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Abstract: Freeze–thaw cycles stimulate the release of available soil phosphorus (P) in winter, and
biochar as a soil amendment could improve P availability. Nevertheless, it is unclear how freeze–thaw
cycles and biochar amendment interact to affect the soil P fractions and their availability in winter,
particularly under different soil water conditions. We simulateda freeze–thaw cycle experimentto
assess the effects of three factors on soil P fractions: soil moisture content (22%, 31%, and 45%),
frequencies of freeze–thaw cycles (0, 1, 3, 6, and 12 times) and biochar amendment (soil and
biochar-amended soil). Modified Hedley sequential P fractionation was conducted to measure
the soil P fractions. Increasing the number of freeze–thaw cycles increased soil labile P fractions in
the soil with the lowest moisture content (22%). After biochar amendment, the content of labile P
decreased as the number of freeze–thaw cycles increased. Biochar amendment enhanced P availability
in Mollisols owing to the direct effect of NaOH-Po, which has a large direct path coefficient. Principal
components analysis showed that moisture content was a major factor influencing the variation
in the P fractions. The P fractions were separated by the interactive effects of biochar amendment
and freeze–thaw cycles in soils with a higher moisture content (45%), indicating that the effects of
freeze–thaw cycles on P availability appear to be more pronounced in biochar-amended Mollisols of
higher water contents.

Keywords: biochar amendment; black soil; interactive effect; path analysis; phosphorus availability;
principal component analysis; sequential phosphorus fractionation

1. Introduction

As a limiting nutrient for crop growth, phosphorus (P) in soil plays a critical role in plant energy
metabolism, biochemical processes, and energy transformation [1]. A suitable level of P bioavailability
in soilcan sustain agricultural yields [2]. Although P, composed of inorganic and organic forms, is
abundant in soils (the average P content of soil is approximately 0.05% (w/w)), only 0.1% of the
total P is available to plants because it occurs mostly in insoluble forms [3]. As inorganic P (Pi) is
largely the preferred source for plant P uptake and organic P (Po) acts as a sink of soil soluble P
for the soil solution, knowledge of the different P fractions within soils is essential to understand P
bioavailability [4,5]. The sequential extraction procedure developed by Hedley et al. [6] and adapted
by Tiessen and Moir [7]and Cross and Schlesinger [8] has been efficient at obtaining various Pi and
Po fractions differing in their availability to microorganisms and plants [5]. Sui et al. [9] modified
the method of Hedley et al. [6]; they used H2O as the first extractant instead of equilibrating the soil
sample with an anion-exchange resin to identify the P fractions in biosolid-amended Mollisols. This
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method has been widely applied in research on the effects of P fractions in manure-amended soil [10],
organic and inorganic P-source-amended soil [11], and fertilized soil [12].

Mollisols, also called black soils, are mainly distributed in Northeast China and are considered
one of the most important soil resources for crop production in China owing to their high fertility and
superior physical and chemical characteristics [13,14]. However, long-term excessive and unsustainable
agronomic practices have resulted in severe degradation in soil P availability during recent decades [15].
Meanwhile, transformation and movement of P in the Mollisol of northeast China are also affected by
freeze–thaw cycles through the associated biochemical and physicochemical processes [16]. Although
soil freeze–thaw cycles are a natural phenomenon at high latitudes, recent climate change has altered
the frequency and intensity of freeze–thaw cycles during winter and early spring, mainly depending on
regional climatic conditions and the thickness of the insulating snow cover [17,18]. Significant declines
of snow cover due to warmer climate enhance soil frost in some regions [19], while in other regions
climate change may decrease frost intensity and frequency as well as the duration of soil frost [17,20].
Repeated freeze–thaw cycles can stimulate P mineralization and extractability to change P fractions
when damage to organisms and/or physical disruption of soil aggregates occur, which subsequently
affects soil P availability [18,21–23]. Other mechanisms of the effects of freeze–thaw cycles on soil
P fractions were related to microbial immobilization [24]. The dynamics of soil freezing and tha
wing events, such as the frequency, temperature, and the rate, can influence soil nutrient turnover.
The response of P fractions to freeze–thaw cycles among different soil types differ. Zhao et al. [18]
reported that continuous freezing increases NaHCO3-extractable P, which further increases significantly
following alternate freeze–thaw cycles in sandy soil. Conversely, a negative effect on sub-Arctic soil
P availability owing to a decline in available P and microbial P during freeze–thaw cycles was
demonstrated by Sjursen et al. [25]. Moreover, the inconsistent phenomenon suggests that further
research is required to clarify the effect of freeze–thaw cycles on P availability in black soils.

Biochar is a product of either thermal pyrolysis or gasification, and it is created by heating
carbon-rich biomass (feedstock) with limited or no air [26]. As biochar amendment can improve soil
P availability mediated by changes in soil properties, such as soil pH, moisture retention, and soil
microbial biomass and activity [3], biochar is proposed as a good soil-amendment for improving soil
productivity and fertility. In addition, biochar alters soil surface chemistry owing to its large surface
area and high negative surface charge and, therefore, affects P distribution in soils [27]. Previous
studies on biochar amendment predominantly concentrated on soil nutrient availability and crop
productivity during the growing period, without considering the effects of biochar amendment on the
P fractions after freeze–thaw cycles [28–30]. This suggests that clarifying the response of P fractions to
biochar amendment during freeze–thaw cyclesis essential for sustainable agricultural development in
black soil regions.

In this study, a freeze–thaw experiment was simulated in a laboratory to investigate the effect of
freeze–thaw cycles on P fractions in biochar-amended black soil. The objectives of this study were as
follows: (i) identify the change in the black soil P fractions’ response to the biochar amendment and
freeze–thaw cycles; and (ii) reveal the interactive effects between different freeze–thaw cycles and soil
moisture conditions on P availability after biochar amendment.

2. Materials and Methods

2.1. Soil Sampling and BiocharPreparation

The study was conducted at Keshan Farm in the black soil region of northeast China. The site
location ranges from approximately N48◦12′ to N48◦23′ latitude and from E125◦08′ to E125◦37′

longitude (Figure 1) [31]. Soil in the study area is a typical black soil that was classified as a Mollisol
with a clayey, loamy texture (i.e., 45% clay, 33% silt, and 22% sand). This area was chosen because
the soil type and tillage practices are representative of intensive soybean production in the region.
Soil in this area is frozen from early November and is thawed from early April to the middle of June.
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The mean annual maximum frozen soil depth is 2.5 m. The properties of the soil sample were as
follows; bulk density atadepth of 0 to 10 cm (1.1 g cm−3), pH (5.8), soil organic carbon (51 g·kg−1), total
phosphorus (0.86 g·kg−1), total nitrogen (3 g·kg−1), available phosphorus (43 mg·kg−1), and available
nitrogen (120 mg·kg−1). Soil samples were collected at a depth of 10 cm from five randomly assigned
points in the study site. The collected samples were then air-dried in the shade and sieved through a
2-mm mesh. Subsequently, the sieved soil was homogenized and stored at room temperature until the
incubation experiment.

The biocharused in this study was produced from soybean straw pyrolyzed at 500 ◦C under
anaerobic conditions. The temperature was increased at a rate of approximately 13 ◦C·min−1 and
maintained at 500 ◦C for 2 h. The furnace was naturally cooled to 25 ◦C. The biochar was ground,
passed through a 0.15-mm sieve, and mixed thoroughly before application. The organic carbon, total
phosphorus, and total nitrogen of the biochar were 169 g·kg−1, 1.5 g·kg−1, and 6.4 g·kg−1, respectively,
and its pH was 7.8. The available phosphorus and nitrogen contents of the biochar were 79 mg·kg−1

and 156 mg·kg−1, respectively.
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Figure 1. Location of the study area.

2.2. Experimental Design

An incubation experiment was conducted in 500 cm3 plastic cups containing 400 g of soil and
uniformly added biochar at a proportion of 4% [13]. Biochar-amended soil (B)samples were adjusted
to 70% of the soil field capacity equal to the study area, and incubated at 25 ◦C for 60 d. Water
content was maintained by adding deionized water every 2 d based on weight loss. Soil samples
without bio-charamendment were incubated simultaneously as controls(S) in the same conditions.
After incubation, soils (S) and biochar-amended soils (B) were divided into three equal groups to
adjust the moisture content to 22% (M1), 31% (M2), and 45% (M3), which represent half of the
saturated moisture content (22%), natural moisture content (31%), and saturated moisture content
(45%), respectively, in this study site. To stabilize the moisture content, soil samples for moisture
content treatments were pre-incubated at 5 ◦C for 3 d. There after, each different moisture content soil
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sample was separated and subjected to five different freeze–thaw cyclefrequencies:0 (FT0), 1 (FT1),
3 (FT3), 6 (FT6), and 12 (FT12). Each freeze–thaw cycle consisted of a 12-h freezing period at −10 ◦C,
followed by 12-h thawing at 5 ◦C. The unfrozen soil sample (FT0) corresponding to each different
moisture content treatment was maintained at 5 ◦C during the experimental period. Therefore, a total
number of 30 treatment combinations (i.e., a factorial 3 × 5 × 2: three kinds of soil moisture content,
five frequencies of freeze–thaw cycles, soil and biochar-amended soil), were performed with four
replicates in this study. Once all the treatments were completed, four replicated soil samples of each
treatment were mixed normally to determine soil phosphorus fractions and available P.

2.3. Soil Phosphorus Fractionation

Sequential P fractionation based on Sui et al. [9] was used in this study to investigate the change in
available P fractions that were removed on the basis of increasing chemical stability with different labile
P fractions. A uniformed 0.5 g soil sample, taken from four well-mixed replicated soil samples of each
treatment, was extracted sequentially with deionized water followed by the addition of 0.5 M NaHCO3

(pH = 8.2), 0.1 M NaOH, and 1 M HCl and shaken for 16 h after each addition. Finally, residual-P
(Res-P) was digested with H2SO4–H2O2. The NaHCO3, NaOH, and HCl extracts were divided into
two aliquots to measure TP and Pi. The P amount determined before digestion with H2SO4–H2O2 was
only Pi. Oxidation by H2SO4–H2O2 liberated Po, and the determined P was TP. Po was calculated as
the difference between TP and Pi [8,9,32]. The available P (Pa) in soil was extracted with 0.03 M NH4F
and 0.025 M HCl and measured using the molybdenum blue method [33]. The determination of P
fractions and Pa was conducted with four replications.

The H2O-Pi fraction is the most effective Pi form for plant growth [34]. NaHCO3-P (Pi and Po) are
considered labile P pools, which include some microbial P, and are weakly sorbed on the surface of
iron (Fe) and aluminum (Al) oxides P. The NaOH-P containing secondary Pi, which is bound to Fe
and Al compounds and clay edges, and Po is associated with humic and fulvic acids; it is considered
moderately labile P [35]. The HCl-P (Pi and Po) is associated with calcium (Ca) and is considered
a stable form of P. Res-P is the most chemically stable Pi form covered by sesquioxides [34]. Labile
P included H2O-P, NaHCO3-Pi, and NaHCO3-Po fractions. Pi is the sum of H2O-Pi, NaHCO3-Pi,
NaOH-Pi, HCl-Pi, and Res-P. Po is the sum of NaHCO3-Po, NaOH-Po, and HCl-Po.

2.4. Statistical Analysis

A multiple ANOVA, conducted with SPSS’s General Linear Model (GLM, Fixed Factors) was
used to compare the interaction between biochar amendment, freeze–thaw cycles, and soil moisture
content on each P fraction, and the content of Pi and Po. Significant differences in the same species of P
fractions, inorganic and organic P fractions of biochar amendment, freeze–thaw cycles, and moisture
content treatment were identified using a one-way analysis of variance (ANOVA) technique followed
by Least Significant Difference (LSD) multiple range tests. Principal components analysis (PCA) was
applied to the data on P fractions to identify overall trends in P fractions as affected by freeze–thaw
cycles and biochar amendment. To perform PCA, the variables were standardized to zero mean and
unit variance, and the analysis was performed on the correlation matrix. The applicability of the PCA
to the data sets used in this study was verified through the application of Bartlett’s sphericity test [36].
Varimax rotation was conducted to retain and rotate the first two components, whereby the variance
in each variable was redistributed so that each contributed strongly to one of the components and
weakly to the others [37]. The path analysis was used to examine the causal path of P fractions to the
available P(Pa) on biochar amendment. To apply path analysis, all the data were subjected to normality
tests. Direct and indirect effects in the path analysis were derived from multiple linear regressions of
P fractions on the Pa, and simple correlation coefficients between Pi fractions. The direct effects of P
fractions on the Pa were denoted path coefficients and were taken as standardized partial regression
coefficients for each of the soil P fractions in the multiple linear regressions against the Pa [38]. Indirect
effects of P fractions on the Pa occurred from the product of the simple correlation coefficient between
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soil P fractions and the path coefficient. The correlation between Pa and individual P fractions was the
sum of the entire path connecting two variables [39]. All statistical analyses were performed with SPSS
22.0 (IBM Institute, Armonk, NC, USA) with a significance threshold of p < 0.05.

3. Result

3.1. Interaction of Moisture Content and Freeze–Thaw Cycles on Soil and Biochar-Amended Soil
Phosphorus Fractions

When the P fraction data were analyzed using a multiple ANOVA approach, a significant effect of
moisture content, biochar amendment, freeze–thaw cycles and both of their interactions on each labile
fraction, NaOH-Po, Po, and Pa are shown in Table 1. Regardless of the large differences among other
fractions, these were influenced by freeze–thaw cycles, interactions between freeze–thaw cycles and
moisture content, and interactions between TrT, FT, and M.

Table 1. Significance values of the interactive effects for all the analyzed parameters of moisture content
(M), biochar amendment (TrT), and freeze–thaw cycles (FT) treatment.

Sources H2O-P NaHCO3-Pi NaHCO3-Po NaOH-Pi NaOH-Po HCl-Pi HCl-Po Res-P Labile-P Pi Po Pa

M 0.004 0 0 0 0 0.033 NS 0 0 0 0 0
TrT 0 0 0 0 0 0 0.001 NS 0 0 0 0
FT 0 0 0 0.001 0 0.013 0.001 0.004 0 0.012 0 0

M × TrT 0.038 0 0 0 0.014 0 0.014 0 0 0 0 0.005
TrT × FT 0.006 0 0 NS 0 NS 0 NS 0 NS 0 0
M × FT 0 0 0.002 0 0 NS NS 0 0 0.001 0 0
M × TrT
× FT 0 0 0 0.012 0.023 0.009 0 0 0 0.001 0.002 0

Note: NS represents no significance. M represents a half of saturated moisture content, natural moisture content,
and saturated moisture content; TrT represents soil (S) and biochar-amended soil (B); FT include 1, 3, 6, and 12 FT
and an unfrozen control.

3.1.1. Soil Phosphorus Fractions

The distribution of different P fractions obtained from the sequential extraction of P is presented
in Figure 2. The most significant difference between biochar amendment, freeze–thaw cycles, and
moisture content treatment is evident in the labile P fractions (Figure 2a). The ranges of labile P fractions
in soil and biochar-amended soil were 60to 87 mg·kg−1 and 88 to 106 mg·kg−1, respectively. For the
labile P fractions, the contents of H2O-P and NaHCO3-Pi were twice as high in biochar-amended soil
than in soil. With an increasing frequency of freeze–thaw cycles, the H2O-P and NaHCO3-Pi in soil
and biochar-amended soil in M2 and M3 were generally raised, while M1 showed a decrease after
biochar amendment. An average of 27% of total P was in the NaHCO3-Po in soil, and lower percent
(15%) of NaHCO3-Po was observed in biochar-amended soil. During freeze–thaw cycles treatment, the
content of NaHCO3-Po in M2 and M3 was more sensitive than M1in biochar-amended soil. Applying
the soil P fractions to all the treatments, P was mainly found under the moderate labile NaOH-P (Pi

and Po) fractions, ranging between 277 mg·kg−1 and 344 mg·kg−1. The ranges of NaOH-Pi in soil and
biochar-amended soil were 108 to 153 mg·kg−1, and 123 to 189 mg·kg−1, respectively. Although higher
NaOH-Pi content of M1 and M3 in biochar-amended soils was shown, no significant differences were
found between the frequencies of freeze–thaw cycles. Similar to NaHCO3-Po, the average NaOH-Po

contents of biochar-amended soil (163 mg·kg−1) was lower than soil (181 mg·kg−1). The HCl-Pi

fraction associated with the carbonate fraction is averaged at 66 mg·kg−1 and 91 mg·kg−1 in soil and
biochar-amended soil, respectively.
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Figure 2. Phosphorus fractions in soil and biochar-amended soil with different freeze–thaw cycles (FT)
and moisture contents (M) extracted by modified Hedley sequential method (mg·kg−1). (a) represents
labile phosphorus fractions and (b) represents all phosphorus fractions. Different lowercase letters
indicate significance among different biochar amendment and moisture contents within the same
freeze–thaw cycles at p < 0.05. Different uppercase letters indicate significant differences in the same
biochar amendment and moisture contents within the same freeze–thaw cycles at p < 0.05.

3.1.2. Inorganic and Organic Phosphorus Contents

Higher content of Pi was observed for biochar-amended soil with average values of 78% for
M1,74% for M2, and 77% for M3 of total P, as compared with 72% for M1,69% for M2, and 71% for
MC3 in soil, proving that biochar amendment increased Pi content in soil (Table 2). Unlike Pi, biochar
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amendment reduced the content in Po, which showed average values of22% for M1, 26% for M2, and
23% for M3 of total P as compared with 28% for M1, 31% for M2, and 29% for M3 in the soil.

Table 2. Inorganic phosphorus (Pi) and organic phosphorus (Po) contents in soil (S) and
biochar-amended soil (B) with different freeze–thaw cycles (FT) and moisture contents (M).

Moisture
Contents Treatment Number of FT Pi Po Pi/(Pi + Po)% Po/(Pi + Po)%

M1

S (n = 4)

0 556 ± 10abC 203 ± 18bcAB 73 ± 2abB 27 ± 2bcB
1 565 ± 18abC 199 ± 15cBC 74 ± 2aB 26 ± 2cB
3 577 ± 34aB 215 ± 5abcB 73 ± 1abB 27 ± 1bcB
6 552 ± 7abB 228 ± 7aB 71 ± 1cC 29 ± 1aB

12 545 ± 12bBC 219 ± 4abC 71 ± 1bcC 29 ± 1abC

B (n = 4)

0 637 ± 6bA 196 ± 8aB 76 ± 1bA 24 ± 1aC
1 666 ± 2aB 184 ± 8bC 78 ± 1aA 22 ± 1bC
3 666 ± 9aA 183 ± 6bD 78 ± 1aA 22 ± 1bC
6 674 ± 11aA 188 ± 6abCD 78 ± 1aA 22 ± 1bD

12 669 ± 2aA 195 ± 6aDE 77 ± 1abA 23 ± 1abE

M2

S (n = 4)

0 524 ± 17aD 210 ± 6cAB 71 ± 1aC 29 ± 1cA
1 522 ± 16aB 234 ± 8bA 69 ± 1bcC 31 ± 1abA
3 528 ± 18aC 234 ± 15bA 69 ± 2abC 31 ± 2bcA
6 512 ± 23aC 247 ± 10abA 67 ± 2bcD 33 ± 2abA

12 526 ± 5aC 259 ± 7aA 67 ± 1cE 33 ± 1aA

B (n = 4)

0 603 ± 14aB 214 ± 5aA 74 ± 1bcB 26 ± 1abB
1 573 ± 11bC 214 ± 16aB 73 ± 2cB 27.13 ± 2aB
3 555 ± 21bBC 196 ± 4bC 74 ± 1bcB 26.12 ± 1abB
6 573 ± 14bB 181 ± 8cD 76 ± 1aB 24 ± 1cC

12 551 ± 15bB 184 ± 2bcE 75 ± 1abB 25 ± 1bcD

M3

S (n = 4)

0 546 ± 19abC 204 ± 6cdAB 73 ± 1abBC 27 ± 1cdAB
1 556 ± 8aC 188 ± 17dC 75 ± 2aB 25 ± 2dB
3 528 ± 23abC 218 ± 9bcB 71 ± 2bcC 30 ± 2bcA
6 517 ± 17bC 227 ± 19abB 69 ± 2cCD 31 ± 2abAB

12 529 ± 29abBC 241 ± 16aB 69 ± 2cD 31 ± 2aB

B (n = 4)

0 656 ± 8bA 204 ± 8aAB 76 ± 1cA 24 ± 1aC
1 685 ± 7aA 187 ± 7cC 79 ± 1aA 21 ± 1cC
3 674 ± 16abA 191 ± 5bcCD 78 ± 0abA 22 ± 0bcC
6 656 ± 19bA 199 ± 11abC 77 ± 1bcAB 23 ± 1aCD
12 661 ± 10bA 204 ± 6aD 76 ± 1cA 24 ± 1abE

Note: Different lowercase letters in the same treatment within the same moisture content indicate significance
among five freeze–thaw cycles at p < 0.05, Different uppercase letters in the same number of freeze–thaw cycles
indicate significant differences within biochar amendment and moisture content at p < 0.05.

3.2. Effects of BiocharAmendment on Soil Phosphorus Availability

To evaluate the effects of biochar amendment on soil P availability, a path analysis was conducted
to analyze the relationship between the individual Pi fractions, and evaluate the significance of its
direct and indirect effects on Pa in Table 3. Backward-stepwise regression was used to identify the
P fractions that explained most of the variation in Pa. Before biochar was amended to the soil, The
NaOH-Pi, NaHCO3-Po, and HCl-Pi directly affected Pa, and the highest contribution of NaOH-Pi in
direct effects was shown, followed by NaHCO3-Po and HCl-Pi. Moreover, analysis of the indirect
effects indicated that the indirect path coefficients of NaHCO3-Po on the Pa via NaOH-Pi were relatively
higher than via HCl-Pi. Soil NaHCO3-Po has a large direct coefficient, and the indirect path coefficient
of NaOH-Pi via NaHCO3-Po was larger than that via HCl-Pi fractions. Soil HCl-Pi only had a large
direct path coefficient, which suggested that it mainly affected Pa through a direct path. After biochar
amendment, change in the effects on soil P availability showed that HCl-Pi and NaOH-Po had a direct
effect on soil P availability.



Sustainability 2019, 11, 1006 8 of 12

Table 3. Direct effects and indirect effects of individual P fractionson available P (Pa) in soil (S) and
biochar-amended soil (B).

Treatment Variable Direct Path Coefficient
Indirect Path Coefficient

Total
→NaOH-Pi →NaHCO3-Po →HCl-Pi

S (n = 60)
NaOH-Pi −0.39 ** −0.1044 −0.0578 −0.1622

NaHCO3-Po 0.348 ** 0.117 −0.0085 0.1085
HCl-Pi 0.244 ** 0.0924 −0.0122 0.0802

B (n = 60)
Variable Direct path coefficient

Indirect path coefficient
Total

→HCl-Pi →NaOH-Po

HCl-Pi −0.393 ** 0.0009 0.0009
NaOH-Po 0.285 ** −0.0012 −0.0012

Note: * Significant at p < 0.05, ** Significant at p < 0.01.

3.3. Factors Affecting Phosphorus Fractions in Mollisols

A principal component analysis (PCA) was used to separate the treatments based on their P
chemistry, and much of the variability in soil data matrices could be explained by PCs (Figure 3).
The PCA results revealed that all the soil samples were clearly separated along the two components
(PC1 and PC2). The P fractions of H2O-P, NaHCO3-Pi, NaHCO3-Po, NaOH-Pi, NaOH-Po, and HCl-Pi

were highly correlated with PC1 (55.79%), whereas NaOH-Pi and Res-P were highly correlated with
PC2 (16.58%). The PCA showed that samples were mainly grouped closely by moisture content
treatment, indicating that moisture content was the main drive factor in these variations of the P
fractions. The M1S and M1SFT differed from M1B and M1BFT along PC1, indicating that biochar
amendment could strongly affect the P fractions at M1, regardless of the freeze–thaw cycles treatment.
The biochar amendment did not distinctly change the P fractions in M2. The M3S apart from M3SFT,
M3B, and M3BFT implied that the effect of biochar amendment and freeze–thaw cycles stimulated
changes in the P fractions in M3.
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moisture content (45%), respectively. (S) and (B) represent soil and biochar-amended soil, respectively.
FT represents freeze–thaw cycles including 0, 1, 3, 6, and 12 freeze–thaw cycles.
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4. Discussion

4.1. Effects of Freeze–Thaw Cycles and Moisture Content on Phosphorus Fractions

Soil P fractions were strongly controlled by a combination of physical, chemical, and biological
reactions, as reported by Shi et al. [40]. Significant changes in P fractions induced by freeze–thaw
cycles and moisture content are shown in Figure 2 and Table 1, in which the changes of P appear to
be more pronounced in soils of higher moisture content (Figure 3). Similar to Perrott et al. [41] and
Fabre et al. [42], increasing labile P fractions was shown in this study. However, Xu et al. [43] studied
mineral soils in China and found that multiple rounds of freezing decrease the concentration of P in
soil solutions. Some studies mainly attributed the changes in labile P to higher organic matter content
that originated from the release of microbial compounds by lysis or from the damage of microbial
cells on freeze–thaw cycles [43]. This organic matter served as a direct source of labile P in soil or
enabled recalcitrant nutrient transformation into a more labile nutrient pool, contributing to the flush
of nutrient mineralization and solubilization [44]. In addition, soil aggregate stability decreased with
repeated freeze–thaw cycles, and such a disturbance could increase the Fe-bound P release, which was
adsorbed, by low bonding energy, to the surface of ion Fe [45,46]. Higher moisture content had a more
pronounced effect on labile P fractions because the disruption of soil aggregates were intensified owing
to soil freeze–thaw cycles [47] and stimulated the release of labile P. This is similar to the findings of
Xie and Gao [48], from their research on the effect of freeze–thaw cycles on P availability in alpine
meadows. The change in HCl-P and NaOH-P after freeze–thaw cycles and moisture content treatment
could also be explained by the higher organic matter content [40].

4.2. Phosphorus Fractionsand Availability Response to Freeze–ThawCycles and Moisture Content in
Biochar-Amended Mollisols

The change in P fractions and enhanced P availability after freeze–thaw cycles and moisture
content treatment were mainly the result of the direct effect of biochar amendment and the interaction
between these three treatments. In our study, distinct changes in the labile-P, NaOH-P, HCl-P, and Pa

were observed, which corresponds to the results reported in Eduah et al. [27]. The Resin-P, NaHCO3-Pi,
and HCl-Pi of soils were found to increase significantly upon biochar amendment, making P available
for plant uptake. This is consistent with the findings of other studies where in bio-charamendmentim
proved soil P availability [49]. First, higher contents of NaOH-P and HCl-P [32], mineral P [50],
and Pa [3] in biochar itself had direct effects on P fractions and availability. Second, suitable soil
conditions, which mobilize the associated microbial activity, were built after biochar application [51].
The macropores (>200 nm) of biochar could serve as habitats for soil microorganisms, such as bacteria,
fungi, and protozoa, and prevented them from being disturbed by the freeze–thaw cycles process [52].
Therefore, in conjunction with freeze–thaw cycles and moisture content, biochar amendment improved
mineralization of organic P [51]. This could explain the changes in Pi and Po in Table 2. Third, changes
of NaOH-P and HCl-P in biochar-amended soil could be attributed to increasing soil pH. When the
pH of soil increased, higher contents of exchangeable Ca significantly affected P fractions because
of Ca precipitation [53,54]. This is in agreement with our results from the pathway analysis, which
showed that the HCl-Pi negatively affects soil P availability and NaOH-Po enhances P availability in
biochar-amended Mollisols.

5. Conclusions

In conclusion, the content of labile P fractions and Pi in biochar-amended soils was higher
than in soils before they were subjected to freeze–thaw cycles, indicating that biochar amendment
enhances P availability before freeze–thaw cycles. Before biochar amendment, the increasing number of
freeze–thaw cycles could increase the content of labile P fractions. However, there were no significant
changes in inorganic P. After biochar amendment, both the content of labile P fractions and Pi increased,
but the labile P fractions decreased with increasing frequency of freeze–thaw cycles. This revealed that
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biochar amendment enhances P availability after freeze–thaw cycles. In conjunction with freeze–thaw
cycles and moisture content treatments, the P fraction of NaOH-Po improves soil P availability in
biochar-amended soil. The result of PCA showed that higher moisture content enhanced the effect of
freeze–thaw cycles on P fractions of biochar-amended soil indicating that freeze–thaw cycles impact P
availability of biochar-amended soil, particularly in arable black soil with a higher water content.
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