830
0.2 0.0179 0.0013 0.0023 13.3158 7.9626
0.3 0.0182 0.0014 0.0034 12.8095 5.4211
0.4 0.0184 0.0015 0.0044 12.2580 4.1894

5 0.1 0.0093 0.0007 0.0006 12.7129 14.3708
0.2 0.0093 0.0007 0.0013 12.4417 7.2688
0.3 0.0094 0.0008 0.0019 12.1388 4.9147
0.4 0.0094 0.0008 0.0025 11.8127 3.7571

10 0.1 0.0060 0.0005 0.0004 11.8384 13.8295
0.2 0.0060 0.0005 0.0009 11.6365 6.9848
0.3 0.0060 0.0005 0.0013 11.4192 4.7179
0.4 0.0060 0.0005 0.0017 11.1910 3.5979

Notes: n is number of underlying assets; and σi is the volatility of the ith stochastic volatility.

As shown in Table 7, the standard errors of the three simulation methods increase with the
volatilities of the stochastic volatility at fixed n, and decrease with the number of underlying assets for
a fixed σi. The standard error reduction ratios of the two CV methods decrease with increasing volatility
of the stochastic volatility and increasing number of assets. However, the martingale CV method is
more robust for different volatilities compared to the function CV method. For example, for the case
of n = 2, the standard error reduction ratio of the martingale CV method decreases from 13.7479 to
12.2580 when σi increases from 0.1 to 0.4, while that of the function CV method sharply decreases from
15.6830 to 4.1894. The results suggest that our martingale CV method is especially efficient in high
volatility cases, while the function CV method has some advantages in a low volatility environment.

4.3. Quanto Options with Real Data

The quanto option is a contract written when someone invests money in foreign securities. Usually,
its risk depends on the volatility of the securities’ prices and the change of the foreign currency rate.
Its main purpose is to provide exposure to a foreign asset without taking the corresponding exchange
rate risk. We applied our method to price a quanto option. Park et al. [62] used a power series
expansion method to obtain an analytic approximation value for the quanto option price under the
Hull–White stochastic volatility model.

First, we give the quanto option pricing model with Hull–White stochastic volatility, as shown in
Park et al. [62]. Let S(t) be a stock price in foreign currency, and F(t) be a foreign exchange (FX) rate,
that is the amount of domestic currency value per one foreign currency value. In a risk-neutral world,
they are assumed to obey the following stochastic differential equations:

dS(t)/S(t) = (r f − ρ12σ1(t)σ2(t))dt + σ1(t)dW1(t),

dF(t)/F(t) = (rd − r f )dt + σ2(t)dW2(t),

dσ1(t)/σ1(t) = µ1dt + ξ1dZ1(t),

dσ2(t)/σ2(t) = µ2dt + ξ2dZ2(t),
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where rd is a risk-free domestic interest rate and r f is a risk-free foreign interest rate.
The correlations among the Brownian noises are given by cov(dW1(t), dW2(t)) = ρ12dt,

cov(dW1(t), dZ1(t)) = ρ1dt, and cov(dW2(t), dZ2(t)) = ρ2dt. Additionally, σ1(t) and σ2(t) are the
stochastic volatilities of the stock price and the FX rate, respectively. This form of the Hull–White
stochastic volatility is a little different from that in Table 1 (for more details, please see Park et al. [62]).
The parameters µ1, µ2, ξ1, and ξ2 are constants.

Park et al. [62] considered a specific quanto option with payoff:

hQuanto(S(T)) = F0 max (S(T)− K, 0) , (40)

where F0 is a predetermined FX rate, and K is the strike price. A more general quanto option payoff
would be max(F0, F(T))max (S(T)− K, 0) (see Jiang et al. [20]). When volatilities σ1(t) and σ2(t) take
constant values σ1 and σ2, respectively, the authors gave the Black–Scholes quanto option price as:

VBS−Quanto(t, S) = F0e−rd(T−t)
(

Se(r f−ρ12σ1σ2)(T−t)N(d1)− KN(d2)
)

, (41)

where

d1 =
ln S

K +
(

r f − ρ12σ1σ2 +
1
2 σ2

1

)
(T − t)

σ1
√

T − t
,

d2 = d1 − σ1
√

T − t.

It is easy to obtain the derivative

∂

∂S
VBS−Quanto(t, S) = F0e(r f−rd−ρ12σ1σ2)(T−t)N(d1).

The authors [62] supposed a quanto European call option of the S&P500 index with 1200 strike
and a predetermined FX rate of 1100 (KRW/USD). The model parameters shown in Table 8 were
observed on 13 October 2010. Furthermore, we assume that the contract multiplier of the S&P500
option is 100 and the maturity is 13 October 2011. Without loss of generality, we set the unobserved
values as zeros.

Table 8. Market dataset parameters.

View Date 13 October 2010

S&P500 1169.77
FX Rate (KRW/USD) 1127
Volatility of S&P500 18.58%
Volatility of FX Rate 11.83%
Correlation between S&P500 and FX Rate −0.2297
Correlation between S&P500 and its volatility −0.55
Volatility of volatility of S&P500 11.72%
Volatility of volatility of FX Rate 16.8%
USD LIBOR(1Y) 0.77%
KRW Treasury Rate(1Y) 2.91%

Notes: FX stands for foreign exchange; KRW stands for South Korean Won; USD stands for US dollar;
and LIBOR is London Interbank Offered Rate.

We changed the values of the correlation between the S&P500 and the FX rate and fixed all other
parameters. The number of time steps was set to N = 100 and the number of simulations was set to
m = 100,000. The numerical results for these models are recorded in Table 9.
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Table 9. Quanto option: Numerical results with different correlation coefficients.

ρ12
VAppro VMC StdMC VMar StdMar VFun StdFun R1 R2(106) (106) (106) (106) (106) (106) (106)

−0.6 9.1393 9.1082 0.0462 9.1223 0.0038 9.1162 0.0047 12.1373 9.7825
−0.4 8.8325 8.8187 0.0454 8.8316 0.0037 8.8258 0.0046 12.3813 9.8215
−0.2 8.5311 8.5357 0.0447 8.5473 0.0035 8.5416 0.0045 12.6122 9.8533
0.0 8.2352 8.2592 0.0439 8.2696 0.0034 8.2638 0.0044 12.8264 9.8768
0.2 7.9448 7.9890 0.0432 7.9984 0.0033 7.9924 0.0044 13.0198 9.8906
0.4 7.6599 7.7253 0.0424 7.7335 0.0032 7.7276 0.0043 13.1884 9.8948
0.6 7.3807 7.4679 0.0417 7.4750 0.0031 7.4691 0.0042 13.3285 9.8900

Notes: ρ12 is the correlation between S&P500 and FX Rate; and VAppro is the the approximated values
calculated by formula in [62].

In Table 9, ρ12 stands for the correlation between the S&P500 and FX rate. VAppro is the
approximated value obtained by the series expansion method in Park et al. [62]. VMC, VMar, and VFun

are the estimated values of the MC simulation, the martingale CV method, and the function CV method,
respectively. StdMC, StdMar, and StdFun are the standard errors of the MC simulation, the martingale
CV method, and the function CV method, respectively. R1 = StdMC/StdMar is the standard error
reduction ratio of the martingale CV method compared to the MC simulation, and R2 = StdMC/StdFun

is the the standard error reduction ratio of the function CV method compared to the MC simulation.
For the function CV method, the expectation of the corresponding CV can be calculated by using
Equation (41) and substituting σiσj with 1

T
∫ T

0 E[σi(t)]E[σj(t)]dt, where E[Yi(t)] = Yi(0)eµit, i = 1, 2.
It is obvious that our martingale CV method has a larger standard reduction ratio than the function
CV method. This, again, shows the efficiency and robustness of our method.

5. Conclusions

In the context of European multi-asset options with stochastic volatilities, we propose a dimension
and variance reduction Monte Carlo method. A conditional Monte Carlo pricing formula is deduced,
and then the martingale representation theorem is proved. A martingale control variate is combined
with the conditional Monte Carlo simulation.

Numerical tests on typical multi-asset options—including exchange options, basket options, and
currency options—showed that this method yields considerable variance reduction, not only when
compared to a traditional Monte Carlo simulation, but also with respect to the function control variate
in Ma and Xu [74].

For future research, it would be interesting and challenging to extend the framework in this paper
to price more options with stochastic volatilities, not only European options but also exotic options
such as American options or barrier options. Furthermore, it would be interesting to study jump
diffusion models with stochastic volatilities. Another important approach is to use this framework
in empirical financial studies and risk management. After model parameters are calibrated with real
market data, our method can be used to accurately and quickly value option prices which can be
widely used in areas of economics and finance. We would also like to extend this method to other
areas like risk management and civil engineering.
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