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Abstract: The increasing international trade of agricultural products has contributed to a larger
diversity of food at low prices and represents an important economic value. However, such trade can
also cause social, environmental and economic impacts beyond the limits of the countries directly
involved in the exchange. Agricultural systems are telecoupled because the impacts caused by trade
can generate important feedback loops, spillovers, rebound effects, time lags and non-linearities
across multiple geographical and temporal scales that make these impacts more difficult to identify
and mitigate. We make a comparative review of current impact assessment methods to analyze
their suitability to assess the impacts of telecoupled agricultural supply chains. Given the large
impacts caused by agricultural production on land systems, we focus on the capacity of methods
to account for and spatially allocate direct and indirect land use change. Our analysis identifies
trade-offs between methods with respect to the elements of the telecoupled system they address.
Hybrid methods are a promising field to navigate these trade-offs. Knowledge gaps in assessing
indirect land use change should be overcome in order to improve the accuracy of assessments.

Keywords: impact assessment; indirect land use change; telecoupling; agricultural commodities;
food systems; life cycle assessment; sustainability; supply chain

1. Introduction

In current globalized economies, the stages of the life cycle of a product (from raw material
extraction, manufacturing, distribution, consumption to end of life) occur across geographical scales.
The increasing international trade of agricultural products brings high revenues but has increased
environmental externalities across the globe [1–3]. The supply chain of agricultural products, defined
as the set of processes and activities needed to produce and deliver a product [4,5], demands large
quantities of resources such as water, land, energy, fertilizers and pesticides and generates large
quantities of waste, pollutants and emissions [2,6]. The activities along the supply chain of these
products can contribute significantly to climate change, eutrophication, land use change, biodiversity
loss, resource depletion, water, soil and air pollution and other impacts that pose local and global
environmental threats [2,7]. Global forces play an important role in modulating local impacts, therefore,
a correct environmental impact assessment demands an improved understanding of the telecoupled
nature of the drivers and effects involved [8]. We refer to the telecoupling framework where the term
“telecoupled” is used to describe the socioeconomic and environmental interactions occurring across
distances that influence a system [9] (in this case the system is an agricultural telecoupled supply
chain). The multiple dimensions of the global sustainability challenges are not necessarily aligned and
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trade-offs between these dimensions may occur. Therefore, working towards more sustainable supply
chains requires a deep understanding of the global telecoupled dynamics to ensure that negative
trade-offs between sustainability dimensions or locations are limited.

The telecoupling framework [9] is helpful to conceptualize the relevant processes involved
in international trade as it describes how the life cycle stages of a given product and the impacts
generated might occur across temporal and geographic scales due to the complex socioeconomic and
environmental interactions between the embedded, multiple systems. Beyond its geographic and
temporal outspread, international trade entails complex dynamics such as cause-effect feedback loops,
spillovers and leakage of impacts, legacy effects, time-lags, cascading effects and non-linearities [9,10].
These dynamics imply that agricultural systems embedded in international trade and their impacts are
telecoupled. Notwithstanding their inherent presence, impact assessment methods usually describe
these complex dynamics as external variables, mostly excluding them from the core analysis [11–13].
One reason for this is the lack of integration between methods coming from the social, environmental
and economic sciences that are needed to evaluate such diverse impacts [13]. Another reason is the
inexistence of suitable methods able to fully incorporate these telecoupling dynamics across different
spatial and temporal scales into the analysis.

Previous reviews of environmental impact assessment methods applicable to agricultural
products have had different focus. Ness and colleagues [14] categorized tools for sustainability
assessments, including indicators, product-based assessment tools and integrated methods. Herva and
colleagues [15] synthetized the environmental indicators commonly used by corporations to evaluate
the environmental performance of their products and processes. Čuček and colleagues [16] reviewed
several social, economic, environmental and composite footprints used to evaluate sustainability
with the goal of clarifying definitions, calculation methods and units used. Henders and Ostwald [3]
analyzed several methods used to account for land-related leakages caused by policy actions and
international trade at global and aggregated scale without focusing on the specific supply chains
of products. Bruckner and colleagues [17] analyzed the capacity of some physical, environmental,
economic and hybrid assessment methods to account for the land footprints of agricultural, forestry
and livestock products. Verburg and colleagues [18] reviewed and compared methods to model
human-environment dynamics with special emphasis on feedbacks and teleconnections as key
characteristics of the Anthropocene. Millington and colleagues [19] described the capacity of
agent-based, system dynamics and equilibrium models to represent telecoupled food trade systems
and proposed a method for their hybrid integration. Previous reviews referring to telecoupled
dynamics have focused more on top-down approaches, arguing that they cover the global dynamics
that characterize a typical telecoupled system. However, none has specifically analyzed the capacity
of methods to assess, in a spatially explicit manner, the indirect land use changes (iLUC) caused
by agricultural supply chains in specific locations (bottom-up approach) while also considering the
non-local drivers (top-down approach) that shape the impacts of telecoupling systems.

This review identifies and compares the following methods that are available to assess the direct
and indirect environmental impacts caused by the supply chain of traded agricultural products: life
cycle assessment, environmental footprints and indicators, agent-based models, system dynamics
models, equilibrium models and land use models. We aim to compare these methods on the
extent to which they can evaluate the impacts of telecoupled systems. Agricultural production
is inherently embedded in socio-ecological systems where humans and the environment interact. Since
socio-ecological systems show high spatial variation, the methods to model them are better suited
if they have a spatially-explicit character [20]. Socio-ecological systems also have high temporal
variations, therefore, we also emphasize the temporal focus of these methods. The sustainable
management of complex telecoupled production systems requires that methods have an adequate
spatial and temporal coverage to be policy-relevant [12,18]. Because in agriculture, livestock and
forestry, land systems play a central role [21], we use land use change as a bridge concept to analyze
the social, economic and environmental impacts that are caused along supply chains. Therefore,
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we emphasize the capacity of methods to account for direct and indirect land use changes. We identify
the strengths and weaknesses of the methods and highlight current knowledge gaps to propose future
improvement pathways.

2. Materials and Methods

First, to frame the impact assessment methods, the representation of a telecoupled system for a
generalized agricultural supply chain was elaborated based on different concepts available in the field.
The diagram shown in Figure 1 was elaborated by including the main systems and agents representing
the social, economic, political and environmental processes embedded in such telecoupled systems,
and the flows, feedbacks and impacts arising from their interaction. This representation follows
Liu et al. [9] for the general telecoupling framework and Meyfroidt et al. [22] for the particular case
of land-related dynamics. Specific political and economic processes are based on Lambin et al. [23]
and Albareda et al. [24]. Social processes are based on Lenzen et al. [25], Vermeir and Verbeke [26] and
Cummins et al. [27]. Environmental processes are based on Rasmussen et al. [28] and Lambin and
Meyfroidt [29].

Subsequently, a search of methods used to assess the environmental impacts of agricultural
commodities was conducted in Science Direct, Web of Science and Google Scholar using a combination
of the following words: impact assessment, telecoupling, agricultural supply chain, sustainability
assessment, agricultural products, land use change, international trade, footprints, indicators, life
cycle assessment, input-output analysis, deterministic equilibrium models and agent-based models.
The first search round included the key word “review” to find review articles. The literature references
from these reviews were also used to deepen the analysis of specific methods. A second search round
did not include the word ‘review’ to include all existing relevant methods. Finally, a comparative
description of the capacity of methods to assess telecoupled impacts was carried out. This analysis
was based on the following criteria:

• System boundary definition: The ability of assessment methods to represent actual impacts highly
depends on the broadness of the system boundaries. We evaluated the capacity of methods to
account for both top-down (global scale) and bottom-up (local scale) dynamics. Truncation points
either limit the capacity of models to capture specific global interactions affecting the system
under study or cause models to lack granularity and the capacity to capture important fine-scale
dynamics [13,30].

• Geographic and temporal approach: Because the impacts of telecoupled systems occur across
distances and time, it is important to evaluate the spatial and temporal scope of methods. Methods
can be better suited to local, regional or global scales and have a static or forecasting nature [18,31].

• Spatial explicitness: Landscape heterogeneity and local features of land systems largely condition
the extent and intensity of environmental impacts [3,12]. Therefore, the capacity of methods to
spatially allocate impacts is analyzed with the emphasis on direct and indirect land use change.

• Integratedness: The extent to which a given method is capable of incorporating social and
economic dimensions along with the environmental ones, as suggested by the triple bottom line
criteria of sustainability, is analyzed [31].

• Telecoupling dynamics: The capacity of methods to account for complex dynamics arising within
telecoupled systems such as indirect impacts, feedback loops, spillovers, leakage, rebound effects,
time lags, legacy effects and non-linearities is analyzed [9].

The methods were classified according to the following general method families: life cycle
assessment (LCA), footprints and related indicators, rule and process-based models, deterministic
equilibrium models and land use models (LUMs). Rule and process-based models include
agent-based models (ABMs) and system dynamics models (SDMs). Deterministic equilibrium
models include computable general equilibrium models (CGE), partial equilibrium models (PE)
and input-output analysis (IO). These general method families were based on the categories previously
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set by Verburg et al. [18], Millington et al. [19], Herva et al. [15], Henders and Ostwald [3] and
Bruckner et al. [17]. Finally, based on the analysis, some pathways for methodological improvements
are proposed.

3. Results

A conceptual representation of the components and dynamics embedded in a generalized
telecoupled supply chain is displayed in Figure 1. In this diagram, a simplified version of the most
important agents embedded in consuming (receiving), producing (sending) and spillover systems
are displayed. Moreover, the most important causes and impacts originating from the interactions
between those systems are shown. The different color frames give the first indication of the components
addressed by the different methods analyzed in this paper. Short definitions of the terms included in
this graph are included in Table 1.
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Figure 1. Representation of the main elements (systems and agents) and dynamics (flows,
causes/conditions and impacts) embedded in a generalized telecoupled agricultural supply chain.
Land system impacts, socio-economic impacts and biophysical impacts are represented repeatedly
in spillover systems to describe the chain of impacts that can occur as a consequence of telecoupled
systems. Different frame colors indicate the main focus of the methods reviewed in this paper to
facilitate the understanding of the extent of their analytic capacities. LCA: life cycle assessment; CGE:
computable general equilibrium models; PE: partial equilibrium models; IO: input-output analysis;
ABM: agent-based models; LUM: land use models; SDM: system dynamics models.

The following subsections describe the main groups of methods to assess the environmental
impacts caused by telecoupled agricultural supply chains. The main characteristics of the methods are
summarized in Table 2. The description provided in this table refers solely to the main and most basic
version of each method. Features of hybrid or integrated methods are analyzed along with the results
and discussion.
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Table 1. Definitions of main terms used related to the telecoupling framework. Based on Liu et al. [9].

Term Definition

Feedback Process by which an effect caused by one system to another
system, impacts back to the first system.

Spillover system System that is affected by/or affects the direct interaction of two
other different systems (sending and receiving systems).

Leakage Unintended negative effect of a sustainability action elsewhere
than the target place.

Cascading effect Process by which a system affects other multiple systems in
sequence as a result of telecoupling dynamics.

3.1. Life Cycle Assessment

3.1.1. General Description

Life cycle assessment (LCA) is a quantitative screening tool used to identify environmental
impacts occurring along the supply chain of a product or service starting from raw material extraction
to end of life. Because it allows the identification of environmental hotspots, it has been used as a
decision-tool for initiatives promoting sustainability [32,33]. LCA follows four steps: goal and scope
definition, inventory analysis, life cycle impact assessment (LCIA) and interpretation [7,33]. The first
phase defines the objectives of the study, sets the boundaries of the system and selects a functional unit
to be used as a reference for all the impact calculations. The inventory phase compiles all data about
the inputs and outputs of material and energy in each life cycle stage. LCIA uses this information to
calculate indicators for the impact categories selected, which can include, for instance, global warming
potential, biodiversity damage, eutrophication, ozone depletion and land use change. The conversion
of data into impact units is done through weighting and standardization processes. The interpretation
stage answers the questions set in the objectives of the study. LCA is attributional when it analyses
current or past processes, and consequential (CLCA) if it aims to forecast the impacts of a given policy
decision on the system under study [34–36].

3.1.2. General Limitations

LCA is mainly designed to perform fine-scale analysis on specific products or services; broader
studies are constrained by the high data demand. Although in theory LCA analyses the entire
supply chain of a product, in practice, it allows the exclusion of any input or output embedded
in the life cycle and even excludes entire production stages that might significantly contribute to
impacts. However, new applications with broader scope that allow the evaluation of sectors or entire
economies are being developed [32]. The choice of impact categories and indicators is arbitrary [37]
and depends on the goal of the assessment. This means that LCA studies lack standardization and
comparability. Although guidelines of best impact indicators have been proposed [38–40], current
LCA practices are still limited in their inclusion of important categories such as biodiversity, land-use
change and social-economic aspects in an effective and righteous way [12,38,41,42]. Other comments
in the literature on the limitations of LCA include the reliance on average (not place-specific) data of
representative industries [17] and treating impacts as linear [43]. This non-differentiation of spatial
heterogeneity limits the geographic-specificity of LCA. Spatially-explicit LCAs are needed to facilitate
decision-making but they might be difficult to achieve because data about the location of suppliers and
final consumers are rarely found [33]. Moreover, the use of pre-defined and year-specific conversion
factors for the calculation of impacts [44] constrains the application of LCA to specific time periods,
complicates comparison, and prevents the construction of long-time series. Furthermore, applications
of LCA that integrate the social and economic factors that closely influence the environmental impacts
need to be encouraged to provide better insights for sustainability [13,45–48].
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Table 2. Comparative description of main desired attributes of methods to assess telecoupled systems.

Method Family Telecoupling Aspects
Analyzed System Boundary Definition Consider Landscape

Heterogeneity & iLUC Integratedness Geographic Scale
Suitability

Temporal
Approach

LCA

Except by CLCA, it cannot
account for feedbacks.

Spillovers can be accounted
with system

boundary expansion.

Boundaries around a product or
service usually exclude indirect
impacts. Considers large-scale

forces as external variables.
Potential for expansion.

No

Usually only focus on
biophysical impacts but

the incorporation of
social and economic ones

is possible.

Local scale Static

Footprints/Other
Indicators

Feedbacks are not
accounted. Spillovers can
be accounted with system

boundary expansion.

Boundaries strictly around
territorial units or agents. Exclude
several upstream and downstream

impacts. Consider large-scale
forces as external variables.

Limited because of the
use of average

transformation factors.

Indicators available for
social, economic and

environmental impacts.

Regional to global.
Finer scale depends
on data availability.

Static

CGE/PE/IO

CGE and PE analyze
economic feedback loops

and spillovers occurring at
large scale. IO cannot

include feedbacks.

Broad boundaries but poor
granularity that ignores important
intermediate causes and impacts.

Boundaries around global
economy or sectorial economies.

No. Some CGE and PE
can account for
iLUC from an

economic perspective.

Based on economic
factors but hybrid

approaches can integrate
social and

environmental variables.

Regional to global
Forecast

(CGE/PE).
IO is static.

ABM/SDM

Can parameterize feedback
loops and spillovers at least

in a qualitative manner.
Can analyze

multi-temporal, multi-level
and multi-disciplinary

dynamics.

Flexible boundaries from narrow
to broad ones. Boundaries around
agents (ABM) or around the entire
system (SDM). Multiple temporal

and spatial scales.

No
Can parameterize

environmental, social and
economic factors.

From local to global
depending on data

availability.

Allow for
scenario analysis.

LUM

Some models allow the
integration of feedbacks
and spillovers but only

within the spatial extent of
the study area.

Boundaries depend on the
modelling approach but are more
often broad. However, this means

poor granularity that ignores
important intermediate causes and

impacts. Boundaries around the
territory (ies) under study.

Yes

Depends on the model
but they often emphasize

more on biophysical
factors.

Mainly regional to
global depending on

the model.
Forecast

Abbreviations stand for: LCA: life cycle assessment; CGE: computable general equilibrium models; PE: partial equilibrium models; IO: input-output analysis; ABM: agent-based models;
SDM: system dynamics models; LUM: land use models.
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3.1.3. Suitability for Telecoupled Systems

Despite the high flexibility of LCA, most current applications are product-centered and assume
the dynamics occurring beyond the strict supply chain of a product (i.e., global economy, indirect
impacts) as external variables to the model. Therefore, LCA applications need to expand the system
boundaries to be able to account for upstream and downstream spillovers of impacts caused by
telecoupling dynamics. With respect to that, the flexibility in the selection of impact categories is an
attractive feature because it allows the consideration of several types of impacts. To quantify spillovers,
first a deeper understanding of the cause-effect relationships arising along life cycle stages must be
promoted, and the appropriate data to account for their impacts must be generated. The first issue is a
challenge that extends beyond the LCA community, and the second one faces limitations regarding
data transparency and accessibility. CLCA is a promising application because it extends beyond the
purely biophysical focus of LCA by also analyzing the influence of the global economy on the system
under study [33,34,36,49]. CLCA can also include non-linear impacts to study complex dynamics
extended over time, such as time-lags and legacy effects. However, improved integration with tools
having a forecast capacity would be necessary. The incorporation of other telecoupling dynamics such
as feedbacks requires the integration of LCA with other methods capable of addressing these processes.
Examples of input-output LCA and the integration of computable general equilibrium (CGE) and
partial equilibrium models (PE) into LCA go in that direction [13,34,50]. Large-scale spatially-explicit
analysis might be difficult to achieve or might carry high uncertainties due to the lack of place-specific
data and the use of non-specific weighting and transformation factors [7]. The calculation of region and
landscape-specific transformation factors needs to be encouraged. Studies such as van Zelm et al. [51]
and Koellner and Scholz [52] shed light on this challenge. Data availability and quality are other
related challenges, especially if LCA aims to assess the spillover impacts on land systems. Currently,
most LCA studies that account for land use impacts are mainly based on indicators of land occupation
and land transformation [12,53–55]. In this sense, the integration of LCA with land use models could
contribute to improving the quantification and spatial allocation of land system impacts. Some recent
applications in this direction include LUCI-LCA [12]. Based on land-change modelling and ecosystem
services assessment methods, LUCI-LCA spatially assesses and forecasts the impacts of agricultural
products on land-use and ecosystem services. There are several methodological approaches proposed
to incorporate land use change in LCA [52,56–59]. However, most of them rely on area data of the
occupied and transformed land and disregard the importance of iLUC caused by the interaction with
other land uses, market forces and social dynamics. More explicit approaches to address iLUC and LCA
include Di Fulvio and colleagues [60] who coupled LCA with the global land use model GLOBIOM
(see Table S2 in the Supplementary Material) to quantify and allocate iLUC and biodiversity loss due
to the international trade of biofuels. Other LCAs coupled with equilibrium models include [61,62].
Schmidt et al. [63] propose a conceptual framework to assess iLUC in LCA based on a biophysical
model. Although the product-focus of LCA makes it an attractive tool to operationalize sustainable
agricultural supply chains, there is no consensus about how to include iLUC in LCA, as is reflected in
the variation in the approaches indicated above [64].

3.2. Footprints and Related Indicators

3.2.1. General Description

Environmental footprints are quantitative measures used to assess environmental performance
and to track the human appropriation of natural resources [15,16,65]. Footprints are frequently used
to assess human populations, countries, companies and, less frequently, products [6]. Footprint
indicators have different definitions, scopes and calculation methods depending on the developer of a
specific footprint measure [16]. Footprints calculate the amount of resources consumed (i.e., water,
land, etc.) or released (i.e., greenhouse gases, nitrogen, etc.) and standardize them into particular
units (usually area units or other units specific to the footprint) [16,21]. While LCA integrates different



Sustainability 2019, 11, 1162 8 of 24

impact categories, most footprints account for a specific type of impact, such as impacts on water
resources, greenhouse gases, biodiversity damage, land erosion, nitrogen pollution, among others and,
as such, they can be incorporated into LCA as impact factors [16]. Footprints focused on social and
economic aspects are in the early development stage [16]. The well-known ecological footprint (EF)
is a composite measure aiming to evaluate sustainability in a comprehensive manner. EF accounts
for the direct and indirect demand of resources and the required capacity to assimilate the waste and
emissions generated by the subject under study in a given year. This evaluation focuses only on the
following land use types: cropland, fishing grounds, grazing land, forest, built-up land and carbon
uptake land [66,67]. EF calculations are based on biocapacity, which is the capacity of a certain type of
land to regenerate its own resources and assimilate emissions [16,65,68]. To allow comparability, these
specific biocapacities are later converted into global hectares by using equivalence factors that relate a
them to the average global biocapacity. The human appropriation of net primary production (HANPP)
is a footprint indicator that represents the capacity of the land to produce biomass (net primary
productivity, NPP) accounting at the same time for the land depletion caused by human activities [69].
The embodied HANPP (eHANPP), measures the amount of HANPP caused by the supply chain of a
product and it has been used to evaluate the impacts of trade. eHANPP accounts for the non-linear
impacts of production activities because it uses NPP as basic measure, which is an attribute of land
that can only be used once, and therefore, does not remain constant [1]. Contrary to EF, eHANPP is
measured in biomass units (tons of carbon or dry-matter biomass) [70,71].

3.2.2. General Limitations

EF and eHANPP are indicators usually calculated for territories with political boundaries. These
indicators do not account for upstream or for downstream resource demands and emissions generated
beyond the studied system. They are usually better suited for regional or global studies because
they rely on highly aggregated data (normally at national level) that lack geographic specificity.
Fine-scale data at product or corporate levels are usually not available [16,65]. EF and eHANPP are
static, meaning that they measure environmental performance only at a given point in time, and thus,
cannot consider long-term effects [66,72]. EF has limitations in incorporating impacts from dynamic
processes affecting the biocapacity of land, such as land degradation, intensive land use and resource
depletion [66,72]. Moreover, EF does not consider the contribution of intensive agriculture and other
technological improvements to productive systems and waste assimilation [72]. These methods
provide easy-to-understand single measures but the trade-offs generated by the highly aggregated
approach used to achieve them is a subject of debate [72].

3.2.3. Suitability for Telecoupled Systems

Most footprint studies set the boundaries of the system as political borders and exclude the
telecoupling dynamics interacting with national accounts. EF, for instance, accounts for the resources
consumed and emissions generated within a territory in a certain year without considering the impacts
from exports and other external dynamics [72]. However, there are recent applications of EF based on
input-output data that account for the impacts generated by international trade [65,72], thus capturing
economic dynamics. eHANPP is based on the differential HANPP consumed and produced by a nation,
and as such, it accounts for the impacts of international trade. The incorporation of spillovers in the
calculations would demand enhanced traceability of the primary products used for the consumption
or production of a country or agent and the waste and emissions generated. A concrete example in this
direction is provided by Kastner et al. [73] who introduce an algebraic algorithm to trace the origin of
the primary products used in a product consumed elsewhere based on bilateral trade data. Moreover,
the inclusion of spillovers requires broadening the environmental parameters so far considered in these
footprint indicators that can have significant impacts in supply chains (such as emission flows) [21].
The same applies for iLUC spillovers because the land footprint calculation methods only account
for the direct land used and disregard the indirect land use changes caused, for example, by market
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and social dynamics and the competition between different land uses. The inclusion of long-term
effects into the calculations would need an improved understanding of the dynamics occurring beyond
the biophysical ones and would probably demand the calculation of prospective time series. These
methods are not designed to account for feedbacks but could be coupled with methods able to address
them. The assessment of non-linear impacts requires the improvement of conversion and equivalence
factors, which in turn requires an improved understanding of cause-effect mechanisms. Finer-scale
spatial analysis needs to overcome data limitations and the creation of place-specific conversion factors.
This would allow the operationalization of landscape heterogeneity and will provide better tools for
spatially-explicit analysis. Nevertheless, it is important to note that footprints and indicators can help
to incorporate the specific environmental dimensions that other methods lack.

3.3. Deterministic Equilibrium Models

3.3.1. General Description

The economic and environmental impacts embodied in international trade have been modelled
with economy-based methods such as input-output analysis (IO), computable general (CGE) and partial
equilibrium (PE) models. IO is an empirical method to model market dynamics by calculating linear
equations to describe inter-industry relationships in a given economy based on demand data [74,75].
It is traditionally based on transaction tables of yearly monetary flows between economic sectors of
countries [74]. Recent IO analysis based on biophysical input-output tables have been proposed [76].
IO can be considered as a component of CGE and PE models [74,77]. CGE and PE are dynamic models
that are built on the conceptual basis of IO but with important differentiations [75,77]. CGE and PE
model markets and economic sectors, respectively, and provide future economic projections for a
defined time frame based on optimized equilibriums (long term economic equilibrium solutions)
between demand, supply and price [3,77]. CGE uses the technical coefficients obtained with IO
but incorporates, among other things, supply and price data [74,75]. CGE and PE consider that
both supply and demand regulate each other in perfect equilibrium through feedback loops (market
feedbacks), which allows them to model international economic competition [75]. IO is better suited
for small-scale analysis (i.e., national) whereas CGE is more appropriate for larger scales (i.e., regional
or global). Both methods use input-output tables of global databases such as EoRA, GTAP, EXIOBASE
or WIOD [78–82] as their core data (see Table S1 in the Supplementary Materials for more details).
These tables report on the monetary transactions between countries and economic sectors including
exports, capital formation and final consumption [83].

3.3.2. General Limitations

Due to the highly aggregated input data (non-differentiated production sectors) and the large
set of assumptions, these methods often carry large uncertainties and lack granularity for fine-scale
studies (i.e., product level) [2,3,11]. IO is static (no forecast capacity) because it only analyses past data
and because it is based on constant coefficients that do not incorporate dynamics (i.e., price changes,
technological changes and capital instability) that would provide future projections [77]. Moreover,
IO assumes unlimited supply of products and homogeneous global prices [77]. CGE and PE assume
rational economic behavior, economic equilibrium between supply and demand, homogeneous global
prices and perfect economies (perfectly competitive markets, zero transaction costs and homogeneous
product quality) [3,18,75]. Additionally, IO databases are available only for certain years, for certain
countries and with distinct sector-detail information (usually highly aggregated). Finally, because
they come from the economic field, these methods mostly do not include environmental and social
interactions that can feedback on the economic dynamics.
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3.3.3. Suitability for Telecoupled Systems

The system boundaries of IO, CGE and PE are set at broad scales (national, global and sectoral)
which allows the incorporation of large-scale economic dynamics into the analysis and makes them
very appealing for studying telecoupled systems. However, one disadvantage of such an approach
is that these methods cannot consider place-specific dynamics, so fine-scale studies are difficult to
undertake with these models. Because the CGE and PE models integrate non-linear economic dynamics
by using complex solution algorithms [77], they are capable of accounting for market feedbacks loops
and non-linear responses. Single IO analysis (at country level only) cannot integrate feedback loops but
multi-regional IO (MRIO) analysis can [84]. Therefore, CGE, PE and MRIO are promising methods to
assess telecoupled systems at global scale. Moreover, by considering the broader economic spectrum,
CGE, PE and IO help to calculate economic spillovers and indirect, economy-linked impacts. These
features have inspired LCA practitioners to integrate IO into their analysis with the goal of expanding
the product-centered analysis of a normal LCA with the impacts of international trade on a supply
chain [83,84]. Improvement in the resolution of these methods would need more disaggregated data
about production sectors in databases. Continuous time-series and data for more countries are also
needed. CGE and PE provide forecasts but to account for time-related telecoupling dynamics (such as
time-lags, legacy effects and cascading effects) they need improved algorithms. The integration of
environmental and social variables would also improve the forecasting practices and would allow
them to reflect the full spectrum of dynamics. There are several hybrid approaches documented
in this direction, such as the environmentally extended input-output analysis method that aims at
analyzing the impacts that international trade has on the environment [84,85]. Besides, by integrating
IO, footprints could estimate the embodied environmental impacts of production, consumption,
imports and exports [21,84]. Regarding land systems, CGE, PE and IO have been combined with
land use allocation models to analyze the iLUCs caused by international trade in a spatially-explicit
manner [84,86–89]. These methods are highly suitable to evaluate feedbacks and spillovers (including
iLUC) in a spatially-explicit manner if coupled with land use models and methods accounting for
specific environmental impacts [3,17] as done by [60–62] with LCA. Such combinations are often
made by downscaling the aggregated results with simple spatial algorithms following some kind of
land suitability map [90]. However, transformations from monetary data to land use change values
are based on global or regional average yields that deny the importance of land heterogeneities [3].
Moreover, downscaled land change patterns do not feedback on the global equilibrium calculations.

3.4. Rule and Process-Based Models

3.4.1. General Description

Two groups of rule and process-based models that are relevant to telecoupling are agent-based
models (ABMs) and system dynamics models (SDMs). ABM is a computer-simulated method designed
to understand the dynamics of a system and make forecasts about it. They model agents’ behavior
(agency) (i.e., humans, institutions or any social structure) and their interactions with their environment
based on a set of decision rules that represent assumed or observed behavior [18,91,92]. These
decision rules are represented in a finite space and time in a quantitative or qualitative manner in
the model [93,94]. ABMs allow the parameterization of human interactions, adaptation and learning
processes and the diversity and uncertainty of human behavior in a flexible and context-specific
way [92,94]. On the other hand, SDMs are flexible computer-modelling frameworks to understand the
behavior of a given system by representing the processes and relationships occurring between their
elements. SDMs aim to go beyond the representation of cause-effect relationships towards a more
holistic understanding of the functioning of systems [95]. To do so, SDMs use mathematical equations
and decision rules to parameterize processes and relationships [30,96]. Because SDMs and ABMs are
general modelling frameworks they can be applied at local, regional or global scales [19].
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3.4.2. General Limitations

Although both ABMs and SDMs are very flexible modelling frameworks, in practice, their data
demand can limit the expansion of the system boundaries, the integration of multi-level data and their
application at broad geographic scales [18]. Therefore, ABMs are better suited for fine-scale studies
and global applications are limited. The flexibility of ABMs and SDMs has been criticized for including
several decision rules and assumptions that do not rely on any economic, physiological or sociological
theory [92]. Due to the strong bottom-up approach of ABMs, the integration of exogenous dynamics
operating at larger scales (i.e., global trade and price development of agricultural commodities)
is limited [18]. Although in theory, ABMs and SDMs allow forecasting based on past trends, most of
them are not used for this purpose but for understanding systems [92,97].

3.4.3. Suitability for Telecoupled Systems

The possibility of parameterizing agents’ behavior has made ABMs useful for modelling
socio-ecological systems (i.e., to model land use change) [20,91–94,98,99]. Recent articles argue that
ABMs are a highly valuable tool to parameterize the complex dynamics occurring in telecoupled
systems because they can parameterize feedbacks and address spillovers [93,100]. This is because
ABMs can represent the external forces (such as climate change, global market influences, etc.) playing
outside the boundaries of a defined system, and they can integrate data across multiple spatial
and temporal scales [93,101]. SDMs are also suitable to incorporate these and other telecoupling
dynamics (i.e., feedback loops, rebound effects and indirect impacts) [13,19,102]. This is because the
conceptualization and parameterization of feedback loops with decision rules is a central component
of SDMs [19,103]. The feedback loops determine the behavior (response) of a system; hence, by altering
the parameters, SDMs are advantageous for scenario analysis [19]. Moreover, because the data
demand of these methods is very flexible (ranging from qualitative to quantitative), the inclusion of
the multiple variables embedded in telecoupled systems find less constraints than purely quantitative
methods [19,104]. ABMs and SDMs also allow the simultaneous parameterization of several processes
affecting human interactions such as biophysical, socioeconomic and demographic processes [93].
This can be done through the integration of footprint measures or environmental indicators [102].
This feature is appealing for methods to assess the impacts occurring in telecoupled systems, but the
assumptions set in models must be improved if the integration of multi-level and multi-disciplinary
variables is to be done consistently. There is no analytical framework for forecasting in SDMs and
the strong fine-scale focus of ABMs limits their forecasting capacity, however, their integration with
other methods such as general equilibrium models and land use models could help to overcome this
limitation. While many ABMs provide a spatially explicit representation of impacts [20,92,105], SDMs
usually lack this type of representation. Spatially-explicit ABMs are important to capture the spatial
heterogeneity of the behavior and factors parameterized in the model [20], and are key for capturing
iLUC caused by the agents’ behavior. Examples of this are available in [98,106,107] and have been
reviewed [20,92,105]. Moreover, Millington et al. [19] have proposed a conceptual framework for the
integration of ABMs, SDMs and CGE models to simulate the dynamics between international food
trade and land use change originating under different social, political, economic and environmental
scenarios. This hybrid proposal could certainly improve the analysis of multi-temporal and multi-level
dynamics and feedbacks. However, the spatially-explicit allocation of impacts (i.e., iLUC) and the
operationalization of land heterogeneity remains a challenge that could potentially be overcome with
land use models.

3.5. Land Use Models

3.5.1. General Description

The modelling of land use changes can be done with integrated assessment models (IAMs) that
often include simplified land use modules, or with more specialized land use models (LUMs) [18].
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Land use change modelling can be based on economic outputs (usually on CGE and PE) and hybrid
data (using economic data, biophyisical data and spatial explicit allocation) [108], and the modeling
approach can be process-based (i.e., representing agent behavior) or pattern-based (i.e., based on
algorithms to describe changes) [109]. Different models simulate land use changes using similar
rationale but have different allocation procedures. LUMs have forecasting capacity and are based on
scenarios. They are also based on different data sources, have different spatial and temporal resolution
and are based on different assumptions. For instance, CLUMondo, GLOBIOM, IMAGE and MagPIE
use the outputs of CGE and PE models for crop demand data [88,108,110–113] (see Table S2 in the
Supplementary Materials for more details). All models have some kind of calculation of location
suitability to determine where land use changes are happening. For instance, in CLUMondo, this is
largely based on empirical analysis of current land use patterns in relation to location factors, and in
LandShift the location suitability is determined by models of plant growth and hydrology.

3.5.2. General Limitations

Each LUM is designed to answer specififc questions at a specific scale. Therefore, the system
boundary defined in the models is either very narrow to study fine-scale changes, or very broad to
study global or regional changes. Models integrating these cross-scales face several technical and
practical challenges. Due to the complexity of IAMs, they are subject to very high uncertainties [108]
and are difficult to validate due to the lack of historical observational data [114]. These uncertainties
come from the underlying assumptions, input data, scenario assumptions, scale mismatches and
differences in initial land cover classes [114]. Models include multiple variables but there are some
that are still very difficult to incorporate. For instance, few models incorporate land use management
categories as drivers of land use change [115]. Fine-scale models integrate actors’ behavior but
large-scale ones often do not [109]. In many cases, the complexity of the underlying processes leads to
different simplifications and the exclusion of certain social, economic and environmental variables.

3.5.3. Suitability for Telecoupled Systems

Land systems reflect the result of the interaction of social, economic and environmental dynamics,
and as such, are important for telecoupling analysis. Land use models are of special interest
to telecoupled systems because they can account for land-related spillovers (iLUC), can be used
for scenario analysis, to evaluate policy decisions, as learning-tools to test different drivers of
change, and for spatially-explicit impact assessment [10]. Land use models with global coverage
are relevant because they can analyse multiple and large scale processes [8]. However, the poor
granularity of large-scale models leads to limited applicability at the scale needed by decision
makers [116]. Models with broad boundaries usually lack granularity and representation of variations
in local responses (such as adaptation) and they face limitations in integrating feedback mechanisms,
for instance, with economic global dynamics. Hybrid land use models that can represent human
decisions, socioeconomic and environmental factors simultaneously are available and reviewed in
Brown et al. [109]. Although most LUM are very capable of calculating and allocating iLUC, the full
parameterization of cross-scale processes and feedbacks is limited due to lack of understanding of
the embedded processes, computation capacity and the empirial data that is available [10]. However,
despite this advantageous capacity, LUMs are not product-centred and as such have limited capacities
to analyse specific supply chains of products. The integration of different modelling approaches
to fill some of these gaps faces challenges regarding the integration of multi-scale processes [109].
IAMs are designed to incorporate feedbacks within the studied systems, however, the simulation of
feedbacks between causal mechanisms and impacts beyond them is still limited [18]. Regarding other
impact measures (such as biodiversity loss, carbon release, or other related to ecosystem services),
these can be calculated independently using the simulated direct and indirect land use changes as a
basis [12]. Moreover, in some models the data for demand is based on aggregated groups of products,
so analysis ofspecific products is not possible. However, in novel applications of models, the demands
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for subsistence commodities are distinguished from marketed commodities which allowsprocesses
that are driven locally and those that are caused by telecoupled systems to be distinguished [117,118].

4. Discussion

In the previous section we identified the challenges related to each method type. In this section
we discuss the overarching challenges that need to be tackled to help design meaningful and applied
assessment methods to account for telecoupled impacts of agricultural supply chains.

4.1. Systems Boundaries

The definition of the boundaries of the studied systems has an important effect on the capacity of
methods to account for the impacts caused by telecoupling dynamics [30,119]. Despite its relevance,
the definition of the system boundaries is often arbitrary and non-science based. One of the most
common and systematically applied over-simplifications is the definition of narrow truncation points
that either exclude large-scale global interactions or exclude highly important fine-scale responses.
Setting the correct system boundary depends on the goals of the study and the scale of analysis.
Top-down approaches (such as CGE and PE) have the advantage of capturing large-scale processes
but lack the capacity to account for place-specific impacts. Therefore, for this type of method, system
boundary expansion means allowing the inclusion of place-specific factors to adjust the usual global
averages they rely on. Most top-down approaches still have limitations to including telecoupling
dynamics, so they also need to undergo improvements as described in Section 3 for each method.
Bottom-up approaches (such as LCA and ABM) are well suited to capture place-or product-specific
dynamics but have limitations in accounting for large-scale dynamics influencing the impacts of a
supply chain. For this type of method, system boundary expansion means capturing large-scale
dynamics and could be achieved by coupling them with other methods that have this capacity. Hence,
it is necessary to integrate top-down and bottom-up modelling approaches [33,120]. The several hybrid
initiatives previously mentioned are a good starting point.

4.2. Hybrid Models to Assess Telecoupled Impacts

The multi-disciplinary nature of telecoupled systems demands the integration of different types
of methods rather than aiming at one single method able to address a broad variety of issues with
insufficient detail [18]. Hybrid approaches could bridge the gaps between different methods and
could be capable of assessing the impacts of multiple telecoupling dynamics in one single analysis.
An overview of hybrid methods available, detailing their contribution to the assessment of telecoupled
impacts and some examples is provided in Table 3.

Footprints and impact indicators used within LCA are useful tools to demonstrate, with a high
level of specificity, the environmental impacts that are considered important by the practitioner.
As such, LCA and footprints can be used to add the environmental dimension that other methods lack.
Concrete examples of footprints coupled to IO analysis [21,121–123] and SDMs [124] exist. LCA is
usually coupled with IO to expand the system boundaries in the inventory phase, and with equilibrium
models to address economic global feedbacks influencing supply chains and final impacts. Examples
of LCA coupled with equilibrium models [34,50,60–62,125], IO [126–129] and other methods [13] are
available. Regarding land use change, practitioners have coupled LCA with LUMs to add spatial
dimensions and assess direct and indirect land use impacts [12,50,60,130]. However, the correct
application of those place-specific LCAs demands the calculation of spatially-explicit conversion
factors for each impact category, and such efforts are already being developed for some environmental
impacts [51,56,131]. LCA is an adequate method to evaluate the telecoupled environmental impacts of
supply chains from the producer perspective. However, the high flexibility allowed in the selection
of impact indicators in LCA implies that practitioners need a high level of system understanding to
provide an adequate represention of reality while avoiding a selection of measures aimed at achieving
convenient results.
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Deterministic equilibrium models are an appropriate tool to incorporate economic feedback loops
and account for economic spillovers at a large scale. Several equilibrium models that incorporate
the environmental dimension are already able to address direct and indirect land use changes (i.e.,
GLOBIOM and MagPIE) [108]. Efforts to add the environmental dimension to IO include the
environmentally extended-IO [83,85] and coupling exercises of IO with environmental footprints
and indicators [83,85,86,121,122].

On the other hand, human behaviour and agency are important modulating factors of telecoupled
impacts; however, LCA, footprints, CGE, PE and IO lack or simplify their representation. Here, ABMs
have the capacity to explicitly address decision making and its variations amongst actors, and the
interactions between actors and biophysical systems. ABM and SDM could benefit from LUMs to more
explicitly address the spatial variations in the environment and agencies, and could even provide the
possibility of calculating indirect land use changes. Examples of coupling ABMs with environmental
and spatially-explicit methods are available [20,92,105]. The very fine scale of analysis of ABM and
SDM complicate their application to large scales where telecoupling dynamics are abundant, but there
are some methodological suggestions to couple them with equilibrium models to incorporate global
economic dynamics [19].

From a producer perspective, value chain analysis (VCA) is an important tool to evaluate the
performance and sustainability of supply chains. VCA is a method for identifying hotspots where
resource use, efficiency, coordination and profitability might be problematic along the supply chain of a
product [132,133]. Industry has a long tradition of using VCA to improve the strategic and operational
steps of their supply chains [134]. Increased awareness of the environmental dimension has triggered
the use of VCA as a tool to improve the environmental sustainability of supply chains. This has
usually been done by coupling VCA with other methods such as LCA, material flow analysis and
footprints [5,134,135]. Because the factors affecting the quality and efficiency of supply chains can
heavily influence the extent and intensity of the environmental impacts, VCA can play an important
role in the identification of those driving factors/agents and contribute to understanding the chain of
actions that give rise to telecoupled impacts in agricultural supply chains. This is possible because
VCA goes beyond the product-level and adopts a multi-dimensional approach by integrating vertical
and horizontal elements of supply chains [132,133,136,137]. Special attention would be needed to link
VCA and LUMs to analyze indirect land use changes in a spatially explicit manner.

Finally, although there are several coupling exercises available, scientists have warned that some
hybrid models have an unmanageable complexity or are dysfunctional because they disregard the
conceptual, technical and semantic differences between the methods they couple [19,138,139]. Technical
differences might include geometry and spatial resolution, data scales, non-standardized ontologies
and conceptual mismatches that could lead to the loss of important individual properties of models
when coupled with others [139]. Therefore, coupled exercises are encouraged but must be done
with caution. Although hybrid proposals are presented in this paper, it is important to mention that
improving the methods themselves, has to go hand-in-hand with achieving more hybrid approaches to
avoid overwhelmingly complex methods where the individual tools still have difficulty in addressing
basic questions.

4.3. Long-Term Impacts

The inclusion of long-term impacts in methods is important because agricultural activities can
cause soil depletion and toxicity from agrochemicals over time, and can also be affected by long-term
phenomena such as climate change. The economic and social impacts of agricultural activities can also
be extended over time and the socio-ecological dynamics occur simultaneously at multiple temporal
scales [22]. Additionally, socio-ecological systems are prone to experience abrupt structural changes
(regime shifts) that can be transmitted in the system structure as a cascade effect [30]. Therefore,
disregarding the long-term impacts in the analysis only limits the reliability of assessments. Because
the dynamics of telecoupled systems occur at diverse temporal and spatial scales, methods should
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be able to reconcile these scales [18]. Some studies have tried to incorporate them, but there is
little consensus about how to integrate short- and long-term dynamics in the same study [18,140].
The inclusion of long-term dynamics would improve the forecasting capacity of methods and would
highly favor decision making processes by providing information about foreseen impacts that would
enable contingency measures. This goal could be achieved by expanding the system boundaries
of methods and by increasing the understanding of cause-effect mechanisms in a multi-spatial and
multi-temporal manner. Initiatives related to land systems are going towards this direction [22].

Table 3. Examples of hybrid methods to analyze the impacts of telecoupled agricultural supply chains.

Hybrid
Method Description

Main Contribution to
the Assessment of

Telecoupled Impacts
Examples

LCA and LUM
Uses LUM to predict, calculate and

allocate the impacts of land use
change in LCA

Spatially-explicit forecasting of
land-related spillovers

(iLUC change)

Chaplin-Kramer et al. [12]
Geyer et al. [59]

De Rosa et al. [133]

LCA and
CGE/PE-based

LUM

Couples LCA with CGE/PE-based
LUMs (i.e., GLOBIOM) to quantify

and spatially allocate direct and
indirect LUC and calculate other
environmental impacts caused by

international trade.

System boundary expansion
(to the global economy),
integration of economic
feedbacks, analysis of

land-related spillovers (iLUC).

Di Fulvio et al. [60]
Searchinger et al. [61]

Leip et al. [62]
Kloverpris et al. [50]

IO and
footprints or

indicators

Uses simple or multi-regional IO
tables coupled with environmental
data, footprints and indicators to

calculate the environmental impacts
caused by trade.

System boundary expansion and
integration of economic

feedbacks
(only for the case of MRIO).

Kitzes [85]
Tukker et al. [83]
Prell et al. [133]

Ewing et al. [121]
Hertwich et al. [122]

Weinzettel et al. [123]
Turner et al. [21]

IO and LCA

Uses input-output tables to track
resources used in the life cycle of a

product to calculate the
environmental impacts caused in

response to market changes.

System boundary expansion.

Hawkins et al. [126]
Igos et al. [127]

Kennelly et al. [128]
Yi et al. [129]

SDM and
footprints or

indicators

Representing wider system
dynamics and link it to

environmental indicators to
represent the relationship between

environmental impacts and
socio-economic drivers.

System boundary expansion,
integration of feedback loops

and spillovers.
Mavrommati et al. [102]

ABM, SDM
and CGE

Uses ABM to represent land use
decision-making, CGE to represent

markets and SDM to
represent flows.

System boundary expansion
(to the global economy),

integration of feedback loops
and spillovers caused by agents.

Millington et al. [19]

Abbreviations stand for: LCA: life cycle assessment; CGE: computable general equilibrium models; PE: partial
equilibrium models; IO: input-output analysis; ABM: agent-based models; SDM: system dynamics models; LUM:
land use models.

4.4. Geographic Heterogeneity

Land heterogeneity and land management practices implemented in a production system get little
attention in most methods. Pongratz and colleagues [115] describe the importance of representing land
management practices in models to significantly increase their comprehensiveness [95]. Critical aspects
of land heterogeneity and land management practices need to be first identified, understood, prioritized
and parametrized to be included in methods. Methods would need to implement place-specific
information to increase their accuracy [3]. Moreover, the use of baseline information (i.e., land cover
maps, biome maps, etc.) should ideally be homogenized to allow comparability between studies using
the same scale. One of the most extended practices facilitating the exclusion of landscape-specific
considerations in methods is the use of generalized assumptions and highly aggregated data [1,65].
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To overcome these limitations, increased understanding of the importance of landscape-specific
phenomena and the construction of disaggregated databases is needed. Empirical studies would
play an important role to fill this gap and would contribute to the improvement of the available
methods [18,20,141].

4.5. Suitability for Different User Types and Hands-On Approach

There is a wide range of stakeholders using impact assessment studies to help improve the
environmental performance of a given product, territory, service or supply chain. Since the choice
of a given impact assessment method carries different implications [142], this selection must be
carried out carefully. Regardless of the technical criteria described in this paper, the choice of an
adequate method is strongly influenced by the ultimate practical goals of the analysis, which in turn
are closely related to the target audience. Different stakeholders rule over different subjects (products,
supply chains, territories, consumers, laws, etc.), and therefore, may need distinct approaches.
The methods analyzed in this article have either a consumption, production, geographical or a
system approach. The relative importance of these approaches is closely linked with the concept of
responsibility allocation, and for instance, has been widely discussed for the case of carbon emissions.
For consumption-based approaches (i.e., EF), the responsibility of a given agent relies solely on the
products consumed regardless of all the impacts caused through own production activities [143,144].
Therefore, this approach assesses the impacts embedded in products and attributes them to the agents
consuming them. While this approach accounts for the impacts caused by demand, it is limited for
promoting management strategies because consumers might have no interference power above the
producers of the services or products demanded [1]. For production-based approaches (i.e., LCA),
the responsibility relies on the impacts caused by the production processes of goods and services
regardless of the final consumer or the origin of the inputs used [143]. This approach accounts for
the impacts of supply but it can be problematic when it comes to using it for effective management,
as it can negatively incentivize producers to outsource the most harmful activities or inputs to avoid
responsibility [65]. The geographical approach (i.e., LUM) refers to methods which focus on a spatially
defined area where diverse human and natural forces interact and cause changes (impacts) across
that territory. Therefore, its main goal is to spatially allocate impacts caused by a set of activities.
One limitation of this approach is that it does not provide explicit decision-support information, neither
to producers nor to consumers because it describes changes over territorial areas where multiple
producers and consumers are responsible for impacts but are not explicitly identified in the models.
The systems approach (i.e., ABM and SDM) includes methods whose ultimate goal is to understand the
dynamics and processes embedded in telecoupling systems that lead to impacts without necessarily
emphasizing the quantification of impacts or allocating responsibility [19]. An advantage is that these
methods are flexible enough to emphasize both the consumption and production sites.

Additionally, it is important to note the trade-offs between the applicability and comprehensiveness
of methods. Single impact scores (i.e., from EF) have a communicative advantage for decision-making
because they ease comparisons. At the same time, a problem is that they can be based on oversimplified
analysis. At the same time, nowadays, the use of assessment studies that have a large spatial coverage
(i.e., LUM and CGE) by decision makers is limited because they do not provide information at the
scale needed for practical actions [18]. Therefore, the specific application goals and the local context
should be considered in the choice of methods. Inter-institutional science-policy collaborations should
be encouraged to achieve meaningful and hands-on assessments.

4.6. Reference Points for Sustainability

“A given indicator does not say anything about sustainability, unless a reference value or threshold
is given to it” [145]. LCA for instance, is mainly designed for comparison between products but it does
not provide information about the sustainability of the products themselves. EF does not provide a
reference point for sustainability either and is used also for comparison. These methods are strongly
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criticized for oversimplifying the concept of sustainability and authors have discouraged their use for
that purpose [72]. The damages to land systems can be calculated from LUMs, but no reference point
to sustainability is provided. Similar to the previous models, interpretations about sustainability are
left to personal judgements. ABMs and SDMs are more focused on understanding the functioning of
systems. CGE and PE, when coupled with other methods, can calculate the environmental damage
but again without references to sustainability. To solve these limitations, Heck and colleagues [146]
proposed differentiated maximum land-use capacities to ensure sustainability based on the planetary
boundaries. Bjorn and Hauschild [147] proposed the use of carrying capacities as reference points for
environmental sustainability. Zhang and colleagues [66] proposed the re-definition and re-calculation
of differentiated biocapacities for the calculation of EF. Hoekstra and Wiedmann [11] proposed the
definition of maximum environmental-specific footprints. Nonetheless, although this limitation
could be improved at regional or local scales, the application of reference points of sustainability
at the corporate level still represents a complex challenge because it demands the allocation of fair
shares to limit resource use [148]. The cited initiatives are important steps towards increasing the
application of impact assessment studies but empirical studies to analyze the adequacy of them must
be encouraged. Finally, given the holistic nature of sustainability, more studies about the trade-offs
between sustainability dimensions are needed.

5. Conclusions

The implementation of sustainable trade can be supported by the use of methods capable of
allocating the negative direct and indirect social, environmental and economic impacts occurring along
the supply chain of products [15]. Although there is a wide range of tools available to assess these
different impacts of telecoupled systems, there is no method that is able to fully assess these impacts
in an integrated manner while considering the telecoupling dynamics in a spatially explicit manner.
This is not necessarily a single, desired goal, but rather the confluence of independent achievements to
improve methods and their smart hybridization. The well-known technical challenges to obtaining
hybrid models described in this paper have to be surpassed to succeed in this path. Due to the nature
of agricultural supply chains and the actions needed to pursue their sustainability, spatially-explicit
methods that are able to account for direct and indirect land use changes are a pivotal part of such a
challenge. The improvement in the methods themselves demands the expansion of system boundaries
to capture bottom-up and top-down dynamics, improving the geographic resolution and time-coverage
of databases, integrating landscape heterogeneity, creating location-specific transformation factors,
improving data transparency, and improving the assumptions embedded in methods. Especially
important is the task of improving the understanding of cause-effect mechanisms that modulate
the impacts of supply chains. Multi-disciplinary collaborations are encouraged in order to succeed.
Additionally, it is important to acknowledge the trade-offs between the straight forward interpretation
of some methods versus the comprehensiveness of others when making a selection of methods. Finally,
the definition of sustainability reference points is an urgent task in order to go beyond product
benchmarking towards methods that provide straight forward advice about the sustainability of
supply chains and responsibility allocation.
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