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Abstract: As online learning and e-learning are prevalent and widely used in education, it is
important to design an efficient and reliable information system for storing learning data and
providing on-demand learning services. In this paper, we design a cloud-based information system
architecture for online lifelong education. Since a cloud system is based on virtualization technology,
we propose a virtual resource management scheme—virtual machine allocation and monitoring nodes
assignment. With the proposed cloud-based architecture, we can build and operate an e-learning
information system for online lifelong education, which requires efficiency, reliability, and persistence.
The evaluation results show that our proposed method can deal with more tasks for e-learning
(requests for learning management system (LMS) navigations, text learning contents, text and media
learning contents, and video learning contents) while introducing 48× fewer service level agreement
(SLA) violations than the existing method.

Keywords: online learning; e-learning; lifelong education; information system

1. Introduction

Although education is strongly associated with children and youth, we are living in an age of
technological innovation [1,2]. With the help of information technology, e-learning and online courses
are available for adults and older people. Since the proportion of older people (over 60 years of age)
continues to grow at an unprecedented rate [3], lifelong education has become an essential tool to
improve self-efficacy, self-sustainability, and quality of life [4,5].

Among education methods, there are several advantages of online learning since it provides
convenient and portable learning options [6]. More importantly, users can learn by online education at
their own pace [7,8]. Therefore, users are able to develop skills and explore knowledge whenever and
wherever there are.

Cloud computing is an Internet-based computing paradigm that provides an illusion of infinite
computing resources in the form of pay-as-you-go and on-demand [9–11]. Because of the flexibility
of cloud computing, it becomes an attractive way to provide the required computing and storage
resources to sustainable online learning systems [12,13]. Another benefit of using cloud computing
in online learning and lifelong education is an automation process for resource (virtual machine)
provisioning [14–16]. Whenever a user (instructor or learner) requests a virtual machine instance,
the requested virtual machine instance can be provisioned within a minute [17].

The request includes ownership information, tags, virtual hardware requirements, the operating
system, and any customization of the request. Then, the request goes through an approval phase
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and is executed. Educational institutions, as well as teachers and learners can benefit from the cloud
computing model for cost reduction, elasticity, easy and wide accessibility, and high availability [18,19].

However, prior cloud based online lifelong education systems suffer from some limitations due
to inefficient implementation or lack of cloud consolidation techniques. Thus, the objective of the
proposed solution is to enhance the usability of online lifelong education systems without experiencing
downtime or service disruption by providing an efficient cloud resource management scheme.

In this paper, we present an efficient cloud architecture for online lifelong education. Since there
are many computing and storage nodes in the cloud computing system, efficient resource management
is essential, especially for resource allocation and node monitoring. For resource allocation and node
monitoring, we propose a complexity-efficient algorithm based on the n-queen problem.

The n-queen problem is a popular classic puzzle, where n queens were to be placed on an n × n
chessboard such that no queen can attack any other queen. Although the n-queen does not directly
relate to cloud resource management and consolidation, we exploit the structure of the problem and
apply the algorithmic design to the virtual resource monitoring scheme to provide fault tolerance and
eliminate the problem of single point of failures.

One of the benefits of the resource allocation is load balancing. Load balancing is an essential
metric for cloud computing since it is related to the service level agreement (SLA). When a virtual
machine is allocated in a heavily loaded physical machine, the allocated virtual machine does not
perform well and this leads to SLA violations. On the other hand, when a virtual machine is allocated
in a lightly loaded physical machine, the energy consumption will rise due to the physical machine.
Therefore, balancing the load of physical machines is vital to achieve both SLA satisfaction and
energy reduction.

As for node monitoring in cloud computing environments, the monitoring node may result in a
single point of failure. In other words, when the monitoring node fails, the whole cloud computing
system will stop working. If the monitoring node does not fail, it can be a bottleneck for monitoring
a large number of nodes in the cloud computing system. This motivates us to develop an efficient
monitoring scheme that does not exhibit a single point of failure or bottleneck problem. The proposed
monitoring scheme is able to monitor nodes in the cloud computing system efficiently by designating
a fixed number of monitoring nodes.

The aforementioned context of efficient cloud resource management directly affects online lifelong
education in several ways: (1) it supports high availability of online learning services for both
computing and storage, in other words, our solution eliminates the problems of a bottleneck and single
point of failures when services are operating in cloud computing environments, (2) it minimizes SLA
violations, which are of great concern to online learners in multitenancy service architectures, since
our techniques focus on maintaining cloud consolidation while improving server utilization, and (3)
it provides a pleasant learning experience through improved response time, fewer task failures for
online learning services, and reduced power consumption.

The roadmap of the paper can be summarized as follows. Section 2 discusses our research
motivation and describes the system model. Section 3 proposes our cloud resource management
scheme that assigns monitoring nodes based on the classic n-queen problem and allocates virtual
machines to physical hosts in cloud computing environments. Section 4 provides results of performance
evaluations that ensure load balancing in terms of monitoring messages and low power consumption
compared to a previous approach. Finally, Section 5 concludes the paper.

2. Motivation and System Model

Our research aims at an efficient cloud resource management on the premise of processing general
cloud applications, including e-learning information systems based on virtual machines. In this section,
we present our research motivation and the system model.

Cloud computing is a new computing paradigm that enables users to access virtualized resources
(virtual machines) on-demand in a pay-per-use basis [20]. One of the reasons that cloud computing
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has received much attention is that virtual resources can easily be scaled up and down for users’
requests [21].

At the same time, cloud computing offers the required properties for e-learning services, which
are computation-intensive and data-intensive [22]. The typical example of this scenario is massive
open online courses (MOOCs) [23]. In the context of programming, instructors of courses can provision
virtual machines that contain pre-installed programming-related software to provide laboratories and
programming projects.

In [24], the authors investigated smart learning services by extending existing e-learning services
through context-awareness to smart learning content based on cloud computing for personalized and
customized learning services. However, this work does not introduce cloud resource management
solutions, which are crucial to the use and maintenance of sustainable services such as e-learning.

To develop a smart learning management system (LMS) and improve collaborative learning in
higher education, the authors of [25] integrated a multi-agents system for tracking of collaboration
levels and productivity status based on a cloud computing architecture. However, it uses an existing
cloud service platform and does not implement resource management modules inside the cloud
computing environment.

In [26], the authors constructed the digital learning environment by taking advantage of
on-demand services of cloud computing. The learning environment promotes knowledge sharing,
collaborative learning, and interactive communication. However, it does not provide techniques for
learners to relieve the concerns for SLA, which is an important aspect in online learning services.
On the other hand, one of our design goals is to develop an online learning platform that minimizes
SLA violations through efficient cloud resource management.

As for developing an e-learning platform for resource sharing, the authors of [27] proposed an
e-learning model based on private cloud computing. With the help of the virtualization technology,
the private cloud based e-learning platform is capable of installing an e-learning system regardless of
hardware requirements. Although it is designed to support multiplatform architectures, it does not
support continuing interactions between the cloud server and online learners. However, we consider
the sustainable online lifelong education with reduced service failures and improved fault tolerance.

Our work differs from previous work in that: (1) we design a cloud resource management
framework that is transparent to the online learners and can be extended to other cloud based learning
systems, (2) we consider a learning experience for minimizing SLA violations, service response time,
and task failures, and (3) we propose an efficient cloud resource management implementation in
the perspective of online lifelong education service providers by considering load balancing and
power consumption.

The contribution of this work can be summarized as follows. We propose a cloud resource
management scheme that not only provides a cloud monitoring mechanism with fault tolerance
based on policy but also maintains virtual resources consolidation by examining the resource status
and migrating virtual machines to reduce power consumption and improve utilization of cloud
servers in the system. We model a monitoring nodes selection algorithm with efficient complexity by
exploiting backtracking, and design a virtual resource allocation scheme that leverages the power of
two choices [28].

For the system model, we consider 100 host machines in the cloud platform, with each host
machine equipped with a Xeon X3470 2933 MHz (4 cores) central processing unit (CPU) and 8 GB
random access memory (RAM). When allocating a virtual machine, a user specifies properties of the
virtual machine such as the number of vCPU and the amount of RAM. For the experiments for the
proposed cloud resource management scheme, we deem that the cloud platform is running for an
hour, and therefore, several virtual machines reside in a number of hosts.
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3. The Proposed Cloud Resource Management Algorithm

In this Section, we describe the proposed cloud resource management scheme that is designed
to work with existing cloud frameworks as an extension. We explain in detail our architectural
design for cloud resource management and how our cloud resource management schemes work with
cloud managers.

3.1. Architectural Design

Figure 1 shows the architectural design of the proposed cloud resource management scheme,
which is based on Xen hypervisor for managing virtual resources (computing, storage, and
network). We consider Openstack for managing virtual machines for cloud computing and deploying
infrastructure as a service (IaaS).
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The proposed monitoring scheme and live migration capabilities reside in the cloud consolidation
part of the Figure and the proposed resource utilization management and node selection scheme
reside in the resource allocation part of the Figure. The data acquisition, analysis platform, integrated
development environments, and tools can be categorized as platform as a service (PaaS).

On top of PaaS, learning management systems, visualizing, and other services can be categorized
as software as a service (SaaS). Across the boundaries, there are common modules such as data
indexing, security, computation offloading, and networking. The cloud computing operation part of
the Figure includes metadata management, backup, reporting, metering, and provisioning modules.

For the cloud resource monitoring scheme, the hypervisor interacts with hardware resources and
the operating system. In order to retrieve the monitoring information of physical machines and virtual
machines, the hypervisor injects queries to the host operating system and guest virtual machines,
and the monitored information can be collected to the privileged virtual machine. Then, the collected
monitoring information can be used for cloud consolidation and live migration.

In the meantime, our monitoring node selection algorithm based on the n-queen problem works
with the resource allocation module based on the monitoring information of physical machines and
virtual machines. Individual clients use an LMS and other learning services, which are compatible
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with both physical and virtual resources. Note that we assume that the LMS and learning services are
running inside virtual machines.

3.2. The Monitoring Scheme

The proposed monitoring scheme is based on a classic n-queen problem as shown in Figure 2.
In the example, there is an n × n board, where n = 4. In Figure 2a, a queen is placed on the (2, 2)
location. The queen can attack other chess pieces vertically, horizontally, or diagonally based on the
location. In this work, we consider a queen as a monitoring node that monitors other board locations
(attack lines).
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The basic idea of our cloud monitoring scheme is that we locate queens on the board so that no
two queens can attack each other. For example, Figure 2b shows a wrong solution for the n-queen
problem, where n = 4, since there are conflicts between the following queens: (3, 1) and (1, 3), (3, 1) and
(3, 4), and (3, 1) and (4, 2). Possible solutions for the n-queen problem are shown in Figure 2c,d.

The simple approach to the n-queen problem is to use an exhaustive search. However, the
search space of this approach is huge. If we consider n = 8, for instance, there are 648 (= 248 =
281,474,976,710,656) possible placements for eight queens on the 8 × 8 board. Then, we remove
placements in mutually attacking locations. Hence, we use a more efficient algorithm for the n-queen
problem based on a state space tree.

In a state space tree, a node is said to be promising if the partial solution is still feasible. Any time
the partial node becomes the infeasible node, this non-promising branch will no longer be explored.
To find a feasible solution, the algorithm backtracks to the previous promising node and examines the
other branches of the state space tree.
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Algorithm 1. The monitoring nodes selection algorithm using backtracking.

Input: N =
√

number o f nodes in the system
Output: Q1, Q2, . . . QN ∈ QSet
Initialization: i← N

1: call Queens(N);
2: function Queens(n)
3: if n == 0 then
4: return; // All monitoring nodes are selected.
5: end if
6: while (i <= N) do
7: Qn ← (i, n); // Place a queen on (i, n)
8: QSet← Qset ∪ Qn;
9: if (call checkOtherQueens(i, n) then // if Qn does not check other queens
10: Queens(n − 1); // Recursive call
11: end if
12: Qn ← (null, null);
13: QSet← Qset − Qn; // Backtrack
14: end while
15: end function
16: function checkOtherQueens(i, j)
17: for all Qi ∈ QSet do
18: (k, l)← Qi;
19: if (|j − l| == |i − k|) then
20: return false;
21: else
22: return true;
23: end if
24: end for
25: end function

Algorithm 1 shows the proposed monitoring nodes selection algorithm based on the n-queen
problem using backtracking. The input of the algorithm is N (

√
number o f nodes in the system) and

the output is placements information on the board for N queens. For initialization, a local variable i is
set to N. To begin with, it calls the Queens() function with N argument (line 1). In the Queens() function,
when n is equal to 0, it returns and indicates all queens (monitoring nodes) are placed (assigned) on
the board without conflicts (lines 3–5).

In the while statement, it iterates when i is less than or equal to N (line 6). First, it places a queen
on (i, n) location and it is added to QSet (lines 7–8). Then, it checks other queens for conflicts by
calling checkOtherQueens() (line 9). In this stage, the flow of the process execution is redirected to the
checkOtherQueens() function (lines 16–25). To check conflicts between queens, it retrieves Qi from QSet.
For all Qi, it compares locations of the two queens (Qi and Qn). Note that Qn is a queen selected from
line 7. Then, it checks whether |j − l| is equal to |i − k| (line 19). If the two values are equal, then it
returns false (conflict). Otherwise, the function returns true (no conflict).

After returning the checkOtherQueens() function, the flow of the process execution is returned
to line 9. If the result of the checkOtherQueens() function is true, then it calls the Queens() function
recursively with n − 1 argument (line 10). Otherwise, it backtracks for Qn, which is assigned from
lines 7–8. For backtracking, the location of Qn is nullified and it is removed from QSet (lines 12–13).
When it backtracks, the algorithm does not go deep into the state space tree.
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3.3. The Resource Allocation Scheme

Algorithm 2 shows the proposed cloud architecture management algorithm. There are three
parts to the algorithms: (1) virtual machine allocation, (2) queen nodes assignment, and (3) resource
monitoring. For the virtual machine allocation, it first checks and gets virtual machine information
for a user’s request. Then, our virtual machine allocation algorithm selects two host candidates at
random. After selecting the two host candidates, it checks the requirement of a user’s request. If a host
candidate does not qualify a user’s request, the procedure listed in lines 3–6 is repeated. Note that if
one of the two host candidates does not qualify a user’s request, it selects another random host in the
system for the host candidate.

Afterward, it checks the utilization of the two host candidates. Of the two host candidates,
our virtual machine allocation algorithm selects the one whose utilization is lower. The other one is
selected as a nil host (lines 8–14). For optimizing cloud consolidation, it further checks the migration
suitability for virtual machines of the nil host. If virtual machines on the nil host can be migrated to
the target host, it performs the migration process. Each virtual machine on the nil host is scheduled for
migration from the nil host to the target host (lines 16–19). Then, the nil host is scheduled to power off
to reduce energy consumption.

The queen nodes assignment algorithm is for optimizing the monitoring overheads induced by
the master–slave architecture of cloud computing environments. The basic idea of the queen nodes
assignment algorithm is to assign

√
number o f nodes in the system monitoring nodes in the n × n

board. The monitoring nodes are equivalent to queens in the traditional n-queen problem. The queen
nodes are designated as the monitoring nodes in the cloud computing system. The designated
monitoring nodes monitor at most 3 × (n − 1) nodes (vertical, horizontal, and diagonal nodes) of
n × n nodes in the system. Thus, it mitigates the problems of the single point of failure and bottleneck.

The procedure of the queen nodes assignment algorithm is listed in Algorithm 1 (lines 23–41).
To calculate the board size, it first retrieves the number of hosts in the cloud computing system. Then,
it calculates the number of queens (monitoring nodes) by computing square root and round functions.
The number of chess pieces is set to the number of hosts in the system at this stage. Note that the
logical numbers are also assigned to the hosts for encoding the n–queen problem.

However, if the number of chess pieces and (the number of queens)2 are not equal, the solution
of the n–queen problem cannot be applied (e.g., assigning a queen to the (n, n) location.). Therefore,
we resolve this problem by assigning duplicated signatures to existing chess pieces. The procedure
for this problem is listed in lines 27–29. After assigning the logical chess pieces on the n × n board,
it solves the n-queen problem and assigns chess pieces according to the calculated solution.

The resource monitoring procedure is based on the assigned chess pieces. The queen nodes
monitor vertical, horizontal, and diagonal nodes in the cloud computing system. The other nodes
(except queens) provide their local information to the queen node when requested from the queen
node. Since the queens cannot attack each other in the n × n board, system information of a node is
forwarded to only one queen in the system.
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Algorithm 2. The proposed cloud resource management algorithm.

1:
2:
3:
4:
5:
6:

7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

begin virtual machine allocation
vm_info← get_vminfo(user_request);
do
host_candidate1← get_randomhost(seed);
host_candidate2← get_randomhost(seed);
while check_requirement(vm_info, host_candidate1) && check_requirement(vm_info,
host_candidate2)
if check_utilization(host_candidate1) < check_utilization(host_candidate2) then
target_host← host_candidate1;
nil_host← host_candidate2;
else
target_host← host_candidate2;
nil_host← host_candidate1;
end if
if check_migration_suitability(nil_host, target_host) then
while retrieve_vm(nil_host) do
source_vm← retrieve_vm(nil_host);
schedule_migration(source_vm, target_host);
end while
schedule_shutdown(nil_host);
end if
end
begin queen nodes assignment
num_host← count_running_host();
num_queen← round(sqrt(num_host));
num_chessman← num_host;
while num_chessman < num_queen * num_queen do
tmp_chessman← get_randomhost(seed);
assign_chessman(tmp_chessman, num_chessman + 1);
end while
solution← calculate_nqueen(num_queen);
num← 0;
while num < num_queen * num_queen do
node← get_chessman(num);
assign_queen(node, solution);
num← num + 1;
end while
end
begin resource monitoring
for all queen_node do
monitor vertical, horizontal, diagonal nodes according to predefined policy;
end for
end

4. Performance Evaluation

In this section, we present evaluation results of the proposed cloud management schemes for
monitoring and resource allocation. We demonstrate that the proposed cloud management schemes
reduce SLA violations for LMS and learning services, and improve load balancing, resource efficiency,
and power consumption.
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4.1. Experiments for LMS and Learning Services

We consider an LMS and learning services that provide basic LMS functions and learning
environments. The client requests one of the following functions or tasks: (1) LMS navigations,
(2) text learning contents, (3) text and media (images) learning contents, or (4) video learning contents.
We simulate the multiple clients’ requests based on a virtualized environment (Xen hypervisor and
Openstack). We measure the number of failed tasks by increasing the number of clients from 50
to 550. The number of host machines is 15 and a host machine can be configured to hold up to
2 virtual machines.

For comparison, the default configuration of the cloud computing system is used. The proposed
method is implemented on top of the cloud computing system and deployed with pre-configured
settings (monitoring and resource allocation). The numbers of tasks are 3627, 9292, 15,756, 22,171,
28,505, and 33,649 when the numbers of clients are 50, 150, 250, 350, 450, and 550, respectively.
The average number of requests for a client is about 64. Note that when a request does not respond
within the pre-defined time, it can be considered as a failed task.

As shown in Figure 3, when the numbers of clients are 50 and 150, the results of the existing
method and the proposed method are comparable. However, as the number of clients increases,
the performance gap between the two methods is noticeable. When the number of clients is 250,
the proposed method has 4× fewer failed tasks.Sustainability 2019, 11, x FOR PEER REVIEW  10 of 17 

 
Figure 3. The number of failed tasks. 

 
Figure 4. The number of service level agreement (SLA) violations. 

 
Figure 5. Server utilization for host machines. 

4.2. Load Balancing 

The performance of the proposed cloud management scheme is directly reflected in load 
balancing, since communication messages for cloud resource monitoring can be distributed from a 
single node to several nodes. With this in mind, the proposed scheme also supports fault tolerance 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

50 150 250 350 450 550

Th
e 

nu
m

be
r o

f f
ai

le
d 

ta
sk

s

The number of clients

Existing Method Proposed Method

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5 0 1 5 0 2 5 0 3 5 0 4 5 0 5 5 0

Th
e 

nu
m

be
r o

f S
LA

 v
io

la
tio

ns

The number of clients

Existing Method Proposed Method

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

50 150 250 350 450 550

Se
rv

er
 u

til
iz

at
io

n

The number of clients

Existing Method Proposed Method

Figure 3. The number of failed tasks.

When the number of clients is 550, however, the proposed method has 10x fewer failed tasks.
The main reason of task failures is due to the heavy load of virtual machines. Since the default
configuration runs with the next fit policy and has no consideration of efficient resource management
such as load balancing, our proposed method has much fewer failed tasks.

Figure 4 shows the number of SLA violations as the number of clients increases. The SLA
violation is defined as a slow response for the requests and the SLA violation occurs when more
tasks are allocated to overloaded virtual machines. Similar to the previous experiment, our proposed
method has much fewer SLA violations compared with the existing method (about a 48× improvement
when the number of clients is 550).

Figure 5 shows the average server utilization for host machines. Because the proposed method
is capable of managing more tasks from clients (our method has fewer failed tasks than the existing
method), the average server utilization for our proposed method is higher than that for the existing
method. The percentages of the average server utilization for the existing method are 4.75%, 12.22%,
24.30%, 33.96%, 44.32%, and 50.58%, while those for the proposed method are 6.75%, 20.38%, 33.80%,
49.17%, 63.64%, and 74.64%. The implication of this result is that our method can deal with more
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tasks while introducing fewer SLA violations, and our proposed cloud resource management scheme
is effective.
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4.2. Load Balancing

The performance of the proposed cloud management scheme is directly reflected in load balancing,
since communication messages for cloud resource monitoring can be distributed from a single node to
several nodes. With this in mind, the proposed scheme also supports fault tolerance and avoids the
single point of failures. To show the performance improvement of the proposed cloud management
scheme, we first focus on measuring load balancing of resources in cloud computing environments.
To do so, we use the following balance metric:

(Max#ofMessages − Min#ofMessages)/
∑n

i=1 #o f Messagesi

n
, (1)

where n is the number of resources.
The load balancing refers to the distribution of message communication of the system. Thus,

the performance metric is specifically designed to measure the difference between the maximum value
and the minimum value. With the balance metric, we can easily observe the dispersion of message
traffic for monitoring methods.

We consider two levels of fault tolerance for monitoring nodes in the system. Taking Figure 2c
as an example, when the queens monitor other nodes in either the vertical or horizontal direction,
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we can monitor all the nodes in the system. In addition, when the queens monitor other nodes in both
vertical and horizontal directions, nodes in the system get monitoring request messages twice, which
can provide fault tolerance. We denote the former level as Level 1 and the latter one as Level 2.

For instance, when a queen (from Figure 2c) on (3, 1) fails, nodes on (1, 1), (2, 1), (4, 1), (3, 2), (3, 3),
and (3, 4) can be monitored by other queens on (1, 2), (2, 4), (4, 3), (1, 2), (4, 3), and (2, 4), respectively.
Note that the failed queen can be noticed by the central cloud in the system since the central cloud
manager regularly interacts with the designated queen nodes.

Figure 6 depicts the balance metric and standard deviation for the previous method (master–slave
architecture) and the two proposed methods (Level 1 and Level 2) in terms of monitoring messages.
Note that when N is 5, 6, 7, 8, 9, and 10, the number of resources is 25, 36, 49, 64, 81, and 100, respectively.
As seen from the Figure, the balance metric increases as N increases. However, many increments of the
balance metric can be seen from the previous method.
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The values of the balance metric are about 12.24, 2.22, and 3.07 when N is 5, and 49.74, 4,73,
and 6.42 when N is 10. The proposed method has a fault tolerance that is 10× and 7× less than the
previous method, for Levels 1 and 2, respectively. This indicates the proposed cloud monitoring
scheme improves load balancing, while providing fault tolerance in the presence of failures. Figure 6b
shows the standard deviation of monitoring messages for cloud resources in the system. Considering
the standard deviation, the proposed method has less dispersion of a dataset relative to its mean.

4.3. Resource Efficiency

Improvement of cloud consolidation for cloud computing environments is crucial. Cloud
consolidation aims to make efficient use of virtualized cloud resources and prevent cloud servers from
being under-utilized by packing more resources in physical hosts in the system. To show the efficient
use of the proposed cloud resource management scheme, we measure the average, median, 10th, 25th,
75th, and 90th percentiles of CPU utilization by allocating the varying number of virtual machines
from 10 to 40 as shown in Figure 7.

Comparing Figure 7a,b, we observe that those hosts running the same virtual machines have a
noticeable difference than the previous method. The section between the 25th and 75th percentiles
for the proposed method is shorter than that of the previous method. At the same time, the median
value for the proposed method is higher than that for the previous method. Comparing the previous
method and the proposed method with migration, the average utilization is about 62.1% and 68.3%,
respectively. Note that the average value of Figure 7c includes powered off hosts, which are calculated
as 0, and the number of powered off hosts is about 10% in this experiment.
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Figure 8 shows cumulative distribution functions (CDFs) for CPU utilization when the numbers
of allocated virtual machines are 10, 20, 30, and 40. When the number of allocated virtual machines is
10, the three methods are comparable, where the differences in the standard deviation are about ±
1.0. However, when the number of allocated virtual machines is 40, the differences in the standard
deviation are about ± 5.0. This is because the proposed cloud resource management scheme performs
virtual machine migrations and shutdown processes when available.
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Taking Figure 8d as an example, CDF for migration of the proposed method with migration slowly
grows and ranges from 0 to 20, since about 10% of hosts are powered off. In the middle ranges from 20
to 50, CDF for utilization of the proposed method with migration rises sharply in comparison with the
other two methods. The reason for this is due to the cloud consolidation capabilities of the proposed
method. More specifically, when performing the virtual machine allocation algorithm, it compares two
resources and checks whether all virtual machines of a host can be migrated to another host. If it is
available, all the virtual machines of a host are scheduled for migration, then the host can be powered
off for power reduction.

4.4. Power Consumption

One of the reasons for cloud resource consolidation is to reduce power consumption and save
energy. The proposed cloud resource management scheme not only improves resource efficiency but
also reduces power consumption in cloud computing environments. To measure power consumption
in cloud computing environments, we use the power model of an IBM server x3250 (Xeon X3470
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2933 MHz (4 cores) CPU and 8GB RAM), which provides average active power data in 10% scale
(http://www.spec.org/power_ssj2008/results/res2009q4/power_ssj2008-20091104-00213.html).

Figure 9 draws the percentiles and CDF for power consumption. As seen from Figure 9a,
the median value of the proposed method is higher than that of the previous method, while the
average value of the proposed method is lower than that of the previous one. The main reason for
this is that the proposed method eliminates unnecessary hosts from running in the system, which
ensures efficient resource management. The CDF for power consumption is similar to Figure 8d, and it
confirms that about 10% of the hosts are powered off, and thus, saves unnecessary power consumption.
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To calculate how much power consumption is saved, we measure the total power consumption
and power reduction in Watts as shown in Figure 10. Note that we also use the power model of an IBM
server x3250, and the power reduction is measured relative to the previous method. The total amount
of power consumption for the previous method is about 8750 Watts, while that for the proposed
method without and with migration is about 8710 and 8415 Watts, respectively. It translates into a
power reduction of about 40 and 334 Watts for the proposed method without and with migration,
respectively. The improvement comes from the fact that our proposed cloud resource management
scheme migrates virtual machines to other hosts when allocating virtual machines and schedules hosts
to be powered off whenever possible.Sustainability 2019, 11, x FOR PEER REVIEW  15 of 17 

 
Figure 10. Power consumption and reduction. 

4.5. Summary of Results and Discussion 

Regarding the experiments for LMS and learning services, we observe a much lower number of 
failed tasks as the number of clients increases. This indicates that the existing method does not 
overcome the failed tasks in a scalable system. To mitigate the catastrophe for this scenario, we can 
add more physical machines in cloud computing environments. Nevertheless, the effect of adding 
physical machines applies to the proposed method as well. In this regard, our method is more 
beneficial for sustainable online lifelong education systems. 

For the load balancing experiments, we use our own balance metric to measure the distribution 
of message communication. Although the balance metric is not a standard metric for load balancing, 
we observe that the balance metric is more effective at limiting the bottleneck than the standard 
deviation. Even though our method provides some degree of fault tolerance (Level 2 in Figure 6), the 
numbers show that our monitoring algorithm based on the n-queen problem effectively distributes 
the communication load. 

As for resource efficiency, the proposed method with migration provides a more efficient use of 
physical machines than the previous method in cloud computing environments. The results depict 
that the proposed method has lower utilization than the previous method because we let the cloud 
resource manager shutdown unnecessary hosts. Note that the results are averaged for all the host 
machines in the system, while the results of Figure 5 are calculated only for active host machines. 
Since we focus on the use of online lifelong education services, we leave more sophisticated cloud 
consolidation techniques as future work. 

Power consumption in datacenters is a global problem, and datacenters consume more than 2% 
of the world’s electricity. The experiments in Section 4.4 consider only CPU in Watts, and do not 
include cooling-related power consumption. Although our proposed method with migration reduces 
power consumption with respect to the previous method, we conjecture that the real implementation 
of our proposed method in datacenters can further reduce the total power consumption since its 
cooling related power consumption also can be reduced. Note that the proposed method with 
migration features host shutdown. 

5. Conclusions 

As online lifelong education has become popular, cloud computing systems have received a lot 
of attention as they can provide computing resources and persistent storage. To offer more reliable 
and efficient cloud services for online lifelong education, we proposed an efficient cloud architecture 
management algorithm. The proposed virtual machine allocation reduces the complexity of the 
resource allocation process in virtualized cloud computing environments, and the monitoring nodes 
assignment algorithm based on the traditional n-queen problem resolves the potential problems in 

Figure 10. Power consumption and reduction.

http://www.spec.org/power_ssj2008/results/res2009q4/power_ssj2008-20091104-00213.html


Sustainability 2019, 11, 1523 15 of 17

4.5. Summary of Results and Discussion

Regarding the experiments for LMS and learning services, we observe a much lower number
of failed tasks as the number of clients increases. This indicates that the existing method does not
overcome the failed tasks in a scalable system. To mitigate the catastrophe for this scenario, we can add
more physical machines in cloud computing environments. Nevertheless, the effect of adding physical
machines applies to the proposed method as well. In this regard, our method is more beneficial for
sustainable online lifelong education systems.

For the load balancing experiments, we use our own balance metric to measure the distribution
of message communication. Although the balance metric is not a standard metric for load balancing,
we observe that the balance metric is more effective at limiting the bottleneck than the standard
deviation. Even though our method provides some degree of fault tolerance (Level 2 in Figure 6),
the numbers show that our monitoring algorithm based on the n-queen problem effectively distributes
the communication load.

As for resource efficiency, the proposed method with migration provides a more efficient use of
physical machines than the previous method in cloud computing environments. The results depict
that the proposed method has lower utilization than the previous method because we let the cloud
resource manager shutdown unnecessary hosts. Note that the results are averaged for all the host
machines in the system, while the results of Figure 5 are calculated only for active host machines.
Since we focus on the use of online lifelong education services, we leave more sophisticated cloud
consolidation techniques as future work.

Power consumption in datacenters is a global problem, and datacenters consume more than 2% of
the world’s electricity. The experiments in Section 4.4 consider only CPU in Watts, and do not include
cooling-related power consumption. Although our proposed method with migration reduces power
consumption with respect to the previous method, we conjecture that the real implementation of our
proposed method in datacenters can further reduce the total power consumption since its cooling
related power consumption also can be reduced. Note that the proposed method with migration
features host shutdown.

5. Conclusions

As online lifelong education has become popular, cloud computing systems have received a lot
of attention as they can provide computing resources and persistent storage. To offer more reliable
and efficient cloud services for online lifelong education, we proposed an efficient cloud architecture
management algorithm. The proposed virtual machine allocation reduces the complexity of the
resource allocation process in virtualized cloud computing environments, and the monitoring nodes
assignment algorithm based on the traditional n-queen problem resolves the potential problems
in existing cloud computing systems (i.e., single point of failure and bottleneck). Through our
proposed cloud resource management, we expect that online learners of the system will experience
more pleasant learning activities since our experimental results show that our proposed method
has 10× fewer failed tasks for e-learning requests and 10× improvement of load balancing while
reducing SLA violations and power consumption. Future work includes deployments of various
online learning applications and services to the cloud computing environments and evaluation on
serverless computing environments.
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