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Abstract: In China, the industrial sector is the main contributor to economic development and CO2

emissions, especially for the developing regional provinces. This study employs the Logarithmic
Mean Divisia Index (LMDI) approach to decompose industrial energy-related CO2 emission into
eight factors during 2001–2015 for Henan Province. Furthermore, the future CO2 emissions under
different scenarios (Business as Usual (BAU), Efficiency Improvement (EI), Structural Optimization
(SO), R&D Input (RD), and Comprehensive Policy (CP) scenarios) over 2016–2030 are projected. The
results indicate that among these factors, the economic output, R&D intensity, investment intensity,
and energy structure are the drivers for increasing CO2 emissions over the entire period, with the
contribution of 293, 83, 80, and 1% of the total CO2 emissions changes, respectively. Conversely,
the energy intensity, R&D efficiency, and industrial internal structure can decrease CO2 emissions
with contributions of −86, −163, and −108% to the changes, respectively. Under the five scenarios,
CO2 emissions in 2030 will reach 1222, 1079, 793, 987, and 638 Mt with an annual growth rate of
4.7%, 3.8%, 1.8%, 3.3%, and 0.4%, respectively. In particular, the CO2 emission peak for SO and CP
scenarios is observed before 2030. Finally, some policy implications are suggested to further mitigate
industrial emissions.

Keywords: industrial sector; CO2 mitigation potential; LMDI decomposition; scenario analysis;
China; Henan Province

1. Introduction

Over the past decades, climate change has become a serious public issue worldwide [1]. Under
the Paris Agreement, many countries in the world have taken proactive actions to mitigate carbon
dioxide (CO2) emissions, which is the main contributor of greenhouse gases [2].

Since its economic reform and opening up to the global market, China’s economy has been
developed rapidly for a long period. However, the rapid economic development has resulted in
many energy and environmental problems along with high CO2 emissions [3,4]. In fact, China has
become the world’s largest carbon emitter since 2011 [5–7]. To mitigate CO2 emissions, the Chinese
government has formulated a series of CO2 emission reduction targets. For instance, in 2014, the
government announced that it would achieve peak CO2 emissions around 2030, if not sooner, in the
U.S.–China Joint Announcement on Climate Change [8]. Furthermore, in 2015, the Chinese government
promulgated the official document of China’s Intended Nationally Determined Contributions in which
China committed to cut its CO2 emissions intensity (t-CO2/GDP) by 60–65% of the 2005 level [9].
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Achieving these targets is a huge challenge for China; especially because China is a developing country
with continueing industrialization and urbanization.

In the past 30 years, the industrial sector has played a significant role in China’s economic growth
along with its CO2 emissions. As the largest contributor to China’s CO2 emissions, the industrial
sector, which has accounted for more than 65% [10], has undertaken greater emission reduction tasks.
To abate industrial CO2 emissions, efficiency improvement and structural adjustment are considered
to be two major approaches [11,12]. Since the 11th Five-Year Plan (FYP, the Five-Year Plan period
by National Economical Plan of Chinese government) (2006–2010), China has formulated a series of
policy plans based on both measures, for example, reducing the unit energy consumption of industrial
products, vigorously developing new and high-tech industries, and replacing coal-fired boilers with
gas-fired ones. Of the promulgated policies, China has paid more attention to the policies on energy
efficiency improvement before the 12th FYP period (2011–2015). As a result, over time, energy
efficiency of certain industries has been improved to a considerable level (up to international advanced
level), but it will be difficult to further increase in the future. Therefore, at present, the promotion
of technological innovation and industrial restructuring is urgently on the agenda. Moreover, with
China’s economy entering into the new stage, how to make China’s economy turn to a green and
low-carbon development road has become a key task. Thence, it is of great significance for formulating
CO2 emission reduction strategies and mechanisms to study the influencing factors of industrial
energy-related CO2 emissions and quantify their contribution levels and future development trends.

Under these conditions, this study attempts to answer the above questions. Thus, we first utilize
an extended Logarithmic Mean Divisia Index (LMDI) method to reveal the main driving factors in
CO2 emission changes, especially the impacts of technological innovation and investment intensity.
The application of LMDI in the decomposition of carbon emissions has been widely used [13–16] and
from the results we can interpret which factors are the most important (see Section 2 literature review).
The flow diagram of our research is illustrated in Figure 1, which covers the sequence of our study
as well as the rationale for each step. Since Henan province is a key part of the Central Plains Urban
Agglomeration and as one of the highest population provinces, the evaluation of its CO2 emissions
is of interest and importance. Consequently, CO2 emission data in the industrial sector in Henan
Province of China were decomposed into eight factors to see the extent of contribution of each factor
towards the overall CO2 emission changes. In addition, a prediction method combined with a scenario
analysis based on the decomposition model is then applied to forecast the CO2 emissions in the future
(up to 2030) under different scenarios including Business as Usual (BAU), Efficiency Improvement
(EI), Structural Optimization (SO), R&D Input (RD), and Comprehensive Policy (CP) scenarios. Then,
uncertainty and sensitivity analyses are discussed. Finally, based on the evaluation of CO2 emission
factors and emission reduction potential, the corresponding CO2 emission reduction recommendations
are provided for Henan Province, which are also hoped to be broadly applicable to other regions
of China.

In particular, in order to understand the impact of R&D activities on CO2 emissions, this paper
specifically constructs an RD scenario to better observe the CO2 mitigation potential compared to an EI
scenario. Further, the finding of the importance of R&D activities might help local governments
formulate more realistic CO2 emission reduction policies. In addition, the change trend of the
influencing factors is based on national FYP to make prediction results more reasonable.

The paper is organized as described below. After the introduction and literature review sections,
the research methodology and data are presented in Section 3. The research results and a discussion are
presented in Section 4. Section 5 discusses the uncertainty and performs sensitivity analysis. Finally,
the conclusions and implications of the study are presented in Section 6.
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2. Literature Review

Since the 1980s, decomposition methods have been used to analyze the driving forces of energy
consumption/energy intensity and carbon emissions/carbon intensity, which are mainly divided
into two primary categories: structural decomposition analysis (SDA) and index decomposition
analysis (IDA) [17]. The former method is based on input–output table to analyze indirect changes
and impacts between economic sectors. In fact, many researchers used this method to study the
changes of energy consumption and carbon emissions [18–25]. For example, Geng et al. [21] conducted
an SDA approach to provide a holistic picture for Liaoning’s CO2 emissions and indicated that the
CO2 emission growth of Liaoning Province was mainly caused by the rapid increase of per capita
consumption activities. Mi et al. [24] applied an environmentally extended input–output analysis and
structural decomposition analysis to investigate the driving forces behind changes in CO2 emissions
embodied in China’s domestic and foreign trade from 2007 to 2012. Furthermore, they used the
same method to estimate the driving forces of Chinese export-embodied carbon emissions and found
Chinese export-embodied CO2 emissions peaked in 2008 at a level of 1657 million tones [25].

Due to the advantage of data availability, the IDA method has become more widely used
and divided into different kinds of approaches: Passche index method, Laspeyres index method,
Arithmetic Mean Divisia Index method, and LMDI method [10]. From a comprehensive comparison,
the LMDI method is more widely used than other IDA approaches. It has several advantages of full
decomposition, no unexplainable residuals, ease of use, and better understanding [26]; especially, it
can solve the problem of the dataset without energy data [27]. Thus, it has been widely applied in
subsequent carbon emission decomposition studies [28–30].

From the perspective of the study areas, based on different spatial dimensions, the LMDI approach
has been mainly used in the following main aspects: national level, regional level, and provincial
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level. In terms of the LMDI method for studying the national level, Fernádez González et al. [31]
employed the LMDI method to analyze the factors behind the change in aggregate energy consumption
in the EU-27; also identifying differences between member states. In addition, many studies have
focused on the driving factors of carbon emission for various countries, such as the UK [32], China [13],
Brazil [33], Greece [28], Turkey [30], Portugal [34], Ireland [35], Mexico [36] and South Korea [37]. As
for the regional and provincial level, a growing number of studies have been mainly concentrated
in China [10,14,38,39], due to the rapid growth of carbon emissions and significant disparities across
regions in China. For example, using the LMDI decomposition, Xu et al. [39] decomposed national
carbon intensity into three factors and grouped China into seven regions to compare the differences of
the influencing factors among each region; and Zhou grouped China into eight regions to analyze the
driving factors of CO2 emissions for each region [10].

In addition to studies conducted at the national or regional level, LMDI has been used for studying
different sectors, including the economic sector [40], industrial sector [14,41], residential sector [42],
transport sector [43] and industrial sub-sectors [44–47]. For example, Zhao et al. [40] decomposed
the CO2 emissions from five major economic sectors and measured the contribution of each factor
to the decoupling of China’s overall economy from CO2 emissions. Zhang et al. [42] employed
the LMDI method to decompose the changes in residential energy consumption into four factors:
energy structure, energy efficiency, floor area, and population. They indicated that the population
and floor area factors were the most responsible for increasing urban residential energy consumption.
Zhang et al. [43] identified the relations between transportation energy consumption and analyzed the
nature of the factors influencing the changes in transportation energy consumption.

Currently, based on the decomposition of carbon emissions, some investigators have applied a
decoupling model to evaluate the relationship between economic growth and carbon emissions [10,40].
On the other hand, some used scenario analysis to design different scenarios and combined
different methods to predict future carbon emissions, such as Kaya Identity [46], the co-integration
method [41,48], and the Monte Carlo simulation approach [12].

In this study, a prediction method introduced by Lin and Ouyang [49] is selected to forecast the
CO2 emissions in the future (up to 2030) under different scenarios after decomposition analysis.
Although there have been a few studies regarding the application of the LMDI model with
microeconomic factors (including R&D and investment factors) as well as utilizing different prediction
methods for forecasting future CO2 emissions, to the best of our knowledge, this is the first attempt to
combine these two tasks together, since different scenarios in the future forecasting analysis should
be based on the decomposition results. It is our hope that approaches for achieving CO2 emission
reduction from the optimal scenario analysis are useful for regulatory agency and the corresponding
strategies and measures taken to achieve realistic CO2 emission reduction.

3. Research Methods and Data Sources

3.1. Study Domain

The study domain of Henan Province is in the center of China, including 18 administrative cities
(Figure 2), which is as a key part of the Central Plains Urban Agglomeration classified by the National
State Council. As one of the most populous and industrializing provinces of China, the average
annual growth rate of gross domestic product (GDP) was 10.7% during the period of 2001–2015.
In 2015, its overall GDP was about 2530×109 RMB (2001 constant price, Figure 3a), accounting for
approximately 6% of China’s GDP. Furthermore, its economic growth was mainly driven by the
development of the industry sector, which accounted for 42% of the entire GDP in 2015 (Figure 3a).
The corresponding energy consumption for all sectors reached 232 Mtce (million metric ton coal
equivalent) in 2015, with industrial energy consumption accounting for about 70% (Figure 3b). The
entire energy-related carbon emissions also had a high annual growth of 6.5% between 2001 and
2015. Through implementing energy-saving and emission reduction measures, the growth of energy
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consumption and CO2 emissions has slowed down since 2010 as clearly demonstrated in Figure 3b.
Nonetheless, the amount of CO2 emissions is still large and needs to be further reduced to achieve
CO2 emission peak before 2030.
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3.2. Estimation of CO2 Emissions

The calculation of industrial energy-related CO2 emissions refers to the method proposed by the
IPCC [50] as follows. The definitions of relevant variables are listed in Table 1.

EC = ∑
ij

ECij = ∑
ij

Eij·NCVj·CCj·Oj·
44
12

(1)

Table 1. Definition of variables in Equations (1) and (2).

Variables Description and Definition Unit

Equation (1)

i Sector ith of the industrial sector
j Fuel jth of the energy consumption

EC Total CO2 emissions of industrial sector Mt
ECij CO2 emissions of sector ith of fuel jth Mt
Eij Energy consumption of sector ith of fuel jth Mtce

NCVj Average net calorific value of fuel jth TJ/Mtce
CCj Carbon content of fuel jth t-C/TJ
Oj Carbon oxidation factor of fuel jth %

44/12 Ratio of molecular weights of CO2 and C

Equation (2)

Ei Energy consumption of sector ith Mtce
Yi Added value of sector ith 109 RMB
Ri R&D expenditure of sector ith 109 RMB
Ii Fixed asset investment of sector ith 109 RMB
Y Total added value of industrial sector 109 RMB

EFij CO2 emission per unit of fuel jth in sector ith t/tce

ESij
Share of the fuel jth in final energy

consumption of sector ith Mtce/Mtce

EIi Energy intensity of sector ith tce/103 RMB

REi
Added value per unit of R&D expenditure in

sector ith
added value, 109 RMB/R&D

expenditure, 109 RMB

RIi
Share of R&D expenditure in fixed asset

investment of sector ith
R&D expenditure, 109 RMB/fixed

asset investment, 109 RMB

IIi
Share of fixed asset investment in added

value of sector ith
fixed asset investment, 109

RMB/added value, 109 RMB

ISi
Share of added value of sector ith in total

added value
added value, 109 RMB/added

value, 109 RMB

3.3. LMDI Decomposition

This study applied Kaya identity to propose the following expression of industrial energy-related
CO2 emissions. Based on Shao et al. [14], the identity is further extended to quantitatively analyze the
eight factors affecting CO2 emissions as in Equation (2), and the meanings of relevant variables are
also presented in Table 1.

EC = ∑ij ECij = ∑ij
ECij
Eij
· Eij

Ei
· Ei

Yi
· Yi

Ri
· Ri

Ii
· Ii

Yi
·Yi

Y ·Y
= ∑ij EFij·ESij·EIij·REi·RIi·I Ii·ISi·Y

(2)

Thus, according to the LMDI method, the CO2 emission changes can be decomposed into eight
factors: carbon emission coefficient (∆ECEF), energy structure (∆ECES), energy intensity (∆ECEI), R&D
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efficiency (∆ECRE), R&D intensity (∆ECRI), investment intensity (∆ECII), industrial internal structure
(∆ECIS), and economic output (∆ECY) as shown in Equation (3).

∆ECtot = ECT − EC0 = ∆ECEF + ∆ECES + ∆ECEI + ∆ECRE + ∆ECRI + ∆ECI I + ∆ECIS + ∆ECY (3)

where, ∆ECtot represents the total changes in CO2 emission (Mt) and ECT and EC0 represent the CO2

emissions in the Tth and base year, respectively. ∆ECEF, ∆ECES, ∆ECEI, ∆ECRE, ∆ECRI, ∆ECII, ∆ECIS,
and ∆ECY represent the above difference effects of CO2 emissions between Tth and the base year.

Considering that the carbon emission coefficients of various fuels are relatively fixed in a given
period, the coefficient effect on CO2 emission can be negligible (i.e., ∆ECEF = 0) as also performed in
similar studies [13,51]. Therefore, based on the LMDI method, the resultant seven factors in Equation (3)
can be calculated as follows [52]:

∆ECES = ∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln

(
EST

ij

ES0
ij

)
(4)

∆ECEI = ∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln

(
EIT

i
EI0

i

)
(5)

∆ECRE = ∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln

(
RET

i
RE0

i

)
(6)

∆ECRI = ∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln

(
RIT

i
RI0

i

)
(7)

∆ECI I = ∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln

(
I IT

i
I I0

i

)
(8)

∆ECIS = ∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln

(
IST

i
IS0

i

)
(9)

∆ECY = ∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln
(

YT

Y0

)
(10)

For
(

ECT
ij − EC0

ij

)
/
(

lnECT
ij − lnEC0

ij

)
in Formula (4)–(10), we define

L
(

ECT
ij , EC0

ij

)
=


(

ECT
ij − EC0

ij

)
/
(

lnECT
ij − lnEC0

ij

)
, if ECT

ij 6= EC0
ij

ECT
ij or EC0

ij, if ECT
ij = EC0

ij
0, if ECT

ij × EC0
ij = 0

(11)

3.4. Prediction of CO2 Emissions

According to Lin and Ouyang [49] and Zhu et al. [11], we assume that α, β, γ, δ, θ, ν, µ, and ϕ

are the annual growth rate of change of the carbon emission coefficient (∆ECEF), economic output
(∆ECY), industrial internal structure (∆ECIS), energy structure (∆ECES), energy intensity (∆ECEI), R&D
intensity (∆ECRI), R&D efficiency (∆ECRE), and investment intensity (∆ECII) from base year 0 to target
year T, respectively. Therefore, ECEF

(T) = ECEF
(0)(1+α), ECY

(T) = ECY
(0)(1+β), ECIS

(T) = ECIS
(0)(1+γ),

ECES
(T) = ECES

(0)(1+δ), ECEI
(T) = ECEI

(0)(1+θ), ECRI
(T) = ECRI

(0)(1+ν), ECRE
(T) = ECRE

(0)(1+µ), and ECII
(T)
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= ECII
(0)(1+ϕ). Moreover, because the value of ∑ij

ECT
ij−EC0

ij

lnECT
ij−lnEC0

ij
can be estimated as an approximation,

the following expressions can be obtained.

∆ECEF ≈∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln(1 + α) (12)

∆ECY ≈∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln(1 + β) (13)

∆ECIS ≈∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln(1 + γ) (14)

∆ECES ≈∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln(1 + δ) (15)

∆ECEI ≈∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln(1 + θ) (16)

∆ECRI ≈∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln(1 + ν) (17)

∆ECRE ≈∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln(1 + µ) (18)

∆ECI I ≈∑
ij

ECT
ij − EC0

ij

lnECT
ij − lnEC0

ij
ln(1 + ϕ) (19)

In the above expressions, we define that W = ∑ij
ECT

ij−EC0
ij

lnECT
ij−lnEC0

ij
, where

W =
EC0·[(1 + α)·(1 + β)·(1 + γ)·(1 + δ)·(1 + θ)·(1 + ν)·(1 + µ)·(1 + ϕ)− 1]

Ln[(1 + α)·(1 + β)·(1 + γ)·(1 + δ)·(1 + θ)·(1 + ν)·(1 + µ)·(1 + ϕ)]
(20)

Based on the above models, future industrial energy-related CO2 emissions can be predicted, and
the contributions of each factor can also be quantified. Therefore, Equation (3) can be rewritten as
Equation (21) to forecast the CO2 emissions in year T:

ECT = EC0 + ∆ECEF + ∆ECES + ∆ECEI + ∆ECRE + ∆ECRI + ∆ECI I + ∆ECIS + ∆ECY (21)

3.5. Data Processing

According to the Henan Statistical Yearbook, 38 industrial subsectors are considered in this study
as listed in Table 2. For convenience, the data of the 38 sectors are aggregated in four major industrial
sectors (including Mining and Quarrying; Manufacturing; Production and Supply of Electric Power,
Gas and Water; and Other Industries). Long term data (from 2001 to 2015) were retrieved from different
sources. The economic (industrial added value, R&D expenditure, and fixed asset investment) and
energy consumption (fuel) data were obtained for each subsector of the overall 38 industrial sectors
from the Henan Statistical Yearbook [53]. In order to ensure the comparability of the data, all the
economic variables were adjusted to 2001 constant prices based on the consumer price index. Five
types of fuels were considered in the study, including coal, coke, crude oil, diesel oil, and fuel oil. The
values of NCV, CC, and O on each fuel were obtained from China Energy Statistics Yearbook [54] (NBS,
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2015), IPCC [50] and Wang et al. [55], respectively, and they are assumed to be constant over the study
period (2001–2015).

Table 2. Classification of industrial sub-sectors studied in Henan Province.

Symbol Industrial Sub-Sector Symbol Industrial Sub-Sector

Mining and Quarrying S20 Manufacture of medicines
S1 Mining and washing of coal S21 Manufacture of chemical fibers
S2 Extraction of petroleum and natural gas S22 Manufacture of rubber and plastics
S3 Mining and processing of ferrous metal ores S23 Manufacture of non-metallic mineral products

S4 Mining and processing of non-ferrous metal
ores S24 Smelting and pressing of ferrous metals

S5 Mining and processing of non-metal ores S25 Smelting and pressing of non-ferrous metals
Manufacturing S26 Manufacture of metal products

S6 Processing of food from agricultural products S27 Manufacture of general purpose machinery
S7 Manufacture of foods S28 Manufacture of special purpose machinery

S8 Manufacture of wine, beverage and refined
tea S29 Manufacture of transport equipment

S9 Manufacture of tobacco S30 Manufacture of electrical machinery and
equipment

S10 Manufacture of textile S31 Manufacture of communication equipment,
computers, and other electronic equipment

S11 Manufacture of textile wearing apparel,
footwear, and caps S32 Manufacture of measuring instruments and

machinery for cultural activity and office work

S12 Manufacture of leather, fur, feather, and
related products S33 Manufacture of other manufacturing

S13 Processing of timber; manufacture of wood,
bamboo, rattan, palm, and straw products S34 Recycling and disposal of waste

S14 Manufacture of furniture Production and Supply of Electric Power, Gas and Water

S15 Manufacture of paper and paper products S35 Production and supply of electric power and
heat power

S16 Printing, reproduction of recording media S36 Production and supply of gas

S17 Manufacture of articles for culture, education,
and sport S37 Production and supply of water

S18 Processing of petroleum, coking, processing
of nuclear fuel Other Industries

S19 Manufacture of raw chemical materials and
chemical products S38

Support activities for mining, Mining of other
ores, and Repairing services of metal products,

machinery and equipment

4. Results and Discussions

4.1. Analysis of Industrial Energy-Related CO2 Emission Features

With the rapid development of industry in Henan Province, its industrial energy-related CO2

emissions experienced an increasing trend, with an increasing amount of 381 Mt from 2001 to 2015
(Figure 4). During the three consecutive FYP stages, the CO2 emissions present a positive increasing
trend during the 10th (2001–2005) and 11th (2006–2010) FYP periods. As the Chinese government
gradually intensified the implementation of CO2 emission reduction policy, the growth rate of the CO2

emissions decreased (except for 2013 year) as reflected by CO2 emissions during the 12th FYP period
(2010–2015) shown in Figure 4.

In order to better understand the changes in the inner components of CO2 emissions of the
industrial sector, the industrial sector was further divided into four categories as mentioned before.
As indicated from Figure 4, the quantity of CO2 emissions of the Mining and Quarrying subsector
increased from 2001 to 2011 (from 39 to 212 Mt) and then stayed at a relatively certain level afterwards.
The increase is due to the fact that Henan Province is rich in coal resources, and governmental policy
in closing small mining industries caused the slowdown in this subsector after 2011. In contrast, due
to the shift of the industrial structure (to the service sector), the contribution of the Manufacturing
subsector to CO2 emissions has been decreasing (from 43% in 2001 to 35% in 2015). As for the subsector
of Production and Supply of Electric Power, Gas and Water, there is a slight CO2 emissions decrease in
the proportion of the entire industrial sector (from 38% to 31% in 2015) because of increasing renewable
energy and new energy generation.
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4.2. Analysis of Emission Change Trends and Contributions of Various Factors

Based on the LMDI decomposition model, changes in the industrial energy-related CO2 emissions
during the 2001–2015 periods are decomposed into the following seven factors as mentioned before.
Table 3 lists the CO2 emission changes among these factors between the years and the contribution
of each factor towards the total emissions change. For the contribution ratios, negative numbers in
Table 3 denote the positive contribution of reducing CO2 emissions. From the cumulative perspective
(Table 3 and Figure 5), CO2 emissions increased approximately 381 Mt over the 2001–2015 period.
The economic output, R&D intensity, and investment intensity were the positive drivers (increasing
CO2 emissions) of changes in CO2 emissions, with contributions of 293%, 83%, and 80% of total CO2

emission changes, respectively. Conversely, the industrial internal structure, energy intensity, and
R&D efficiency exhibited a negative impact (decreasing CO2 emissions), with contributions of −108%,
−86%, and −163% to the changes, respectively. It is interesting to note that energy structure has little
effect on CO2 emission changes, which will be discussed in Section 4.3. Obviously, the accumulative
negative effects are not sufficient to offset the positive effects, as also reported in Wang and Feng [56]
for decomposing changes in energy-related CO2 emissions in China over the 2000–2014 period. From
the year-by-year data (Table 3 and Figure 5), the net effects of CO2 emission changes in all these years
are positive, except for the last three periods (2011–2012, 2013–2014 and 2014–2015); the reduction is
certainly due to governmental policies in combating CO2 emission.
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Table 3. CO2 emission changes in various factors and the contribution of each factor to the total industrial energy-related CO2 emission changes over 2001–2015.

CO2 Emission Changes (104 t) Contribution (%)

Economic
Output

Internal
Structure

Energy
Structure

Energy
Intensity

R&D
Intensity

R&D
Efficiency

Investment
Intensity

Total
Changes ηY ηIS ηES ηEI ηRI ηRE ηII

(∆ECY) (∆ECIS) (∆ECES) (∆ECEI) (∆ECRI) (∆ECRE) (∆ECII) (∆ECtot )

2001–2002 2612 118 2 −928 −11621 14964 −3397 1750 149 7 0 −53 −664 855 −194
2002–2003 4325 46 16 −714 5743 −1,4504 8855 3767 115 1 0 −19 152 −385 235
2003–2004 6150 417 180 409 −3,5996 3088 32918 7166 86 6 3 6 −502 43 459
2004–2005 7096 −1704 148 −1048 −816 −8308 9241 4609 154 −37 3 −23 −18 −180 200
2005–2006 8553 −800 145 −144 11723 −12556 904 7825 109 −10 2 −2 150 −160 12
2006–2007 10375 −1581 39 −2406 1125 −3577 2463 6438 161 −25 1 −37 17 −56 38
2007–2008 8905 −2901 52 −3782 5118 −47 −5073 2272 392 −128 2 −166 225 −2 −223
2008–2009 7167 −1423 −58 −2524 −4693 −7722 12,421 3168 226 −45 −2 −80 −148 −244 392
2009–2010 10627 −4032 24 −2634 4,1169 −27,189 −13,981 3984 267 −101 1 −66 1033 −683 −351
2010–2011 11747 −3940 −168 −4825 9610 −3603 −6011 2810 418 −140 −6 −172 342 −128 −214
2011–2012 11823 −9729 −24 −4377 6204 −1626 −4724 −2453 482 −397 −1 −178 253 −66 −193
2012–2013 8991 −5180 −36 −1613 −1249 1897 −656 2153 418 −241 −2 −75 −58 88 −30
2013–2014 7326 −4786 −44 −3879 10961 −1640 −9326 −1387 528 −345 −3 −280 790 −118 −672
2014–2015 6005 −5653 74 −4439 −5475 −1440 6920 −4007 150 −141 2 −111 −137 −36 173

2001–2015 111,702 −4,1148 350 −32,903 31,802 −62,263 30,553 38,094 293 −108 1 −86 83 −163 80

Note: ηY, ηIS, ηES, ηEI, ηRI, ηRE, and ηII are the contribution ratios of economic output, industrial internal structure, energy structure, energy intensity, R&D intensity, R&D efficiency, and
investment intensity, respectively. Negative numbers denote the positive contribution of reducing CO2 emissions.
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Considering that the industrial sector is the largest contributor to CO2 emissions, decomposition
analysis for its three main subsectors is further discussed and shown in Figure 6. Also, the effect of
various stages of national FYP (10th (2001–2005), 11th (2006–2010), and 12th FYP (2011–2015)) on CO2

emissions can be seen in Figure 6. For the Manufacturing subsector, the changes on CO2 emissions are
63.9, 42.0, and −4.0 Mt at the three stages, respectively. Clearly, the impact of various policies in these
FYPs on CO2 emission reduction is significant, particularly the 12th FYP (from 42 to −4 Mt). The most
important factor in this subsector affecting CO2 emission changes for these three FYPs is different:
R&D intensity (negative), economic output (positive) and economic output (positive), respectively,
for the 10th, 11th and 12th FYP. Furthermore, the energy intensity factor was the primary contributor
to the reducing emissions in the three FYP periods. With the effective implementation of energy
intensity reduction technologies of the manufacturing industry (e.g., steel, cement and other high
energy-consuming industries), energy efficiency has been greatly improved resulting in significant CO2

emissions reduction. Incidentally, the industry sector S19 (Manufacturing of Raw Chemical Materials
and Chemical Products) had the highest CO2 emissions in 2015 (45 Mt) in the Manufacturing subsector
while S18 (Processing of Petroleum, Coking, Processing of Nuclear Fuel) industry achieved the highest
reduction change between 2011 and 2015 (−9 Mt).

As for the Mining and Quarrying subsector, the increases in CO2 emissions are 51.2, 82.9, and
−19.0 Mt during the three stages, respectively. The R&D intensity (negative) and investment intensity
(positive) had a greater impact on changes in CO2 emissions during the 10th FYP period. By the
time of the 11th FYP, the most influential factors were economic output (positive) and R&D intensity,
while investment intensity became a negative driver, albeit with an insignificant impact. Although the
important factors in the 12th FYP were the same as that of the 10th FYP, the effects on CO2 emissions
were reversed, i.e., investment intensity became a negative driver with R&D intensity being a positive
one; the negative factor offset the positive, resulting in negative CO2 emission changes (−19 Mt). Over
the entire period 2001–2015, R&D efficiency and industrial internal structure were the main factors
mitigating the CO2 emissions, while the effects of energy intensity and energy structure were minimal
on reducing CO2 emissions. Based on the current positive drivers, a sensible approach is to further
promote R&D intensity to lower its positive impact and even make it a negative driver.
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(2001–2005), 11th (2006–2010), 12th (2011–2015) FYPs), and the entire period. (Note: ∆ECY, ∆ECES,
∆ECIS, ∆ECII, ∆ECRI, ∆ECRE, and ∆ECEI are the CO2 emission changes of economic output, energy
structure, industrial internal structure, investment intensity, R&D intensity, R&D efficiency, and energy
intensity, respectively.).

The other subsector for producing energy (Production and Supply of Electric Power, Gas and
Water) demands a lot of energy and thus produces substantial CO2 emissions [57]. Therefore, it is also
an important sector for emission reduction. The changes of energy-related CO2 emissions are 57.8, 33.7,
and −33.3 Mt at the three stages, respectively; again demonstrating the effectiveness of governmental
measures in FYPs. In mitigating the CO2 emissions over 2001–2015, R&D efficiency (negative) and
industrial internal structure (negative) were the main factors while the energy structure (negative) had
little effect; the phenomenon is consistent with the Mining and Quarrying subsector.

To prove a better comprehension, Table 4 lists the CO2 emissions in the beginning year of 2001
and 2015 as well as the extent of increase. The manufacturing subsector had the highest CO2 emissions
in 2001 (86 Mt) but the increased percentage between 2001 and 2015 was the lowest (138%) compared
to two other subsectors. Also, the subsector of Production and Supply of Electric Power, Gas and Water
had the smaller CO2 emission changes (106 Mt), implying its CO2 emissions grow slowly compared to
the other two subsectors. Since the increased percentage for the Mining subsector between 2001 and
2015 was the highest (395%), the efforts to reduce its activity are significant including the governmental
policy to limit coal consumption by 2030 and use of clean energy.

Table 4. CO2 emission changes and increasing rate for subsectors and industries over 2001–2005.

Subsector 2001 (Mt) 2015 (Mt) 2001–2015 (Mt) Increasing Rate (%)

Manufacturing 86 205 119 (764–645) * 138
S25: Smelting and Pressing of Non-Ferrous Metals 7 42 35 (58–23) * 500

S19: Manufacture of Raw Chemical Materials and Chemical
Products 16 45 29 (111–82) * 181

Mining and Quarrying 39 193 154 (594–440) * 395
S1: Mining and Washing of Coal 35 187 152 (197–45) * 434

Production and Supply of Electric Power, Gas and Water 76 182 106 (604–498) * 139
S35: Production and Supply of Electric Power and Heat

Power 76 181 105 (438–333) * 138

Summary 201 580 379 189

* Number inside the parenthesis refers to positive and negative CO2 emission changes.
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4.3. Decomposition Analysis of Driving Factors at Different Stages

The Chinese government always issues FYP for its national economic and social development
including environment-related issues; thus, the extent of implementation as well as the effectiveness
of environmental policies can be revealed through environmental data analysis, as in the case of the
characteristics and changes in CO2 emissions in the present study. The trend of each factor affecting
CO2 emissions change for each FYP period as well as the entire period (2001–2015) is shown Figure 7.
For better illustration, data in Figure 7 are further tabulated in Table 5 to indicate the effectiveness of
policies formulated in each FYP period, if any, on the contribution of each factor towards emission
changes. The analysis of each factor for the CO2 emission changes as related to different FYP periods
will be discussed in the following section.
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Table 5. Trends of contributions of various factors at three development stages.

Decomposition Factor FYP Trend Annual Average
Contribution (%)10th 11th 12th

Economic Output + + + 19.6
Industrial Internal

Structure − − − −7.2

Energy Structure + + − 0.1
Energy Intensity − − − −5.8
R&D Intensity − + + 5.6
R&D Efficiency − − − −10.9

Investment Intensity + − − 5.4

Note: The sequence of trends is the 10th (2001–2005), 11th (2006–2010), and 12th (2011–2015) FYP; + and − stand for
positive effect (increasing CO2 emission) and negative effect (decreasing CO2 emission) on industrial CO2 emission
changes, respectively. Annual average contribution refers to the contribution rate per year of each factor to the total
emission changes.

Economic output (∆ECY): Of all seven factors, the economic output played a prominent role in
the contribution to the CO2 emission changes at three FYP stages (Table 5 and Figure 7), which is in
line with almost all previous studies [51,58]. According to Wang et al. [59], economic development
characterized by industrialization and urbanization depends on substantial energy consumption with
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corresponding high CO2 emissions. As shown in Figure 7, the average increases during each FYP
period in CO2 emissions resulting from economic output growth were 202, 371, and 342 Mt, for 10th,
11th, and 12th period, respectively. Obviously, the CO2 emissions caused by the economic development
during the 12th FYP were reduced. The annual average CO2 emission increased from 8% to −2% from
the 11th to 12th FYP. Correspondingly, the average annual growth rates of industrial economic output
were 19% and 15% at two stages, respectively, indicating that CO2 emissions and industrial economic
output have similar trends and thus, industrial energy-related CO2 emission changes largely depend
on industrial growth.

Industrial internal structure (∆ECIS): Industrial structure adjustment presents a mitigating effect
on CO2 emissions at all three stages (Figure 7 and Table 5). According to Shao et al. [14], industrial
structure adjustment causes the changes of output to be shared among different sectors (i.e., transfer
from industrial sector to service sector), and within industrial subsectors (i.e., transfer from high
energy intensive/high CO2 emission subsectors to lower energy users). As shown in Figure 7, the
decreases in CO2 emissions resulting from industrial structure adjustment are 11, 99, and 254 Mt
at three stages, respectively, showing a clear effectiveness of industrial structure adjustment for
these FYP stages. In fact, since the 11th FYP, the Chinese government promoted industrial structure
optimization policies, and consequently, the industrial structure of Henan Province has gradually
transformed from raw material processing and manufacturing with high energy use and high pollutant
emissions to high-tech industries with high added values and low energy uses, such as the electronic
and information technology industry. Over the 2001–2015 period, the output share of low emission
industrial subsectors continuously increased (e.g., 1% of the electronic and information technology
industry in 2001 has increased to 16% in 2015). Therefore, the industrial internal structure change
should be emphasized in the manufacturing sector of information and communication to reduce the
overall CO2 emissions, which is exemplified by the establishment of Foxconn (iPhone maker) in Henan.

Energy structure (∆ECES): Unlike economic output and industrial internal structure factors,
energy structure plays an insignificant role in the change of CO2 emissions in all years (Table 3), or
only 3.4, 0.6, and −0.3 Mt at three stages (Table 5 and Figure 7), respectively. Other studies [57,60]
also reported the minor role of energy structure played in the energy-related industrial CO2 emissions
in China. The reason is certainly due to the fact that Henan is a coal-dominant energy endowment
and coal-related consumption structure as the CO2 emissions coefficient of coal is higher than that
of oil and gas. In reality, it will be difficult to alter the traditional coal-dominant energy structure
in the near future. The low-carbon pathway of energy structure adjustment requires a longer time
and more efforts to encourage the use of non-fossil energy. Nevertheless, the small CO2 emissions
decreasing amount after 2011 may indicate the successful implementation of some policies during the
12th FYP period.

Energy intensity (∆ECEI): From Figure 7 and Table 5, energy intensity remains to have a mitigating
effect on CO2 emissions at three stages (or −23, −113, and −143 Mt, respectively), which is similar to
most related studies (e.g., Wang and Feng [56] in decomposition of energy-related CO2 emissions in
China). The reduced energy intensity should decrease CO2 emissions, indicating the improvement
of energy efficiency [61]. The energy intensity of the entire 38 industries has dropped from 6.12 to
1.62 tce/104 RMB from 2001 to 2015 in Henan Province, or 74% reduction over the 15-year span.
Typically, there are many approaches for reducing energy intensity, including use of innovative
technologies [62], energy management [63], and change of fuel [64,65], among others. One particular
emphasis regarding energy intensity that needs to be mentioned is the full utilization of energy
cascade, or try to extract residual energy from waste steam/liquid within one particular plant or
among different plants, or even from different industrial subsectors.

The previous investigators [12,14] used several new terms such as “R&D intensity”, defined as
the amount of RMB invested in R&D/total fixed assets in RMB, in which one of the aims is to develop
new technology in R&D efforts for carbon reduction and energy saving. We will discuss these new
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factors (in addition to R&D intensity, they also include R&D efficiency and investment intensity) and
their effect on CO2 emission changes in the following paragraph.

R&D intensity (∆ECRI): From the decomposition results of the R&D intensity (Figure 7 and
Table 5), the changes in industrial CO2 emissions resulting from R&D intensity are −427, 427, and
104 Mt, respectively, for three stages. During the initial 10th FYP stage, the efforts in R&D intensity
really payed off in mitigating such large amounts of CO2 emissions. Afterwards, the R&D intensity
apparently did not transfer CO2 emission reductions, perhaps because of a lack of R&D efforts to
develop energy-saving and carbon-reduction technologies; instead, R&D activities may shift to identify
new products, enhance the overall industrial growth and promote cost saving to compete. In fact,
developing new products will further lead to an increase in CO2 emissions. On the other hand,
Shao et al. [14] reported that the R&D intensity had a mitigating effect on industrial CO2 emissions
in most years (1994–2011) in Shanghai, due to their R&D efforts in pursuing cleaner production
technologies as well as other innovative technologies. Compared to the well-developed industrial
state in Shanghai, Henan Province is in a so-called “extensive state”, or has high energy use with high
CO2 emissions as well as low value added products. In short, to achieve low carbon development, the
priority of R&D activities should be towards promoting technological innovation of energy-saving
and emission-reduction in Henan Province.

R&D efficiency (∆ECRE): R&D efficiency exhibits the highest mitigation in the industrial CO2

emission changes, or −48, −385, and −28 Mt at three stages, respectively (Figure 7 and Table 5).
Especially, the effect played a more important role of mitigating CO2 emission in the 11th FYP than
the other two periods. Such results imply an evident volatility of R&D efficiency on industrial CO2

emissions. The R&D efficiency is closely related to the focus of R&D efforts of industrial enterprises.
These efforts, unfortunately, do not necessarily reduce CO2 emissions, if R&D investment is used
for enhancing productivity. On the contrary, industrial enterprises focus on more R&D investment
to improve the energy saving and emission reduction technology; industrial CO2 emissions can be
mitigated. Realistically, it is not too difficult to have high R&D efficiency, yielding lower CO2 emissions,
by concentrating on improving energy efficiency and carbon reducing emissions in industrial processes.

Investment intensity (∆ECII): As shown in Figure 7, the changes in industrial CO2 emissions
resulting from investment intensity are 476, −42, and −78 Mt at three stages, respectively,
corresponding to the increasing investment intensity of the entire 38 industries from 0.15 (2001)
to 0.89 investment RMB/added value RMB (2015), with 488% growth during the 15-year span. As
a result, investment intensity showed a positive result in CO2 emissions reduction in the 11th and
12th FYPs. Like R&D intensity, investment expenditure also has a dual role. Although promoting the
investment intensity can increase CO2 emissions through production scale expansion, it can also abate
CO2 emissions through upgrading production equipment to improve energy utilization efficiency [14].
Thus, the efforts made by Henan Province in industrial upgrading under the guidance of energy-saving
and emission-reduction policy reduced CO2 emission. Industrial investment should aim for achieving
higher energy efficiency by changing their investment direction towards production facility.

4.4. Emissions Reduction Scenario Analysis

4.4.1. Scenario Design

To abate CO2 emissions, efficiency improvement and structural adjustment are two major
approaches [66]. According to the various influential factors discussed above, the factors related
to efficiency include energy intensity, R&D intensity, investment intensity, and R&D efficiency.
Correspondingly, improving the efficiency refers to reducing energy intensity and R&D efficiency and
increasing R&D intensity and investment intensity. On the other hand, the structural adjustment refers
to optimizing the structures of both the industrial and energy structure.

To better understand the trend of CO2 emissions in Henan Province, we further conduct five
scenarios to estimate CO2 emissions up to 2030 with 2015 used as the base year. The five scenarios
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include Business as Usual (BAU), Efficiency Improvement (EI), Structural Optimization (SO), R&D
input (RD) and Comprehensive Policy (CP) scenarios. According to Equations 12–21, if the growth
rates of these seven factors (α, β, γ, δ, θ, ν, µ and ϕ) are given, the industrial energy-related CO2

emissions in the future can be estimated. Thus, our scenarios essentially consider the changes in these
growth rates of seven factors.

For all scenarios, we assume that the future carbon emission factor for a particular energy source
(fuel) will remain unchanged, based on historical data. Also, taking into account historical and future
economic development trends, the annual growth rates of economic output are assumed to be 10%,
9%, and 8% at the 13th, 14th and 15th FYP periods, respectively. As for other factors of efficiency
improvement (R&D intensity, energy intensity, R&D efficiency, and investment intensity) and structural
adjustment (energy structure and industrial internal structure), their annual growth rates in the future
FYP periods are different under the five scenarios. This adjustment makes sense as with others [12] that
also modified their growth rate with time. In addition, we used the growth rate of proportion of coal
in energy consumption to represent the growth rate of the energy structure. Similarly, the growth rates
of proportion of six high energy-consuming industries (Electricity, Steel, Coal, Non-ferrous metals,
Cement, and Chemical industries) in the entire industry are assumed to represent the growth rate of
the industrial structure. The simplified assumption of using the average of six industrial subsectors in
representing the growth rate of the entire industrial structure would make calculation easy and result
in better comprehension as compared to assuming the growth rate for each one of the 36 subsectors as
in Zhang et al. [12].

The other assumption or description for each of the five scenarios is covered as follows. In the
BAU scenario, the annual growth rate of each factor is set as the arithmetic mean of the period from
2001 to 2015 according to the historical annual growth trend, and the factors will maintain their current
trends unchanged for each year up to 2030. For example, energy intensity will stay at the same level
from 2015 to 2030 (−8.9% of annual growth in tce/104 RMB) as shown in Table 6. For the scenario of EI,
this scenario only considers higher efficiency improvement, as compared with the BAU scenario and,
as mentioned before, the efficiency is different with three periods (i.e., further improved in the 13th,
14th and 15th FYP periods). To achieve this step-by-step enhancement, more effective policies should
be formulated and implemented in reducing energy intensity and R&D efficiency and increasing
R&D intensity and investment intensity. Thus, using the same example as before, energy intensity is
projected to be −10, −11 and −12% for 13th, 14th and 15th for the FYP period, respectively (Table 6,
first column). The third SO scenario considers significant structural adjustment without considering
energy intensity. As a result, energy intensity is the same as the BAU scenario (or −8.9% for each of
three FYP periods; Table 6) while the industrial structure is progressively adjusted during each of
three stages: −3, −4.5 and −5.5% (Table 6) for the 13th, 14th and 15th FYP periods. To achieve the
target growth rate, the industrial sector must transfer the energy-intensive industrial subsectors to the
high-tech subsectors and consume less carbon-intensive energy sources including using non-fossil
energy. As for the 4th R&D scenario, it mainly considered R&D expenditure. Therefore, with the
increased R&D expenditure, the R&D efficiency becomes lower while R&D intensity is increased. If
R&D expenditure is devoted to technologies for carbon reduction and energy saving, the resultant
energy intensity would be lower, an hence, have the potential for more CO2 emission reduction.
Consequently, energy intensity is set to be lower than that of the EI scenario (−10.5,−11.5, and−12.5%;
Table 6). Finally, the last CP scenario is the combination of the EI, SO and RD scenarios. Under
this scenario, the CO2 emission reduction potential should be more than that of each of the above
four scenarios.
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Table 6. Hypothetical annual growth percentage (%).

Factors Historical Trend Year
Scenario

BAU EI SO RD CP

Efficiency Improvement Factors

Energy Intensity (EI)
θ

−8.9
16–20 −8.9 −10 −8.9 −10.5 −10.5
21–25 −8.9 −11 −8.9 −11.5 −11.5
26–30 −8.9 −12 −8.9 −12.5 −12.5

R&D Intensity (RI)
ν

−5.3
16–20 −5.3 −4 −5.3 −3 −3
21–25 −5.3 −3 −5.3 −2 −2
26–30 −5.3 −2 −5.3 −1 −1

R&D Efficiency (RE)
µ

−3
16–20 −3 −4 −3 −5 −5
21–25 −3 −5 −3 −6 −6
26–30 −3 −6 −3 −7 −7

Investment Intensity (II)
ϕ

17.6
16–20 17.6 18 17.6 18 18
21–25 17.6 19 17.6 19 19
26–30 17.6 20 17.6 20 20

Structure Adjustment Factors

Industrial Internal
Structure (IS)

γ
−2.3

16–20 −2.3 −2.3 −3 −2.3 −3
21–25 −2.3 −2.3 −4.5 −2.3 −4.5
26–30 −2.3 −2.3 −5.5 −2.3 −5.5

Energy Structure (ES)
δ

0.3
16–20 0.3 0.7 0 0.3 0
21–25 0.3 0.7 −0.5 0.3 −0.5
26–30 0.3 0.7 −1 0.3 −1

Note: we assume that the future growth rates of the carbon emissions coefficient remain unchanged (α = 0).
The annual growth rates of economic output (β) were 10%, 9%, and 8% at the 13th, 14th and 15th FYP
periods, respectively.

In summary, the assumed annual growth rates for each of the three stages (13th, 14th and 15th)
under each of the six factors are shown in Table 6. The extent of uncertainty in assuming these values
will be discussed later in the uncertainty section as well as in sensitive analysis.

4.4.2. Estimates of the energy-related CO2 emissions and the emission reduction potential

Based on the above scenario settings, the future industrial energy-related CO2 emissions under
different scenarios are presented in Figure 8a. Under the BAU scenario, CO2 emissions will increase
two-fold to 1222 Mt in 2030 at an annual growth rate of 4.7%. In the other four scenarios, CO2 emissions
in 2030 will reach 1079, 793, 987 and 638 Mt with an annual growth rate of 3.8%, 1.8%, 3.3% and 0.4%,
respectively. Cleary, CO2 emissions under the best scenario is only about 50% of the BAU case, due to
the consideration of both intensity and structure adjustment. Zhu et al. [11] projected the industrial
energy-related CO2 emissions for Yangtze River Delta region with a range of 796 to 1508 Mt in 2020,
comparing with our results of 701 to 780 Mt. Since the industrial added value in Yangtze River Delta
is much higher than that in Henan, the resultant carbon intensity in Henan (3.2–3.6 t-CO2/104 RMB
in 2020 at 2001 constant prices; Table 7, and 2.8–3.2 t-CO/104 RMB at 2005 constant prices) is much
higher than that in Yangtze River Delta (0.3–0.6 t-CO2/104 RMB in 2020 at 2005 constant prices).
Thus, the key approach in reducing CO2 emissions should be a lower carbon intensity to the level
of the well-developed industrial region (e.g., Yangtze River Delta) and developed countries (e.g.,
0.26 t-CO2/104 RMB of entire economic sectors in 2014 at 2005 constant prices in Japan, IEA [67]).
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Table 7. Carbon intensity trend under different scenarios.

Scenario
Carbon Intensity
(t-CO2/104 RMB)

Achieved 2020
Reduction Target or

Not (40–45%)

Achieved 2030
Reduction Target or

Not (60–65%)2005 2020 2030

BAU 14.24 3.56 2.47 Yes Yes
EI 14.24 3.47 2.18 Yes Yes
SO 14.24 3.39 1.60 Yes Yes
RD 14.24 3.37 1.99 Yes Yes
CP 14.24 3.20 1.29 Yes Yes

Obviously, under our assumptions, CO2 emissions under various scenarios are still growing
under the BAU, EI, and RD scenarios. Fortunately, the industrial sector in Henan Province can achieve
the peak target set by the Chinese government (peak by 2030 or early) in 2025 under the SO and
CP scenarios, indicating that if efficiency improvement and structural adjustment are strengthened,
especially structural adjustment, the industrial sector in Henan Province can reach its carbon emission
peak before 2030. In addition, government also set the target for carbon intensity: that in 2020, CO2

emission intensity should be reduced by 40–45% as compared to 2005 (set in 11th FYP); and in 2030,
it should be 60–65% the level of 2005 (set in 12th FYP). The results shown in Table 7 clearly indicate
under all five scenarios the carbon intensity reductions (55–63% in 2020 and 68–85% in 2030) meet both
set targets in 2020 (40–45%) and in 2030 (60–65%).

According to the above scenario analyses, the estimated mitigation potentials for four scenarios are
shown in Figure 8b. Under the EI, SO, RD, and CP scenarios, 143, 429, 235, and 584 Mt of CO2 emissions
can be mitigated by 2030, compared to BAU. Clearly, the mitigation potential in the SO scenario is
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larger than that of the EI scenario. The finding is consistent with the results of previous studies
regarding the industrial sector [12], as well as the entire economic sector including all three sectors [68]
for China. There are many reasons to explain the observed phenomenon. First, Henan Province is in the
middle of industrialization and has to maintain a targeted GDP growth rate. However, it lags behind
the industrial structure as compared to other regions in that transfering high energy-high pollutant
emitting industry to low energy usage with less pollutant emissions. For example, introducing
renewable industries (e.g., solar panel and wind turbine) in Henan will not only provide enterprise
output economic value but also provide or promote renewable energy technology. Secondly, the
economy in Henan mostly replies on the development of the industrial sector (e.g., 42% of the overall
GDP); structural change by moving some high carbon emission industries to the service sector would
surely reduce CO2 emission. Thus, considering these structural changes in the future scenario analysis,
high CO2 emission reduction would be expected. Thirdly, since the SO scenario also includes energy
structure change, the energy source converted from the coal consumption-based industry in Henan to
gas or renewable energy would result in significant CO2 emissions reduction. In fact, the reduction of
coal consumption as well as increasing the usage of renewable energy is governmental policy. The
high energy consumption does not necessarily translate into high CO2 emissions, since some of the
energy sources are from clean energy including nuclear and renewable energy.

5. Uncertainty and Sensitivity Analysis

5.1. Uncertainty Analysis

In this study, the overall uncertainties are based on the following three aspects: (1) calculation of
CO2 emission over 2001–2015, (2) LMDI decomposition, and (3) CO2 emission prediction.

Uncertainties related to the calculation of CO2 emissions originate from four factors: energy
consumption, average net calorific value of fuel (NCV), carbon content of fuel (CC), and the carbon
oxidation factor (O). Energy consumption data were obtained from the Henan Statistical Yearbook.
The statistics departments mainly use the bottom-up approach to generate a progressive summary, so
there are potential errors in energy consumption data. For example, the accuracy of the individual
industry in its overall energy consumption remains to be seen. For the other three factors, the net
calorific value of fuel was obtained from China Energy Statistics Yearbook, but the quality of these
fuels is unknown resulting in some uncertainty in calorific fuel estimation. The content of fuel and the
carbon oxidation factor were obtained from the IPCC and the literature, and some single value (e.g.,
carbon in coal is 26.42 t-C/TJ and oxidation factor 93%) would render the results of complex fuels
uncertain. In some studies, NCV × CC × O is defined as an emission factor [69,70]. If the emission
factors determined in the literature are used directly to estimate carbon emissions, the uncertainty can
be reduced compared to three unknown parameters.

As for the uncertainties of LMDI decomposition, there are also four parameters involved:
energy consumption, added value, R&D expenditure, and fixed asset investment, which are all
from the statistical year book. Without doubt, there must be some errors either manual or technical
in summarizing hundreds and thousands data. Finally, in predicting CO2 emissions, the main
uncertainties are the annual growth rates of the seven parameters shown in Table 6 (i.e., β, γ, δ,
θ, ν, µ, and ϕ). The assumption for these parameters depends mainly on historical data trends,
formulated national policy plans and our best knowledge with little theoretical basis.

5.2. Sensitivity Analysis

To address the uncertainty of the CO2 emissions prediction result, a sensitivity analysis for seven
parameters (i.e., β, γ, δ, θ, ν, µ, and ϕ) based on equations 12–21 was conducted. In each calculation,
only one input parameter was changed while all others were kept constant. For each parameter, we set
upward and downward adjustments (within a 10% band) of the original value. The range of these
input parameters for subsequent sensitivity analysis for the CP scenario is shown in Table 8 with the
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resultant CO2 emissions compared to the CO2 emissions under the CP scenario. As a result, the CO2

emissions are reduced with the decreases in the 10% growth rates of industrial internal structure (γ),
energy structure (δ), energy intensity (θ), and R&D efficiency (µ); corresponding with the CO2 emission
reductions of 7, 1, 18, and 9% compared with the original value. On the other hand, with the increases
of 10% of the growth rate of these factors, the CO2 emission would increase by 7, 1, 21, and 10% from
the original results. As for the other two factors, R&D intensity (ν) and investment intensity (ϕ),they
exhibit the opposite trend in that decreases in the growth rate would increase CO2 emission and vice
versa. Fox example, in the case of the R&D intensity (ν), the CO2 emissions is increased by 3% when
its growth rate is 10% lower than the original growth rate.

Table 8. Sensitivity analysis of variable parameters on CO2 emissions under the CP scenario.

Parameter Change Range * CO2 Emission Uncertainty under
CP Scenario, %

β
Economic output (Y)

10% lower −12
10% higher 13

γ
Industrial internal structure (IS)

10% lower −7
10% higher 7

δ
Energy structure (ES)

10% lower −1
10% higher 1

θ
Energy intensity (EI)

10% lower −18
10% higher 21

ν
R&D intensity (RI)

10% lower 3
10% higher −3

µ
R&D Efficiency (RE)

10% lower −9
10% higher 10

ϕ
Investment intensity (II)

10% lower 27
10% higher −22

* For each of the seven parameters, % change refers to comparing with the original value.

Among the effect of these seven parameters, the greatest impact on CO2 emissions prediction was
investment intensity, which was followed by energy intensity and economic output. The reason for
this is that they have greater impacts on the CO2 emission changes (Table 3) and, more importantly,
their higher assumed growth rates (absolute value from 10 to 20%; three highest factors among seven
factors; last row in Table 6). As a result of our findings, the realistic and sensible approach to reduce
future CO2 emissions is of course to increase the annual growth of investment intensity and reduce
energy intensity.

6. Conclusions and Policy Implications

In this paper, using the LMDI decomposition approach, changes in industrial energy-related
CO2 emission are decomposed into eight factors during 2001–2015 in Henan Province. In addition,
future trajectories of CO2 emissions under different scenarios over 2016–2030 are projected. The main
conclusions drawn from the study are summarized as follows.

With the rapid development of industry in Henan Province, its industrial energy-related CO2

emissions increased from 201 Mt in 2001 to 637 Mt in 2013 and then decreased to 582 Mt in 2015.
Among these factors, the economic output, R&D intensity, investment intensity, and energy structure
were the positive drivers of changes in CO2 emissions over the period 2001–2015, with contributions
of 293, 83, 80, and 1% of total CO2 emission changes, respectively. Conversely, the energy intensity,
R&D efficiency, and industrial internal structure exhibited a negative effect, with contributions of −86,
−163, and −108%, respectively. In the five scenarios, CO2 emissions from energy consumption in
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2030 will reach 1222, 1079, 793, 987, and 638 Mt with an annual growth rate of 4.7%, 3.8%, 1.8%, 3.3%,
and 0.4%, respectively. In particular, the CO2 emission peak for the SO and CP scenarios is observed
before 2030; for comparison, the peak value for the CP scenario in 2025 is 719 Mt as compared to 638
Mt in 2030. According to the scenario analyses, all the five scenarios will achieve the 2020 and 2030
reduction target of carbon intensity as specified in the 11th and 12th FYP. Under the EI, SO, RD and CP
scenarios, 143, 429, 235 and 584 Mt of CO2 emissions can be mitigated by 2030, compared to BAU. In
short, structural adjustment with its higher mitigation potential than efficiency improvement plays an
important role in the overall CO2 emissions reduction.

Based on the above research findings for the industry sector, certain policy recommendations
are proposed. In terms of industrial structural adjustment, the transformation from energy-intensive
industries to technology-intensive industries for the industrial sector should be considered as a
key policy to mitigate emissions. Other policies and measures by the government should be made,
including constraining the development of high-pollution heavy industries and subsidizing the
high-tech industries (e.g., internet and communication industry) and renewable industries (e.g., solar
panel and wind turbine); this represents the development direction of modern industry and encourages
the production of high value-added goods. Another significant structural adjustment of emission
mitigation is to optimize the energy mix. Clean and renewable energy sources with its government
subside, and lower energy pricing in the future should be introduced to industrial enterprises through
restricting fossil fuel usage. As for efficiency improvement, reducing energy intensity is always a major
strategy for mitigating CO2 emissions. It can be achieved by promoting the application of energy-saving
technologies and encouraging energy conservation through fiscal incentives. Moreover, increasing
R&D expenditure and fixed asset investment for developing energy-saving and emission-reduction
technologies and upgrading production facilities can also improve energy efficiency. However, there
will be a key concern for industry to decide its best outcome for their investment: developing
energy-saving and emission-reduction technologies or expanding the production line for making
more products. Therefore, the government should strengthen the fiscal policies on the regulation of
enterprises’ CO2 emissions, including taxation and subsidies, so that industrial enterprises would
make more efforts to develop low-carbon technologies. Overall, how to seek a trade-off between
economic development and emissions reduction to achieve a “win-win” situation is the key issue.
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