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Abstract: The ability of spatial remote sensing in the visible domain to properly detect the slow
transitions in the Earth’s vegetation is often a subject of debate. The reason behind this is that the
satellite products often used to calculate vegetation indices such as surface albedo or reflectance, are
not always correctly decontaminated from atmospheric effects. In view of the observed decline
in vegetation over the Congo during the last decade, this study investigates how effectively
satellite-derived variables can contribute to the answering of this question. In this study, we use
two satellite-derived surface albedo products, three satellite-derived aerosol optical depth (AOD)
products, two model-derived AOD products, and synthetic observations from radiative transfer
simulations. The study discusses the important discrepancies (of up to 70%) found between these
satellite surface albedo products in the visible domain over this region. We conclude therefore that the
analysis of trends in vegetation properties based on satellite observations in the visible domain such as
NDVI (normalized difference vegetation index), calculated from reflectance or albedo variables, is still
quite questionable over tropical forest regions such as the Congo. Moreover, this study demonstrates
that there is a significant increase (of up to 14%) in total aerosols within the last decade over the
Congo. We note that if these changes in aerosol loads are not correctly taken into account in the
retrieval of surface albedo, a greenness change of the surface properties (decrease of visible albedo) of
around 8% could be artificially detected. Finally, the study also shows that neglecting strong aerosol
emissions due to volcano eruptions could lead to an artificial increase of greenness over the Congo of
more than 25% in the year of the eruptions and up to 16% during the 2–3 years that follow.

Keywords: vegetation; surface albedo; aerosol optical depth; greenness; brownness; Congo; MODIS;
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1. Introduction

Tropical rainforests play a crucial role in the regulation of regional climate and weather worldwide
owing to their close interaction with the hydrological cycle [1,2]. They assist in the upward transport
of moisture through the process of evapotranspiration that increases the chance of precipitation [1]
and thus favoring the vegetation growth. A reduced forest cover mitigates this process and results
in perturbed rainfall patterns [3]. Furthermore, the indirect effects of atmospheric aerosols adversely
impact clouds and in turn precipitation, which is pivotal for vegetation growth. Anthropogenic
activities like forest-clearing fires and the burning of the savanna for colonization and agriculture
creates air pollution which releases biomass aerosol particles into the atmosphere, that later directly
interact with solar radiation by the process of scattering and absorption [4]. Biomass-burning aerosols
contribute to increasing cloud formation but somewhat paradoxically also to decreasing rainfall [5,6].
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The smaller cloud size droplets created by smoke particles cannot grow to sizes sufficiently large
enough for precipitation [7]. This reduction in rainfall leaves the burnt forest areas more susceptible
to further dryness and fires [8] and hence result in a less vegetation growth. The greenness reflects
the increase of vegetation over the rainforest and it is therefore indirectly a measure of the health of
the rainforest. The increase or decrease of forest canopy can result in greenness (decrease in surface
reflectance and albedo) or brownness (an increase in surface reflectance and albedo), respectively [9].
Surface albedo values are usually low over thick rainforests as and when compared to non-vegetated
surfaces [1].

Satellite observations used to derive vegetation indices help to characterize and monitor the
forest vegetation on Earth [3], which is crucial for achieving sustainable forest management [10].
The surface information in the spectral channels in the visible (VIS; 0.4–0.7 µm) and near-infrared
(NIR; 0.8–2.5 µm) spectral domains that are used to derive these indices is often contaminated by the
extinction effects of aerosols and clouds due to limited atmospheric correction [11]. In this manuscript,
the emphasis is put on the residual contamination due to aerosols and their impact on the surface
reflectance or albedo satellite products. Studies conducted by Franch et al. [12] showed that the
presence of high aerosol loads may introduce large errors in the computation of surface reflectivity
properties. Their study showed that the presence of scattering aerosols can induce positive changes
in derived albedo compared to absorbing aerosols, which may induce negative changes. This link
between surface and aerosol properties drives the scientific community to perform an exact estimation
of aerosol load and type for a proper atmospheric correction [11].

In spite of the best efforts made by the scientific community, however, there still remain
inconsistencies in the satellite retrievals. This adversely impacts the quality of the estimated aerosol
load [13,14] which is otherwise important in atmospheric correction. In line with this, some studies
discuss the inaccuracies in surface observations due to the limitations in the retrieval of the proper
aerosol load [15–19]. For example, Kim et al. [15] showed that a 1% error in surface reflectance could
result in a 10% error for the aerosol optical depth (AOD). Another study by Seidel and Popp [17]
showed similar results in the presence of dust particles in the atmosphere. Hence, the determination
of the realistic aerosol load and type is crucial for an accurate atmospheric correction of surface
reflectance. This is in turn used in the estimation of essential climate variables such as surface albedo
and vegetation indices [20]. However, studies admit that complete atmospheric correction of aerosols
on an operational basis is difficult and there always remains some aerosol contamination in the
observed satellite reflectance [11]. It is worth discussing here that temporal averaging can help to
reduce the residual errors. For example, the satellite albedo products have different characteristic
time scales comprised between 1 day and 30 days. The longer the composite period, the lower the
atmospheric residual contamination should be in the satellite albedo products. However, the impact
is more visible in terms of standard deviation of the statistical scores (but may be less in the case of
bias statistics). In any case, several communities working in climate groups and Numerical Weather
Prediction (NWP) express the need for daily estimates.

Many studies show a decline in the greenness of vegetation over Amazonian and African
rainforests based on satellite observations [20–24]. These studies draw important conclusions on
the health of forest vegetation in terms of the increasing brownness of the forest cover. The tropical
forest in the democratic republic of Congo was found to be more tolerant of the short-term deficit in
rainfall as compared to the Amazonian forest [3]. Longer droughts have however transformed the
canopy architecture from much denser to sparse [3] which has a profound impact on the surface albedo
of the canopy [25]. It is important to note that the saturation of the surface signal in the band ratio of
VIS to NIR is a known problem [26,27]. This is due to the fact that the vegetation indices are based
on the absorption properties in VIS and NIR domains and sometimes over the thick forests, the red
channel in VIS band sense very low values leading to saturation. In this context, it is important for
the scientific community to better characterize the decline of vegetation from the observed changes
in the surface albedo. Usually, the vegetation indices are considered as a good proxy for monitoring
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the growth of vegetation and for the detection of surface changes [23]. Nevertheless, the studies
which highlight the possible modifications of the vegetation of forests from vegetation indices could
be jeopardized by several factors such as viewing geometry, residual clouds and more significantly
aerosol contamination [12,15,21,28]. Research conducted by Anderson et al. [22] reports that there
were several limitations associated with the usage of NDVI (normalized difference vegetation index) as
a proxy for identifying the health of green vegetation due to its sensitivity to atmospheric aerosols and
soil background. Furthermore, they suggest the use of EVI (enhanced vegetation index) and NDWI
(normalized difference water index) as an alternative to NDVI for a better understanding of vegetation
characteristics [22]. In any case, all these indices are calculated based on the surface parameters that
may still be contaminated by aerosols.

As mentioned previously, accurate knowledge of aerosol conditions is important considering their
role in atmospheric correction. The greenness of vegetation is associated with a decrease in albedo
in the visible domain, where vegetation absorbs the light mainly in the blue and red wavelengths to
trigger photosynthesis. The healthier the vegetation, the larger the quantities of absorbed photons
in the VIS domain on the solar spectrum, thereby leading to a decrease in the associated albedo.
Conversely, brownness of vegetation leads to an increase in the VIS surface albedo. The NIR domain is
not affected by the photosynthesis process and hence the impact of greenness or brownness on surface
albedo is lower. It is worth discussing again that greenness or brownness affect the calculation of
NDVI as they are based on the normalized difference between visible and near-infrared signals [29].
In this study, we conduct an analysis in order to answer the following question: What could we
expect nowadays to detect from satellite-derived surface albedo for the analysis of temporal shifts in
vegetation? This is done by paying particular attention to the uncertainty due to the misunderstanding
of aerosol load, especially in the visible domain. In other words, it is important to ascertain whether or
not the detected changes of brownness or greenness are not simply the result of a false atmospheric
correction due to an incorrect knowledge of the aerosol load.

The region of interest for this study is the Congo rainforest in Africa [3], where earlier studies
showed a decline in vegetation leading to a browning phase [3]. We focus our analysis on the surface
albedo observed in the VIS and NIR domains. The first objective of the study is to analyze whether
or not an agreement between the different high-quality satellite-based albedo products over Congo
exists. The second objective is to discuss if the potential disagreement is it due to the differences in the
aerosol optical depth products that are used for atmospheric correction. Reanalysis aerosol optical
depth data from two atmospheric models, as well as AOD records from various space-borne sensors
aboard polar and geostationary platforms are considered for the purpose of this study.

The present article is organized as follows. Section 2 presents the data and methodology. The results
are discussed in Section 3. Section 4 summarizes and Section 5 concludes the study while putting
emphasis on future perspectives.

2. Materials and Methods

2.1. Surface Albedo

In this study we consider two satellite-derived bi-hemispherical surface albedo products in the
VIS and NIR domains for the year 2014. Surface albedo is estimated from (i) observations based on the
camera moderate resolution imaging spectroradiometer (MODIS) aboard the polar orbiting satellites
Terra and Aqua, and (ii) observations from the camera Spinning Enhanced Visible and Infrared Imager
(SEVIRI) aboard the geostationary satellite Meteosat Second Generation. Hereafter unless specified
otherwise, we refer to MODIS and SEVIRI surface albedo products in their appropriate contexts.

For MODIS, the surface albedo data from Terra and Aqua satellites are merged to produce a 16-day
composite of albedo at a 1 km resolution. This product (MCD43B3) is interpolated and distributed on
an 8-day basis. The method for its retrieval and the full technical specifications are found in [30–34].
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MODIS satellite reflectances are corrected for aerosol effects using a continental aerosol model and
MODIS aerosol optical depth product before deriving the surface albedo product [35,36].

For SEVIRI, the chosen product is the land surface albedo product [30,31] provided by the
LSA-SAF project (http://lsa-saf.eumetsat.int/). The spatial resolution of this product is around 3 km
for the Congo region and a map of surface albedo is retrieved on a daily basis. The atmospheric
correction uses the AOD climatology which was basically derived from the value of latitude [30].
The type of aerosol is also assumed to be continental (as is that of MODIS) [30].

In the past, Carrer et al. [31] exposed a reasonably good agreement between MODIS and SEVIRI
for both visible (with 20% uncertainty) and NIR albedo (with 5% uncertainty). The higher uncertainty
observed in the visible band may occur due to the sensitivity of atmospheric aerosols in this band.

2.2. Aerosol Optical Depth

2.2.1. Satellite-Based Products

Three satellite AOD products are used in our study. These products are based on observations from
three satellite sensors namely: SEVIRI, MODIS and MISR. MISR is also aboard the Terra polar-orbiting
satellite. The AOD retrieval method for MODIS uses a bi-modal aerosol distribution with three models
for fine mode aerosol and a dust model for the coarse mode aerosol [37]. The MODIS AOD used in the
study is at wavelength 0.55 µm from the latest collection-6 product [37] and collection-5.1 product [38].
The MODIS collection-6.0 product employs both the deep blue algorithm and dark target algorithms
for the expansion of aerosol retrievals across all surfaces [37]. Unless specified otherwise, we represent
the collection-6 MODIS products with ‘C-6’ and collection-5.1 MODIS AOD product with ‘C-5.1’.
The Dark Target method is employed for MODIS AOD retrievals over vegetated and dark soil regions
such as the Congo [37]. The error in AOD for MODIS as reported by Levy et al. [37] is ±0.05 + 0.15.

AOD retrieved from Multi-angle Imaging Spectroradiometer (MISR) uses the directional
information of aerosol and surface reflectance from nine cameras arranged within 0 to 70◦ on either
side of the nadir view. The aerosol properties are measured by comparing the measured radiance
at the top of the atmosphere (TOA) with the radiances that are pre-computed using several aerosol
models [39]. We used AOD at 0.558 µm from MISR for the current study. The overall accuracy of MISR
AOD is about 0.05 according to Reference [40].

The method to derive AOD from SEVIRI observations is called AERUS-GEO (aerosol and surface
albEdo retrieval using a directional splitting method-application to GEOstationnary data) and is
detailed in [41,42]. Aerosol properties are derived by examining the temporal evolution of the
directionality of the satellite observations [41]. SEVIRI AOD is derived at the wavelength of 0.63 µm.
The aerosol type is estimated thanks to an iterative procedure described in Reference [42]. Xu et al. [43]
and Nabat et al. [44] show the accuracy of SEVIRI AOD to be comparable to MODIS and MISR products.
In the current study, unless and otherwise specified we refer to the AOD product from MSG SEVIRI as
SEVIRI AERUS GEO.

2.2.2. Aerosol Products from Atmospheric Modeling

In this study, we have also considered the AOD from the Copernicus Atmospheric Monitoring
Service (CAMS) near real-time products and from modern era retrospective-analysis for research and
applications (MERRA) reanalysis products. The validation of CAMS aerosol products and others are
reported in [45,46] where the AOD at 550 nm is evaluated in conjunction with AERONET (aerosol
robotic network) ground measurements. The overall bias on average was found to be 20%, which
decreased to 5% in winter, by Eskes et al. [45]. In another study [47], the bias on average was found to
vary by up to 30% during the summer of 2016 from a comparison observed between CAMS AOD at
550 nm and AERONET observations. The MERRA reanalysis model aerosol data is taken from the
GIOVANNI online data system (as observed from the web source; https://giovanni.gsfc.nasa.gov/
giovanni) [48]. MERRA reanalysis model AOD data consider the aerosol components such as dust, sea
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salt, black carbon, organic carbon and sulfate. All aerosol components are considered to be externally
mixed [49]. The sulfate and carbon components of aerosols are assumed to be fine mode whereas the
sea salt (with five size bins between 0.03 and 10 µm) and dust (with five size bins between 0.1 and
10 µm) are assumed to both fine mode and coarse mode [49]. The sources of aerosols in the model are
based on wind-speed emissions of dust and sea salt, fossil fuel, biomass burning, biofuel consumption,
biogenic particulate matter, oxidation of dimethyl sulfide and SO2. The model sources also include
volcanic sources [49]. More information on the model and aerosol sinks are found in Reference [49]
(and references therein).

In addition, the MERRA aerosol products have been extensively validated and employed among
the scientific community [50–52]. MERRA AOD at 440 nm yields a correlation coefficient of 0.69 along
with a positive bias of 0.20 when compared in conjunction with the AERONET observations over the
Sahara and the North Atlantic Ocean [52].

2.3. Spectral, Spatial and Temporal Reprojection

The AOD product from SEVIRI AERUS GEO has a finer spatial resolution (3 km from the equator)
compared to MODIS and MISR AOD products. MODIS aerosol data have a grid resolution of nearly
11 km, whereas a MISR level 3 daily product has a resolution of nearly 55 km. Hence, it was necessary
to re-grid SEVIRI AERUS GEO AOD data to the corresponding grid resolution of MODIS and MISR
for the purpose of comparison. Concerning the differences of spectral characteristics of the different
satellite products (AOD at 0.63, 0.55, and 0.58 µm) for MSG SEVIRI, MODIS and MISR respectively, we
arbitrarily decide to keep these products as they are, since spectral conversions would have required a
proper knowledge of the aerosol type.

Regarding surface albedo, SEVIRI albedo was also averaged across the same MODIS
8-day periods.

2.4. Experimental Setup

The first step of this study is to verify whether or not there is a good spatial agreement between
SEVIRI and MODIS albedo products over the tropical rain forest region of Congo. Spatial maps of
AOD bias observed from several satellite products are then examined over the same region. The goal
here is to observe and understand whether or not differences in the AOD products could explain those
observed differences in the albedo maps. At a later stage, we use a radiative transfer model to estimate
and discuss the uncertainty on albedo retrieval with respect to the differences in AOD. Model-based
AOD data from MERRA and CAMS corroborate our findings. We also assess the long term analysis of
MERRA AOD between 1980 and 2016 for various aerosol types and try to explain if any trend in the
AOD observed could explain the uncertainties of albedo.

3. Results and Discussion

3.1. AOD and Surface Albedo Observations over the Study Area

Study Area. The study is conducted over the region of Congo, Africa (14◦ E to 30◦ E; −7◦ S to 5◦ N).
Shown in Figure 1 is the ESA-CCI land cover product derived land cover map (http://maps.elie.ucl.ac.
be/CCI/viewer/index.php) zoomed over the region of Congo.

From Figure 1 it can be observed that vegetation is dominated by broadleaved evergreen forest in
the north of the Congo whereas crops dominate the southern part.

http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
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2014 over the region of Congo, Africa. The black lines delineate the water bodies, the Congo river in 

the middle and the lakes Kivu, Edward and Tanganyika on the extreme bottom right. 

Figure 1. Land cover as observed from European Space Agency (ESA) Climate Change Initiative (CCI),
ESA-CCI for 2010 zoomed over the region of Congo, Africa. The legend of the various land cover types
is shown in the figure.

Mean surface albedo observations for 2014. The mean surface albedo values as observed from
MODIS and SEVIRI during the year 2014 over the region of Congo are shown in Figure 2. Albedo
values are shown for both the VIS and NIR domains.
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Figure 2. Spatial distribution of the mean surface albedo values in (a) VIS and (b) NIR as observed
from MODIS combined data and in (c) VIS and (d) NIR as observed from SEVIRI during the period
2014 over the region of Congo, Africa. The black lines delineate the water bodies, the Congo river in
the middle and the lakes Kivu, Edward and Tanganyika on the extreme bottom right.
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From the figure above, we observe that the mean VIS albedo in 2014 is lower in the northern
Congo over forest cover type and higher in the south over crop cover type. Such contrast from northern
to southern regions is not as obvious in the NIR domain. The mean VIS albedo values as observed
from SEVIRI (mean value of 0.06) are higher compared to MODIS (mean value of 0.04). The differences
in NIR surface albedo as observed from SEVIRI (mean value of 0.18) compared to MODIS (mean value
of 0.19) are not as significant. Compared to the NIR domain, the visible domain is more sensitive to
atmospheric contamination due especially to the presence of aerosols.

Variation of aerosol optical depth and its associated trends for the last three decades. In this
section, the temporal and spatial variations of AOD over the region of the Congo are shown and are
discussed. Later, we show the time series of MERRA AOD for the last 3 decades and discuss any
observed potential trends. Figure 3 shows the daily temporal variation of MERRA model AOD with
respect to other satellite and CAMS model AOD products over the region of the Congo during the
year 2014. The time series is constructed by considering the average spatial value of AOD over the
study region. We observe a good temporal correlation between MERRA and other AOD products. It is
also observed from the figure that all satellite and model AOD products record high AOD values over
the study region suggesting that the study region is prone to high aerosol episodes, especially during
the period of June to September.
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Figure 3. Temporal Variations of the aerosol optical depth (AOD 550 nm) over the region of Congo,
during the year 2014 between MERRA model AOD and various satellite AOD products (MODIS
collection 6 and 5.1, SEVIRI AERUS GEO and MISR) and model AOD from CAMS.

The statistics of comparison between the satellite-derived AOD and MERRA model AOD are
shown in Table 1.

Table 1. Statistics of comparison between satellite-derived AOD products (MODIS collection 5.1 and 6,
SEVIRI AERUS GEO, MISR) and CAMS model AOD with respect to MERRA model AOD. The statistics
are prepared considering data points of MERRA over a daily basis.

Serial No AOD Product
Satellite/Model

Statistics of Comparison

RMSE MBE No of Points R-Value MEAN AOD

1 MODIS-6 0.23 −0.16 362 0.78 0.44
2 MODIS-5.1 0.14 −0.01 357 0.80 0.37
3 SEVIRI AERUS GEO 0.08 −0.11 362 0.77 0.39
4 MISR 0.08 −0.08 268 0.60 0.34
5 CAMS 0.28 −0.19 365 0.84 0.47
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It is observed from Table 1 that the MERRA model AOD values are mostly negatively biased.
The observed statistical scores (RMSE and MBE) from the table reveal that MERRA AOD is comparable
in performance to satellite products MODIS collection 5.1, SEVIRI AERUS GEO and MISR, more so
than AOD products observed from MODIS collection 6.0 and CAMS.

Figure 4 shows the mean AOD from the MERRA and CAMS data sets for the year 2014. It is
observed from the figure that both CAMS and MERRA show similar spatial patterns for mean AOD
observed at 550 nm, although mean AOD from CAMS (a value of 0.5) is higher than MERRA (a value
of 0.3). The AOD values are observed to be higher in the southern and central part of the Congo region
whereas the mean AOD values are relatively low in the northern region of the Congo. We note that the
high AOD values in the south correspond to the urban and crop cover types and the low AOD values
in the north correspond to the evergreen broadleaved trees and other dense vegetation cover types
(see Figure 1). This dichotomy in AOD may be linked to the influence of the land cover type on the
overlaying AOD.
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Figure 4. Spatial map of the aerosol optical depth (AOD 550 nm) over the region of the Congo, during
the year 2014 for (a) MERRA and (b) CAMS. The black lines delineate the water bodies.

Shown in Figure 5a is the long term time series of aerosol load observed from MERRA for various
particle types (namely, black carbon, dust, sea salt and sulfate) over the region of the Congo during
the period 1980–2016. The black arrows in Figure 5 label the important volcanic eruption episodes
observed during the study period. It is observed from Figure 5a that there is an increasing trend in
the dust AOD. The Mann-Kendall test applied to the data set confirms this increasing trend. The dust
AOD value in 2015 (0.06) is double the value observed in 1980 (0.03).

This increase in aerosol load over Africa due to dust was observed in earlier studies [53,54].
A modeling and observational study by Lee et al. Shows a high aerosol load over the democratic
region of Congo (see Figure 6C in Reference [55]). In addition, in a modeling study conducted
by Tummon et al. [56], it is hypothesized that low-level winds are significant for aerosol transport.
This explains the high aerosol load observed in this study over the region [5◦ N to 15◦ S and 15◦ E to
30◦ E]. Furthermore, in the past decade (2005 to 2016), there was also an increase of total AOD by 14%
(see Figure 5b regression line). The mean aerosol departure in the total AOD for the year 2014 with
respect to the mean total AOD value for the entire period (0.32, shown by dotted black line Figure 5b)
is around 14%. The increase in the total AOD during the last decade is partially attributed to the
increasing contribution of black and organic carbon to the total AOD. It is to be underlined that the
decline in vegetation over the Congo was indeed observed during the last decade (2000 to 2012) [3].
The lack of trend in the total AOD over the last three decades is due to the decreasing trend in the
sulfate AOD, something compensated partially by an increasing trend in dust AOD. The decreasing
trend in total aerosol load was indeed observed to be valid from the studies on multi-period decades
as observed in most parts of the globe [53,54,57]. Finally, it can be reported that the impact of volcanic
eruptions around the world on the mean AOD over the Congo is significant (Figure 5a, sulfate AOD
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contribution in total AOD). Values can increase by up to 0.2 in the first year after the event and remain
significant in the following 2 to 3 years with an increase in its value of 0.1.Sustainability 2019, 11, 1410 9 of 21 
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Figure 5. (a) Time series of AOD derived for different aerosol types namely Black Carbon, Dust, Sea Salt
and Sulfate from MERRA reanalysis and (b) time series of total AOD over the region of Congo from
MERRA reanalysis, for the period 1980–2016 over the region, Africa. The volcanic eruption episodes
observed during the study period are indicated by downward arrows. The blue line (Figure 5b) shows
the regression line for total AOD during the last decade. The dotted line in black (Figure 5b) shows the
mean total AOD value computed for the entire period. The orange line (Figure 5a) shows the regression
line for dust during the last 3 decades.

3.2. Differences between Satellite-Based Products

Satellite surface albedo products. In order to study the possible influence of wrong aerosol
information on the satellite-derived surface albedo, a comparison is performed between the VIS and
NIR surface albedo values of MODIS and SEVIRI as shown in Figure 6.
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Figure 6. Spatial map of the mean relative differences (in %) between SEVIRI and MODIS albedos
(SEVIRI-MODIS)/SEVIRI: (a) VIS domain and (b) NIR domain.

As can be observed from the figure, a north-south gradient is observed both in the VIS and NIR
surface albedo. Differences between the two albedo products are much higher in the VIS domain,
reaching a relative bias value of up to 70% over the major part of the region (Figure 6a). The observed
maximum differences in the VIS domain suggest that the observed changes are sensitive to alterations
in the atmospheric aerosols. The bias in the NIR domain is significantly lower, in spite of the likely
presence of coarse aerosols such as dust particles, which can affect the NIR wavelengths.

Difference between AOD products. Figure 7 shows the mean spatial differences of AOD derived
from the satellite products (described in Section 2.2.1). There are distinct spatial differences in the mean
spatial AOD difference maps as observed by MODIS, SEVIRI AERUS GEO, and MISR. From the spatial
map of differences between SEVIRI AERUS GEO and MODIS (C-5.1 and C-6), we observe that MODIS
AOD at 0.5 µm observed from both the collections (C-5.1 and C-6) are high when compared to AOD
observed by SEVIRI AERUS GEO, especially over the southern Congo domain. Within the two MODIS
AOD collection products C-6 and C-5.1, high AOD values are observed in C-6 (Figure 7e). The observed
maximum differences in AOD between SEVIRI AERUS GEO and MODIS (Figure 7a,d,e) appear to
match AOD observations of CAMS and MERRA especially over the regions of the Congo with a high
aerosol load (Figure 4), showing disagreement under high aerosol conditions. The observations with
MISR (Figure 7b,c,f) are not so obvious due to less frequent observations of AOD with MISR over this
region. The percentages of successful AOD retrievals are calculated for various mentioned satellites
and are tabulated in Table 2 for the year 2014. We only show here the statistics related to the latest
MODIS collection C-6.

Due to the varying grid resolution between satellites MODIS (0.1◦) and MISR (0.5◦), it is most
unlikely that the total number of computed pixels for the comparison is fixed and hence, as a result,
the computed total number of pixels for MODIS. This MISR grid resolution is also different (see
Table 2). It is clearly understood from Table 2 that the percentage of successful AOD retrievals for
SEVIRI AERUS GEO is high with a value of more than 75% of the total pixels over the Congo domain.
At the same time, the percentage of successful AOD retrievals for MODIS (C-6) and MISR are 17%
and 3% of the total pixels respectively over the Congo domain. The percentage of successful AOD
retrievals for MODIS (C-5.1) is observed to be higher with a value of 23%. Similar results were obtained
from the comparison of SEVIRI derived AOD with MODIS and MISR over 24 AERONET stations
around the Mediterranean sea in a study conducted by Xu et al. [43]. Table 2 indicates that the mean
satellite-derived AOD values are observed to be 0.35 (MISR), 0.48 (MODIS) and 0.38 (SEVIRI AERUS
GEO) over the domain and are quite comparable among each other. At the same time, the mean AOD
at 550 nm value for CAMS (MERRA) is about 0.5 (0.3) (see Table 1, Figure 4). If a CAMS (MERRA)
model derived AOD is used as a reference, the intercomparison between these two model-derived
AOD’s and 3 satellite-derived AODs indicates an overall uncertainty of around 0.1 for the mean AOD



Sustainability 2019, 11, 1410 11 of 21

value of 0.5 (20% in relative units). The same order of uncertainty (20%) exists between two successive
collections of the same MODIS products (C-5.1 vs. C-6) as observed in Figure 8. The histogram of
successful AOD retrievals observed from MODIS (C-6 and C-5.1) as a function of AOD bins is shown
in Figure 8. The mean AOD value observed from MODIS (C-6) over the region of the Congo is high
with a value of 0.48 compared with that of MODIS (C-5.1), which has a value of 0.40.Sustainability 2019, 11, 1410 11 of 21 
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Figure 7. Spatial map of the average of the differences in AOD for various satellite pairs (a) SEVIRI
AERUS GEO and MODIS (C-5.1), (b) SEVIRI AERUS GEO and MISR, (c) MODIS (C-5.1) and MISR,
(d) SEVIRI AERUS GEO and MODIS (C-6), (e) MODIS C 5.1 and MODIS C-6 and (f) MODIS (C-6) and
MISR. MODIS native grid resolution is 0.1 degrees and MISR native grid resolution is 0.5 degrees.

In deeper analysis, it is observed in Figure 8 that the histogram for MODIS (C-5.1) is centered over
the AOD value 0.4 while it is shifted to a higher AOD value of nearly 0.5 for MODIS (C-6). From a study
conducted by Georgoulias et al. [58], it was shown that C-6 MODIS products are significantly different
to that of C-5.1 MODIS aerosol products when compared against AERONET observations over the
Mediterranean region. From their study, there was a better agreement with C-6 (correlation of 0.87)
compared to that of C-5.1 (correlation of 0.85) although the error associated with C-6 (RMSE of 0.081)
was slightly higher than C-5.1 (RMSE of 0.076) [58]. The number of successful aerosol retrievals
observed from C-6 MODIS is found to be higher (11%) than the AOD retrievals observed from C-5.1.
Furthermore, Sayer et al. [59] in their study discussed that uncertainties in AOD products are found to
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be similar with respect to the underlying surface type and aerosol models considered in C-6 MODIS
and C-5.1 MODIS algorithms. In addition, their study also concluded that a high bias in AOD might
present in the MODIS C-6 products for high-AOD conditions and for elevated regions [59].

Table 2. Contribution of successful AOD retrievals over the Congo region during the year 2014 for
different satellites SEVIRI AERUS GEO, MODIS and MISR are detailed. The average AOD computed
for the year 2014 from various satellites under varying grid resolution are also shown in the table.

SEVIRI AERUS GEO and MODIS C-6 (0.1-degree resolution)
Number of pixels (N) = 9,379,040

AOD product Percentage of successful
AOD retrievals (Observed samples) Mean AOD

MODIS-DT 17% (1,683,725) 0.48

SEVIRI AERUS GEO 79% (7,441,795) 0.39

SEVIRI AERUS GEO and MISR (0.5-degree resolution)
Number of pixels (N) = 294,190

AOD product Percentage of successful
AOD retrievals (Observed samples) Mean AOD

MISR 3% (10,002) 0.35

SEVIRI AERUS GEO 92% (272,360) 0.38

MODIS C-6 and MISR (0.5-degree resolution)
Number of pixels (N) = 280,320

AOD product Percentage of successful
AOD retrievals (Observed samples) Mean AOD

MISR 3% (9561) 0.35

MODIS-DT 17% (50,102) 0.48
Sustainability 2019, 11, 1410 13 of 21 
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3.3. Albedo Retrieval Sensitivity to AOD Uncertainty

3.3.1. Observational Perspective

It is observed from this study that spatial plots of surface albedo differences (Figure 6) share certain
common patterns with respect to spatial plots of AOD differences (Figure 7). In order to investigate the
relationship between the AOD bias and the surface albedo bias, a time series plot is constructed and
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is shown in Figure 9. Each observational point in this daily time series plot corresponds to a spatial
mean value of the corresponding observable variable over the region of the Congo. From Figure 9,
it is observed that a high AOD bias (positive or negative) well corresponds to a highly visible albedo
bias over the study region on a temporal scale. In addition, the AOD bias correlates strongly with
visible albedo bias during the summer (June to September). However, a convincingly strong one to
one correspondence between the two variables is not found (an overall correlation, R-value = −0.50
was only observed). The magnitude of the AOD bias shown in Figure 9 correlates positively with the
average AOD of the atmosphere (see Figure 3), implying that satellite AOD products compare well for
low AOD values of the atmosphere and diverge largely for high AOD values. The days corresponding
to maximum AOD bias correlates with maximum visible albedo bias (June to September). The time
series of NIR albedo bias is not shown as aerosols adversely impact the visible channel more than they
do the NIR channel.
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3.3.2. Model Perspective

In this section, we investigate the relationship between AOD and surface albedo using a radiative
transfer (RT) model. A sensitivity analysis is conducted by using an RT code to produce observation
system simulation experiments (OSSE) based on the climatological environmental conditions over this
study region. The model setup and simulations are explained hereafter.

Simulation with the 6S radiative transfer model. In order to observe the possible influence of
varying aerosol conditions on the estimation of surface reflectance, the radiative transfer code 6S [60]
is used in this study. The geometric conditions considered for the modeling include solar geometry,
where solar zenith angle (SZA) is set to 45◦, the solar azimuth angle (SAA) is set to 0◦, the view
geometry, where view zenith angle (VZA) is set to 0◦ and the view azimuth angle (VAA) is set to 0◦.

All the simulations are carried out for a selected day (1st of July), at an elevation of 430 m, which
is the average elevation of the Congo. A tropical atmospheric profile is considered. We consider a
value of 0.5 for the AOD at 550 nm set according to the CAMS average over the region of study (see
Figure 3b). Also, the aerosol layer considered in 6S is composed of 8% dust, 76% water soluble, 1%
oceanic and 15% soot. Again, these values have been defined according to the average values observed
by CAMS for the year 2014. The spectral wavelength specifications as given in the model for the VIS
range are 0.4 to 0.7 µm. A homogeneous Lambertian surface with VIS albedo equal to 0.06 was used in
the model, as this value is the mean spatial visible albedo observed value from SEVIRI over the region
of the Congo during 2014.
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3.3.3. Simulations—Two Sets of Simulations Are Run with the Radiative Transfer Code, 6S

Firstly, a forward simulation is carried out to calculate a realistic average of the radiance that is
observed by SEVIRI over the Congo. Average surface reflectance and AOD at 550 nm are considered
here for the simulation. This setup provided a TOA apparent radiance of 42.1 W/m2/sr/µm which
will be used as a reference. Secondly, several inverse simulations (i.e., with atmospheric corrections)
are performed starting from the previously calculated top-of-atmosphere radiance and considering all
the other conditions are the same except for the aerosol content, which is based on purpose. Several
runs are carried out with the following AOD values (0.125, 0.25, 0.375, 0.45, 0.5, 0.55, 0.625, 0.75, 0.875),
which correspond to a bias in percentages of (−75, −50, −25, −10, 0, +10, +25, +50, +75). These inverse
simulations allow us to study the relationship between the AOD bias and the precision of the retrieved
surface reflectance.

Section 3.2 shows that there is around 20% uncertainty in the value of the AOD estimations
(satellite and model-derived) over the Congo region with respect to the average AOD value of around
0.5. Figure 10 shows that this AOD uncertainty of 20% could lead to a surface reflectance uncertainty
in the VIS of around 15% (see vertical and horizontal lines). The mean MSG surface reflectance (0.06;
that is discussed in Section 3.1 earlier) is plotted with a dashed line.Sustainability 2019, 11, 1410 15 of 21 
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The dotted lines in the figure correspond to the average surface albedo value as observed from SEVIRI
in VIS domain and that is used as input in the 6S simulations. The solid lines correspond to the bias
estimated between CAMS and SEVIRI AERUS GEO AOD values.

In the same manner from this OSSE analysis, not accounting for the important AOD changes
(up to +0.2 increase in AOD; see Figure 5) the result of volcano eruptions could lead to an artificial
decrease of the surface albedo of around 25% in the VIS on a yearly basis over the Congo. As the effect
of volcano emissions around the world usually leads to an AOD increase of more than 0.1 for a period
of 2–3 years after the eruption, this artificial impact on surface albedo could prove to be important
(16%) for the same period. And following the same logic, not accounting for the AOD increase for
the last decade over this region (+14%) would lead to an artificial decrease of the surface albedo of
around 8%. This study considers that the vegetation indices are calculated from the satellite albedo
products without any temporal averaging. Hence, using any temporal averaging would reduce the
final residual error in VI estimates.
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4. Discussion

Forests play an important role in maintaining the ecological balance and hence remote sensing
of forest vegetation is essential for achieving sustainable forest management [61,62]. Plants absorb
the solar radiation between 400 and 700 nanometers through the chlorophyll pigments that are
present on the leaf absorption surface [63]. This absorbed part of radiation, known as the absorbed
photosynthetically active radiation (APAR) is known to relate with the differences in the visible and
near-infrared regions of the solar energy spectrum and hence are often approximated by the vegetation
indices [63,64]. The surface reflectance products that are used for the derivation of these vegetation
indices, mainly NDVI, are highly dependent on the aerosol load of the atmosphere and therefore any
residual aerosol contamination can introduce artifacts in the estimated variables [51,64–66]. In this
regard, there is a need for the future scientific community to device new methodologies that avoid
the influence of aerosols and still be used for the study of vegetation characteristics. In this context,
several recent studies show that emissivity contrast methods could circumvent this issue, and also offer
accurate monitoring of the vegetation greenness [67]. These methods combine the satellite-derived
vegetation indices along with the thermal emissivity index to classify the vegetation cover [67–70].
Having said that, the current study discusses these important aspects on the quality of satellite surface
reflectance or surface albedo products. To address this, the discussion section is divided into three
subsections and intermediate questions. First, we discuss whether or not the uncertainties in the
albedo bias can be explained by using present-day satellite AOD products. Second, we discuss the
changes in the surface albedo products with respect to the important AOD changes in the last three
decades over the region of the Congo. Finally, we summarize and conclude the message of our study.

4.1. Can the Difference between Satellite Albedo Products Be Explained by AOD Uncertainty

From the current study, we observe that significant differences exist between various satellite
products over the Congo. The overall minimum uncertainty observed between any two satellite AOD
product pairs with respect to the mean AOD values observed from model aerosol products CAMS
(MERRA) is around 20% (25%) respectively. The difference in sampling between the sensors that
are on board geostationary and polar platforms may explain the most part of the difference in the
satellite-derived estimates. This region is often cloudy in the afternoon and cloudiness is better tackled
by the SEVIRI AOD product with MSG. AERUS-GEO AOD offers a successful retrieval for 80% of the
days with AOD estimates available for less than 4% for MISR and 18% for MODIS-DT. With respect to
the surface albedo observations, If MODIS is considered as a reference, the mean albedo values in the
VIS (NIR) are observed as 0.04 (0.2) respectively. The relative difference between MODIS albedo and
SEVIRI albedo across a major part of the study area, the Congo, is greater than +70% (−15%) in the
VIS (NIR).

The question is whether an uncertainty of 20% in the AOD estimates could lead to an error of
70% in the retrieval of VIS albedo in this region. To address this question a sensitivity analysis was
conducted through the use of a radiative transfer code to produce OSSE based on the climatological
environmental condition across this region (Section 3.3). Figure 10 shows that the AOD uncertainty
over this region (0.5 ± 20%) may explain up to 0.01 of changes in the retrieval of the surface reflectance
in the VIS domain. Usually, the vegetation indices or surface albedo products that are estimated using
the surface reflectance products consider compositing windows that can reduce the errors. However,
studies report that regions with persistent cloud cover and high aerosol load such as the Congo
rainforest can introduce errors in the surface reflectance data [64]. In conclusion, AOD uncertainty can
only explain up to 15% (for the minimum AOD uncertainty between satellite products and model data
sets) of the discrepancies between the surface albedo products in the VIS.
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4.2. Would the Greenness (or Albedo Decrease) Be Possible If Important AOD Changes within in the Last Three
Decades Are Not Taken into Account

It was observed from the MERRA modeling aerosol data that over the Congo there is a significant
increase of dust aerosol type within the last three decades and an increase of black carbon and organic
carbon over the past decade. This is the main reason behind an increase of 14% in the total AOD in
the last decade between 2005 to 2015. Hence, we estimate that if this trend is not correctly taken into
account in satellite retrieval methods for surface albedo, greenness of the surface properties (decrease
of albedo) of around 8% could be artificially detected. Our study leaves the following important
message over which to reflect regarding analysis studies of temporal trends in the satellite Climate
Data Records: over very dense vegetation areas such as the Congo forest. The analysis of the greenness
and brownness of the vegetation by using satellite variables [55] have to make sure that the existing
AOD trends have been correctly taken into account in the atmospheric correction process.

4.3. Can We Detect the Vegetation Brownness or Greenness of Forests Using Satellite Surface Albedo Products

Over the Congo, if a negative trend of more than 10% is observed in the VIS surface albedo over
the last 3 decades, we can affirm that the decrease (or vegetation greenness) is not due to aerosols
uncertainties and hence not artificial. If a positive trend is observed in the VIS surface albedo over
the last three decades, we can affirm that the increase (or brownness) is relevant whatever the value
of the trend (as long as the latter is significant in a statistical sense). This is true however only if the
following two assumptions are made: (1) the existence of reference measurements with a high accuracy
of surface properties by satellite and (2) accurate AOD estimates (required for the satellite retrieval
methods) exist. We proved that this is not the case over the Congo region, as AOD uncertainty (20%)
can only explain up to 15% of the discrepancies between the surface albedos products in the VIS band.
Accurate AOD estimates are essential for this kind of study but over the Congo in Africa, there are no
ground stations for such accurate AOD measurements. The nearest one is at “SEGC_Lope_Gabon”
and it doesn’t lie in the center of the study region, in the Congo. Through this study, we propose to the
scientific community the establishment of an AERONET station across this region.

5. Conclusions

The satellite-derived surface albedo (or reflectance) products are used extensively within the
scientific community so as to address several scientific problems. It is however important for the
users to understand the uncertainties associated with these satellite products. Some uncertainties arise
due to the contamination of surface albedo caused by atmospheric residues coming from a limited
atmospheric correction mainly due to a wrong characterization of aerosols. Furthermore, differences
may exist between products coming from distinct satellites due to differences in acquisition geometry
between polar-orbiting and geostationary satellites. In the context of the ever-increasing availability
of satellite-derived products and climate data records nowadays, the current study emphasizes
the importance of understanding aerosol uncertainties in order to address the differences in the
satellite-derived surface albedo products. We have used both satellite observations and model outputs
in order to understand this important problem. From our study, we show that with current satellite
AOD products, a minimum uncertainty of around 20% exists between the current day satellite AOD
product pairs. We estimate that this AOD uncertainty may explain only up to 15% changes in the
observed 70% changes of the surface albedo products. We show that over the region of Congo, there is
a significant increase of dust aerosol occurred in the past three decades. Also, there is an increase of
total AOD of up to 14% in the last decade. From the modeling study, we estimate that this 14% increase
in AOD could bring changes up to 0.005 in the surface albedo. The mean surface albedo value is about
0.06 over the region of Congo (see Section 3.1). Consequently, if this increase in the total AOD trend
is not considered, we estimate a decrease of albedo or greenness of up to 8% (0.005/0.06) that can be
artificially detected over the Congo region. We show that the satellite products of surface albedo can be
used to detect the existing trends in vegetation if the accuracy of the satellite products is high. This can
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be achieved if the AOD used in the atmospheric correction that provides surface albedo is also of high
quality. We also showed that during a volcano eruption, the mean AOD could increase as much as
by 40% (even if the volcano eruption took place thousands of miles from the studied area). Hence,
neglecting these strong aerosol emissions could induce an artificial greenness (albedo decrease) of
more than 25% in the year following the eruption. It is worth mentioning that satellite-derived surface
reflectance products differ to the ground reality for all the several factors said above including the
contamination due to residual aerosol effects. These factors may become important for the observed
bias within the satellite-derived surface reflectance products. Hence, comparing the satellite reflectance
products with the ground truth is only the viable method for understanding this exact bias. At the
same time, the retrieval methods to derive these surface reflectance products also rely on a true
estimate of aerosol load to understand and reduce the associated bias within the satellite-derived
products. However, over this study region, there are no observations for estimating the ground reality
of true surface reflectance and aerosol load. Hence without any such true observations, it would be a
limitation for the scientific community for properly understanding the changes in surface greenness
or brownness. Through this study, we propose to the scientific community for the establishment of
ground stations over the study region, Congo, to properly quantify the changes in vegetation with
respect to satellite products. To conclude, we believe that the analysis of shifts in vegetation properties
by using the existing satellite-derived surface albedo or reflectance, and thus the vegetation indexes
that exploit observations in VIS domain, are still quite questionable over tropical rainforest regions.
This study can be extrapolated as well to other study regions, where the adverse impact of aerosols in
the atmosphere could hinder the potential use of the surface albedo for scientific studies.
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