
sustainability

Article

Smart DAG Tasks Scheduling between Trusted and
Untrusted Entities Using the MCTS Method

Yuxia Cheng 1, Zhiwei Wu 1, Kui Liu 1, Qing Wu 1,* and Yu Wang 2,*
1 School of Computer Science and Technology, Hangzhou Dianzi University, 1158 Baiyang No. 2 Street,

Hangzhou 310018, China; yxcheng@hdu.edu.cn (Y.C.); wzwtime@163.com (Z.W.);
m17730390391@163.com (K.L.)

2 School of Computer Science, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education
Mega Center, Guangzhou 510006, China

* Correspondence: wuqing@hdu.edu.cn (Q.W.); yuwang@gzhu.edu.cn (Y.W.)

Received: 31 December 2018; Accepted: 20 March 2019; Published: 27 March 2019
����������
�������

Abstract: Task scheduling is critical for improving system performance in the distributed
heterogeneous computing environment. The Directed Acyclic Graph (DAG) tasks scheduling
problem is NP-complete and it is hard to find an optimal schedule. Due to its key importance,
the DAG tasks scheduling problem has been extensively studied in the literature. However, many
previously proposed traditional heuristic algorithms are usually based on greedy methods and also
lack the consideration of scheduling tasks between trusted and untrusted entities, which makes the
problem more complicated, but there still exists a large optimization space to be explored. In this
paper, we propose a trust-aware adaptive DAG tasks scheduling algorithm using the reinforcement
learning and Monte Carlo Tree Search (MCTS) methods. The scheduling problem is defined using the
reinforcement learning model. Efficient scheduling state space, action space and reward function are
designed to train the policy gradient-based REINFORCE agent. The MCTS method is proposed to
determine actual scheduling policies when DAG tasks are simultaneously executed in trusted and
untrusted entities. Leveraging the algorithm’s capability of exploring long term reward, the proposed
algorithm could achieve good scheduling policies while guaranteeing trusted tasks scheduled within
trusted entities. Experimental results showed the effectiveness of the proposed algorithm compared
with the classic HEFT/CPOP algorithms.

Keywords: DAG scheduling; trusted entities; heterogeneous; MCTS

1. Introduction

Modern organizations are increasingly concerned with their trust management. As the cloud
computing paradigm prevails, more and more data security and trust issues are arising due to
the public cloud infrastructures being under control of the providers but not the organizations
themselves [1,2]. Therefore, a practical solution for addressing these trust issues is to deploy security
sensitive tasks in the trusted entities (IT infrastructures privately managed within organizations)
and those security non-sensitive tasks in the untrusted entities (IT infrastructures such as public
cloud). Scheduling security sensitive and non-sensitive tasks between the trusted and untrusted
entities is one of the research challenges in the trust management. Particularly, when these tasks
have sequential and parallel connections, the scheduling problem becomes further complicated in
distributed heterogeneous computing systems.

In distributed heterogeneous computing systems, a variety of computing resources are
interconnected with high speed networks to support compute-intensive parallel and distributed
applications [3,4]. In these systems, efficient task scheduling is critical for improving system

Sustainability 2019, 11, 1826; doi:10.3390/su11071826 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-9807-2293
http://www.mdpi.com/2071-1050/11/7/1826?type=check_update&version=1
http://dx.doi.org/10.3390/su11071826
http://www.mdpi.com/journal/sustainability

Sustainability 2019, 11, 1826 2 of 16

performance. Especially, as the modern hardware technology evolves rapidly, diverse sets of computing
hardware unit, such as CPU, GPU, FPGA, TPU, and other accelerators, constitute a more and more
complex heterogeneous computing system. Modern high performance computing applications
typically use the Directed Acyclic Graph (DAG) based compute model to represent an application’s
parallel compute tasks and their dependencies. How to schedule DAG tasks in the distributed
heterogeneous computing system is an open research question.

Most parallel applications, including high performance computing (HPC) applications, machine
learning applications [5] etc., use the DAG tasks model in which nodes represent application tasks and
edges represent inter-task data dependencies. Each node holds the computation cost of the task and
each edge holds inter-task communication cost. To improve system efficiency, the goal of DAG tasks
scheduling is to map tasks onto heterogeneous computing units and determine their execution order so
that the tasks’ dependencies are satisfied and the application’s overall completion time is minimized.

Previous research [6] has shown that the general tasks scheduling problem is NP-complete and it
is hard to find an optimal schedule. Researchers [7] theoretically proved that the DAG tasks scheduling
problem is also NP-complete and is more complex in practical scheduling system. Due to its key
importance, the DAG tasks scheduling problem has been extensively studied in the literature.

Many traditional heuristic algorithms have been proposed, such as list scheduling algorithms [8],
genetic and evolutionary based random search algorithms [9], task duplication-based algorithms [10],
etc. These algorithms are mostly heuristic in restricted application scenarios, and lack generality
in the adaptation of various heterogeneous hardware and rapid changing application demand [11].
The machine learning based method is a reasonable way of adapting to the ever-changing hardware
and software environment by learning from past scheduling policies.

However, previous research lacks the consideration of scheduling tasks between trusted and
untrusted entities. Restricting trusted tasks within trusted entities increases the scheduling complexity,
and most of the previously proposed scheduling algorithms cannot be easily adapted to this scenario.
Therefore, it is important to study the practical way of integrating trust management into the DAG
tasks scheduling algorithm in distributed heterogeneous computing systems.

Reinforcement learning [12] could be used for learning smart scheduling policies from past
experiences. Recent research has proposed task scheduling and device placement algorithms
based on reinforcement learning. However, existing approaches either greatly simplify the scheduling
model [13,14] that are unpractical or need a great amount of computing resources [11,15] to train the
scheduling policies that are inefficient for most application scenarios.

Monte Carlo Tree Search (MCTS) [16] could be used for searching tasks scheduling policies that
meet the requirement of trust management. MCTS combines the precision of tree search with the
generality of random sampling. MCTS is an any-time search method that is efficient in terms of
computation resource usage. To the best of our knowledge, MCTS methods are mostly developed in
game domains. A few studies have been published in addressing the scheduling problems, but the
trust management in the scheduling is not well studied yet.

In this paper, we propose a trust-aware adaptive DAG Tasks Scheduling (tADTS) algorithm using
deep reinforcement learning and Monte Carlo tree search. The scheduling problems are properly
defined with the reinforcement learning process. Efficient scheduling state space, action space and
reward function are designed to train the policy gradient-based REINFORCE agent.The MCTS method
is proposed to determine actual scheduling policies when DAG tasks are simultaneously executed in
trusted and untrusted entities. Leveraging the algorithm’s capability of exploring long term reward,
we could achieve better scheduling efficiency. Experimental results showed the effectiveness of
the proposed tADTS algorithm compared with the classic HEFT/CPOP algorithms. The main
contributions of this paper include:

(1) We propose an accurate and practical DAG tasks scheduling model based on reinforcement
learning. To the best of our knowledge, this is the first work to address the static DAG tasks scheduling
problem with the reinforcement learning process. Previous research has proposed a similar model [14],

Sustainability 2019, 11, 1826 3 of 16

but oversimplifies the problem with assumptions of restricted machine performance, cluster status,
and task classification.

(2) We designed efficient representations of state space, action space and reward function.
Too large state space and action space without careful design will make the algorithm training
time-consuming or even unable to converge. The reward function design also plays an important role
in the reinforcement learning process.

(3) We proposed a trust-aware single-player MCTS (tspMCTS) method integrated with the DAG
tasks scheduling algorithm. The proposed tspMCTS method is flexible and scalable to schedule tasks
among multiple trusted and untrusted entities. The additional trust management does not increase the
time complexity of tspMCTS.

The rest of this paper is organised as follows: Section 2 describes the related work. Section 3
presents the Adaptive DAG Tasks Scheduling (ADTS) algorithm design. Section 4 shows the
experimental results. Finally, Section 5 concludes this paper and discusses future work.

2. Related Work

Previous research proposed different scheduling algorithms based on the characteristics of tasks
computation and communication, their dependency relationships, as well as the heterogeneity of
hardware. Depending on the techniques, the scheduling algorithms can be classified as traditional
heuristic based algorithms and machine learning based algorithms.

DAG tasks scheduling in the distributed heterogeneous computing environment has been
extensively studied. The DAG tasks scheduling algorithms could be typically divided into static
and dynamic scheduling. In static scheduling [17], the tasks’ runtime and data dependencies are
known in advance, and the scheduling policy is determined off-line. In dynamic scheduling [18],
the tasks are assigned to processors at their arrival time and the schedule policy is determined on-line.
Most DAG tasks scheduling algorithms belong to static scheduling.

Traditional static DAG tasks scheduling algorithms mainly include: (1) List scheduling
algorithms [8,19]. The key idea of list scheduling algorithm is to order the scheduling tasks priority list
and select a proper processor for each task. (2) Clustering based algorithms [20,21]. The key idea of
clustering based algorithm is to map DAG tasks to a number of clusters. Tasks assigned to the same
cluster will be executed on the same processor. (3) Genetic and evolutionary based random search
algorithms [9,22]. The key idea of this group of algorithms is to use random policies to guide the
scheduler through the problem space. The algorithms combine the results gained from previous search
with some randomizing features to generate new results. (4) Task duplication based algorithms [10,23].
The key idea of these algorithms is to duplicate some of the tasks in different processors, which reduces
the communication overhead in data-intensive applications.

These DAG tasks scheduling algorithms are heuristic and mainly designed by experts, which
are carefully adapted to different application scenarios. However, with the rapid development of
heterogeneous hardware and ever changing applications, traditional DAG tasks scheduling algorithms
cannot fully exploit system performance [11,15]. To design adaptive algorithms, researchers proposed
machine learning based algorithms. In this paper, we refer to the traditional scheduling algorithm
(no machine learning techniques are used) as heuristic algorithm. However, strictly speaking,
the proposed algorithm also belongs to the heuristic algorithm. To distinguish between human
expert experience-based algorithms and machine learning based algorithms, we denote the former as
traditional heuristic algorithms.

Zhang et al. [12] first proposed using classic reinforcement learning to address job-shop scheduling
problem. However, the job-shop scheduling is different from the DAG tasks scheduling problem,
where DAG tasks have more complex dependencies and data communication cost. Mao et al. [13]
proposed using deep reinforcement learning to solve a simplified task s scheduling problem. The policy
gradient based REINFORCE algorithm is used to train a fully connected policy network with 20
neurons. However, the scheduling problem is over simplified that treats the compute cluster as a single

Sustainability 2019, 11, 1826 4 of 16

collection of resources, which is unpractical in real systems. Orhean et al. [14] proposed reinforcement
learning based scheduling approach for heterogeneous distributed systems. This approach has
additional assumptions such as machine performance, cluster status, and tasks types, which can not
be easily applied in real DAG tasks scheduling. Mirhoseini et al. [11,15] proposed using reinforcement
learning method to optimize device placement for TensorFlow computational graphs. These methods
require a large amount of hardware to train policy network. The state space and action space definitions
cannot accurately reveal the DAG and hardware topologies, which results in many invalid placement
trials. Though previous research has these shortcomings, the reinforcement learning based approach
has demonstrated its benefits in terms of adaptiveness and better scheduling quality.

The Monte Carlo Tree Search (MCTS) method [16] combines the precision of tree search with the
generality of random sampling. MCTS received significant interest due to its success in difficult games
like computer Go [24]. Single-Player MCTS [25] was first proposed in the SameGame. Y. Björnsson
and H. Finnsson [26] investigated the application of standard UCT [27,28] to single-player games.
The MCTS method was also developed in the scheduling [29,30] and planing [31,32] applications.
S. Matsumoto et al. [29] proposed a single-player MCTS method to address a re-entrant scheduling
problem that managed the printing process of the auto-mobile parts supplier. A. McGovern et al. [30]
proposed a basic block instruction scheduler with reinforcement learning and rollouts. However,
how to leverage MCTS method to design tasks scheduling with trust management still needs
further investigation.

Previous research demonstrated that DAG tasks scheduling belongs to the class of strong
NP-hard problems [33]. Hence, it is impossible to construct not only a pseudo-polynomial time
optimization scheduling algorithm but also a fully polynomial time approximation scheme (PTAS)
unless P=NP [34,35]. To the best of our knowledge, H. Kasahara et al. [36] designed the constant-factor
(1+eps) approximation algorithm for multiprocessor scheduling. However, the constant-factor
approximation algorithm assumed homogeneous processors and did not consider the communication
costs between tasks, which is far beyond reality in modern computer system. We plan to design a more
realistic constant-factor approximation algorithm based on the branch and bound algorithm in our
future work.

Unlike previous research, we proposed a new reinforcement learning based trust-aware
scheduling algorithm with MCTS that defines more accurate scheduling model using DAG graph
structures and efficient state/action space representations. The similarities between reinforcement
learning and classic machine learning algorithms is that they both need large volumes of training
data to train a model. However, unlike supervised learning that requires pre-labelled training data,
the training data of reinforcement learning is obtained via online interaction with the environment
and the reward function determines the label signal. The goal of our proposition is to maximize
long term reward while the classic machine learning method usually minimizes the prediction error.
The proposed tADTS algorithm can be used in practice in the same way as traditional static DAG
tasks scheduling algorithms. This paper is an extended version of previously published conference
paper in the 18th International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP 2018) [37].

3. Trust-Aware Adaptive DAG Tasks Scheduling Algorithm Design

In this section, we present the trust-aware Adaptive DAG Tasks Scheduling (tADTS) algorithm
design. First, the DAG tasks scheduling problem is defined. Second, we formulate the reinforcement
learning process and present the design of three key elements of RL, the state space, the action space,
and the reward function. Then, we proposed the trust-aware single-player MCTS method. Finally,
we show the policy gradient based training algorithm and the policy network architecture design.

Sustainability 2019, 11, 1826 5 of 16

3.1. Problem Definition

We leverage the definition of DAG tasks graph in distributed heterogeneous system [8].
The scheduling model consists of three parts:

(i) An application represented by a DAG tasks graph, G = (V, E), where V is a set of v tasks in
the application, and E is the set of e edges between tasks.

• edge (i, j) ∈ E denotes the precedence constraint such that task nj must wait until task ni finishes
its execution.

• datai,j denotes the amount of data to be sent from task ni to task nj.
• Each task ni has a flag that denotes whether this task is a security sensitive or non-sensitive task.

Figure 1 shows an example of DAG tasks graph. The bold task nodes (tasks 1, 2, 9, 10) represent
the security sensitive tasks that must be executed inside trusted entities.

1

2 3 4 5 6

9

10

7 8

18 9 11 812

23 15

131117

13

16
27

23

19

Figure 1. An example of DAG tasks graph.

(ii) A distributed heterogeneous computing system, which consists of a set Q of q heterogeneous
processors with a fully connected topology.

• W is a v× q computation cost matrix, and wi,j denotes the execution time of task ni on processor pj.
• B is a q× q matrix of the data communication bandwidth between processors, and Bm,n denotes

the communication bandwidth between processor pm and processor pn.
• L is a q-dimensional vector that denotes the communication initialization costs of processors,

and Lm denotes the initialization costs of processor pm.

• ci,j = Lm +
datai,j
Bm,n

denotes the communication cost of edge (i, j), which is for the cost of sending
data from task ni (running on pm) to task nj (running on pn).

• Each processor has a flag that denotes whether this processor resides within a trusted entity or a
non-trusted entity.

(iii) Performance criterion for scheduling. Before presenting the final scheduling objective
function, we first define the EST (Earliest Start Time), EFT (Earliest Finish Time), AST (Actual Start
Time), and AFT (Actual Finish Time) attributes.

• EST(ni, pj) = max
{

avail [j] , max
nm∈pred(ni)

(AFT(nm) + cm,i)

}
denotes the earliest execution start

time of task ni on processor pj, where avail [j] is the earliest time at which processor pj is available
for execution, and pred(ni) is the set of immediate predecessor tasks of task ni. The inner max
block returns the time when all data required by task ni has arrived at processor pj.

Sustainability 2019, 11, 1826 6 of 16

• EFT(ni, pj) = wi,j + EST(ni, pj) denotes the earliest finish time of task ni on processor pj.
• AST(nm) denotes the actual start time of task nm when it is scheduled on a processor pj to execute.
• AFT(nm) denotes the actual finish time of task nm after it is scheduled on a processor pj and

finishes execution.

The EST and EFT values can be computed recursively from the entry task nentry, where
EST(nentry, pj) = 0. After all tasks in a graph are finished execution, the AFT of the exit task nexit is
named the schedule length (also named makespan), which is defined as:

makespan = max {AFT(nexit)} (1)

The objective function of the DAG tasks scheduling is to determine the assignment policies of an
application’s tasks to heterogeneous processors so that the schedule length is minimized.

3.2. Reinforcement Learning Formulation

Once the scheduling problem is defined, we propose to address the scheduling problem with the
reinforcement learning method [38]. Figure 2 shows a brief diagram of the reinforcement learning based
scheduling model. At time t, the scheduler observes the environment and receives an observation Ot.
Depending on Ot, the scheduler determines an scheduling action At. After At is executed, the scheduler
receives a reward Rt. The scheduler continues this process (..., Ot, At, Rt, Ot+1, At+1, Rt+1, ...) until the
end of schedule (task nexit is scheduled). The observation Ot typically could be denoted as a state St.

Scheduler

Environment

Reward Rt

Observation

Ot

Action

At

Figure 2. Reinforcement Learning Based Scheduling Model.

We use the policy gradient method to optimize the scheduling actions so that the expected total
reward could be maximized. The optimization objective function is defined as:

J(θ) = EA∼π(A|G;θ)[R(A)|G] (2)

where θ denotes parameters of the policy network; A denotes the scheduling policy (a sequence of
actions); π(A|G; θ) denotes the probabilities of scheduling policy A produced by policy network (defined
by parameters θ) given the DAG tasks graph and heterogeneous system G; R(A) denotes the total reward
under the scheduling policy A; J(θ) denotes the expected reward of the scheduling policy A.

In the reinforcement learning, the design of the state space and action space representations as well
as the design of reward function are important for the algorithm’s overall performance. We describe
the three key elements as follows.

State space. The state space of the scheduling problem could be very large, which would include
the state of the DAG tasks graph and the state of the distributed heterogeneous computing system.
We design an efficient and compact representation of the state space, which is defined as:

St = [n, EST(ni, p1), ..., EST(ni, pq), wi,1, ..., wi,q] (3)

Sustainability 2019, 11, 1826 7 of 16

where St is the state (observation) at time t. n denotes the number of tasks that are not scheduled so far
(listed in a waiting queue). EST(ni, pj) is the earliest start time of task ni on processor pj, task ni is the
current task to be scheduled. We use the task’s EST on all processors (from processor 1 to processor
q) to represent the state of the current system. The EST as described in Section 3.1 contains both the
information of processor’s load and the communication cost. Based on the Markov property, the
current task’s ESTs can be used as the state to summarize the previous situations before task ni. wi,j
is the computation cost of task ni on processor pj. To preserve the tasks precedence relationship in
DAG, we adopt the upward rank [8] to list tasks in the waiting queue so that tasks with higher rank
values are scheduled before tasks with lower rank value. Note that other task list methods are possible
provided that the task precedence constraints are satisfied.

Action space. Once the state space is defined, the action space of the scheduling problem is
straightforward. The action space is defined as:

At = {pi|p1, ..., pq} (4)

where At is the scheduling action at time t. pi denotes that the scheduler assigns processor pi for the
current task in the head of the waiting queue. The possible action at each time step is to assign one of
the processors (range from processor p1 to processor pq) for the task to be scheduled.

Reward function. The design of reward function could impact the scheduling policies, which is
critical for the policy training. The reward at each time step should help guide the actual scheduling
actions, and the accumulative long term reward should also reflect the final scheduling objective.
Based on the above understanding, the reward function is defined as:

Rt = max{EST(ni+1, pj)|j=1..q} −max{EST(ni, pj)|j=1..q} (5)

where Rt is the immediate reward at time t. Task ni+1 is the task in the head of waiting queue after
task ni is scheduled with action At at time t. The reward Rt is obtained by calculating the increment
of current schedule length after task ni is scheduled. The current schedule length is represent by
max{EST(ni, pj)|j=1..q}.

3.3. Trust-Aware Single-Player MCTS Method

Monte Carlo Tree Search (MCTS) typically has four basic steps as shown in Figure 3. The DAG
tasks scheduling process can be mapped as a single-player MCTS process. We describe the four steps
in detail and how each step is designed to address the trust-aware DAG tasks scheduling problem.

Default Policy

Selection Expansion Simulation Backpropagation

State Node

makespan

Q+U Q+U Q+U

max

Action

Figure 3. Basic steps of Monte Carlo Tree Search.

Sustainability 2019, 11, 1826 8 of 16

In the MCTS tree structure, the root node represents the beginning state of the DAG tasks
scheduling, which is the initial state of the first task to be scheduled. The subsequent nodes represent
the possible states reached after MCTS selects possible actions. The edges in the MCTS tree represent
the scheduling actions, which are many possible combinations of actions mapping ready tasks to certain
processors. The four steps of progressively building a single-player MCTS tree are described below.

Four steps are applied for each search iteration:
(1) Selection: From the root node, a child selection policy is recursively applied to descend

through the MCTS tree until an expandable node is reached. An expandable node denotes a
non-terminal state and has unvisited children. The child selection policy is based on the UCT
algorithm [39], which selects the maximum value of UCTs among its child nodes.

UCT = Qj + 2Cp

√
2 ln n

nj
(6)

Equation (6) shows the UCT calculation that addresses the exploration-exploitation dilemma in
MTCS. The first term Qj in Equation (6) represents exploitation, which is the mean makespan value of

the simulated scheduling policies that visited nodej so far. The second term 2Cp

√
2 ln n

nj
represents

exploration, where n is the number of times the parent node has been visited, nj is the number of times
child nodej has been visited and Cp is the constant parameter that controls the exploration.

(2) Expansion: According to the available actions, child nodes are added to the expandable
parent node. The available actions are determined online based on the ready tasks available after
the expandable parent node is visited. The ready tasks are determined depending on the ordering
relations in the DAG tasks graph. The number of available actions equals the number of ready tasks
multiplied by the number of allowed processors. Due to the restriction that security-sensitive tasks
must be scheduled onto trusted processors, the number of allowed processors are limited for each
ready task.

(3) Simulation: Starting from the leaf node, a simulation is run based on the default policy to
generate subsequent schedule actions. The default policy is the output of the policy network trained in
the reinforcement learning. The training of policy network π(a|s, θ) is described in Section 3.4. In the
simulation, security-sensitive tasks are strictly limited to the trusted entities.

(4) Backpropagation: After simulation finishes, the MCTS agent obtains simulation result
(the makespan of DAG tasks). Then, the simulation result is backpropagated through previously
visited nodes in the MCTS tree to update their statistics (average makespan Q and visit count n).
The updated node statistics are used to inform future node selection in the MCTS tree.

The decision structure helps the selection of scheduling actions at each time step during
training. The online scheduler only uses the trained network to output scheduling actions. Therefore,
the algorithm is similarly efficient for big trees and small trees as the MCTS tree structure is
used for online reference on the top layer of the tree. However, it costs a larger number of
simulation times to construct a big tree rather than a small tree. In the training phase, big trees
hold many more Monte-Carlo simulation trials than small trees that could provide more accurate
scheduling action selection. The advantages of the MCTS tree structure are its efficient simulation and
“any-time” property that could stop simulation at any-time depending on computing resource budget.
The limitations of MCTS tree structure are that it is hard to set an optimal parameter Cp to balance the
tradeoff between exploration and exploitation under limited computing resources.

3.4. Training Algorithm

We train an adaptive DAG tasks scheduling agent with the REINFORCE algorithm [40] and MCTS
method. The training algorithm is based on the policy gradient methods with many Monte-Carlo trials.
The algorithm input consists of a differentiable parameterization π(a|s, θ) and the training step size α.
Initially, the policy parameters θ are a set to random numbers. During the training process, we generate

Sustainability 2019, 11, 1826 9 of 16

N number of episodes to train the policy network. Each episode represents a complete schedule of
DAG tasks, which starts from the entry task state S0, action A0, and the corresponding reward R1,
to the end of the exit task state ST−1, action AT−1, and the final reward RT . For each step of an episode,
the algorithm calculates the long term reward G with an discounted factor γ. The policy parameter θ

is updated in every step with ∇lnπ(At|St, θ), which equals the fractional vector ∇π(At |St ,θ)
π(At |St ,θ)

named the
eligibility vector. Previous research [41] has proved the policy gradient theory used for the function
approximation in the reinforcement learning.

As shown in Algorithm 1, the generation of an episode is based on the MCTS tree selection and
the default policy simulation. Inspired by AlphaZero [42], we combined the reinforcement learning
with MCTS for the DAG tasks scheduling problem. Algorithm 1 incorporates lookahead search inside
the training loop that results in rapid improvement and precise and stable learning. MCTS uses the
policy network to guide its simulations, which is a powerful policy improvement operator. In turn,
the generated simulation episode is used to train a better policy network. Then, the better policy
network is iteratively used to make the MCTS search even stronger. The iteration terminates when
the number of episodes reached a predefined threshold. Thanks to the efficient exploration and
exploitation structure of MCTS, the algorithm could simulate a small number of Monte Carlo trials to
construct asymmetric tree structure that guides the selection of scheduling actions. Therefore, the stop
criterion of N is usually set to thousands to tens of thousands depending on the scale of the scheduling
problem. The detailed settings are described in Section 4.1.

Algorithm 1 REINFORCE with MCTS: Monte-Carlo Policy-Gradient Control for π∗.

Input: A differentiable policy parameterization π(a|s, θ); Algorithm parameter: step size α > 0;

1: Initialize random policy parameter θ ∈ R;

2: Loop for N episodes:

3: Generate an episode S0, A0, R1, ..., ST−1, AT−1, RT ,

following MCTS tree selection and the default policy π(a|s, θ) simulation;

4: Loop for each step of the episode t = 0, 1, ..., T − 1:

5: G ← ∑T
k=t+1 γk−t−1Rk

6: θ ← θ + αγtG∇lnπ(At|St, θ)

The reward function outputs reward Rt at each time step t. Rt is an immediate reward that is
obtained by calculating the increment of current schedule length after task ni is scheduled. Therefore,
Rt is dynamically generated following different scheduling actions (policies). In the training algorithm,
Rt is used to accumulatively calculate the long term reward G with a Monte-Carlo trial. Then, G is
used to update the neural network parameter theta with gradient ascent.

Compared with random search, the UCT algorithm applied in the MCTS is more efficient, which
has theoretical guarantee [43] of the upper confidence bound to an expected logarithmic growth of
regret uniformly over n without prior knowledge regarding the reward distributions.

4. Experiments

In this section, we evaluate the proposed tADTS algorithm comparing with the classic baseline
algorithms. The DAG tasks graphs are generated using the graph generator [8] to represent the real
world applications. First, we present the experiment settings and the performance evaluation metrics.
Then, the comparative experimental results are described in the following subsection. Note that the
proposed training algorithm is under implementation, the combination of reinforcement learning
and MCTS is not tested in this experiment. The following experiment shows the individual ADTS
algorithm performance result.

Sustainability 2019, 11, 1826 10 of 16

4.1. Methodology

The experiment hardware platform is configured with two Intel Xeon E5-2600V3 processors,
four NVIDIA TITAN Xp GPUs, 64 GB DDR4 memory, and 4 TB hard disk. The server is connected
with S5150X-16S-EI high speed switch. The software platform is configured with ubuntu 16.04,
Tensorflow 1.5, python 2.7, cuda9.1 and cudnn7.7. We generate a total of 1000 DAG tasks graphs using
the graph generator [8], and simulate the DAG tasks scheduling process with a in-house simulator.
The distributed heterogeneous system is configured with 3–7 heterogeneous processors with fully
connected communication networks.

In the ADTS algorithm, the parameters used in the reinforcement learning are described as follows.
The policy network architecture is configured with 3–5 layers of sequence-to-sequence neural networks
with each layer having 10–50 neurons. The scale of policy networks depend on the problem space of
DAG graphs and the heterogeneous hardware configuration. The learning rate step size α is 0.0005
and the discounted factor γ is 0.99. The number of Monte-Carlo training episodes N is configured
with 2500.

In the comparative evaluation, we use the following three performance metrics.

• Schedule Length Ratio (SLR). The key performance metric of a scheduling algorithm is the
schedule length (makespan) of its schedule policy. As the sizes of DAG graphs are different
among applications, we normalize the schedule length to a lower bound, which is named SLR.
The SLR value is defined as

SLR =
makespan

∑ni∈CPMIN
minpj∈Q

{
wi,j
} (7)

where the CPMIN denotes that the critical path of a DAG graph is based on the minimum
computation costs.

• Speedup. The value of speedup for a given graph is the ratio of the sequential execution time to
the makespan. The speedup is defined as

Speedup =
minpj∈Q

{
∑ni∈V wi,j

}
makespan

(8)

where the sequential execution time is obtained by scheduling all DAG tasks to a single processor
that minimizes the overall computation costs (denoted as minpj∈Q

{
∑ni∈V wi,j

}
).

• Running time of the Algorithms. A scheduling algorithm’s running time is its execution time of
producing the output schedule policy for a given DAG tasks graph. This metric represents the
cost of the scheduling algorithm.

The DAG tasks graph generator uses the following parameters to quantify the characteristics of
the generated DAG graphs, which is similar to [8].

* SETV = {20,40,60,80,100}
* SETCCR = {0.1,0.5,1.0,5.0,10.0}
* SETα = {0.5,1.0,2.0}
* SETout_degree = {1,2,3,4,5,v}
* SETβ = {0.1,0.25,0.5,0.75,1.0}

where SETV denotes the number of tasks in the graph, SETCCR denotes the set of parameter values of
the Communication to Computation Ratio (CCR), SETα denotes the set of parameter values of the
graph shape parameter α. SEToutdegree denotes the set of values of out degree of a task. SETβ denotes the
set of parameter values of the range percentage of computation costs on processors (β) that quantifies
the heterogeneity of the processors.

Sustainability 2019, 11, 1826 11 of 16

4.2. Performance Comparison

In this subsection, we show the performance comparisons of four DAG tasks scheduling
algorithms, the proposed ADTS algorithm, the classic HEFT algorithm and CPOP algorithm [8],
and the RANDOM algorithm. The Heterogeneous Earliest Finish Time (HEFT) algorithm selects the
task with the highest upward rank value at each scheduling step and assigns the selected task to the
processor that minimizes its earliest finish time. The Critical-Path-on-a-Processor (CPOP) algorithm
uses the summation of the upward rank and downward rank to denote a task’s priority and the selected
tasks with the highest priority is assigned to the critical-path processor; otherwise, it is assigned to a
processor that minimizes the earliest finish time. The RANDOM algorithm selects random tasks and
random processors while satisfying tasks precedence constraints. Note that we ran the RANDOM
algorithm for as long as our proposed algorithm did and selected the smallest makespan among
many runs.

The ADTS algorithm is non-deterministic, we show the average value of 10 individual runs
in the experiment. The DAG tasks graphs are generated using the parameters listed in Section 4.1.
As modern big data and machine learning based applications are mostly data-intensive, the DAG
graphs are generated with a higher portion of CCR value.

Figure 4 shows the comparison of the average schedule length ratio between the ADTS, HEFT,
CPOP, and RANDOM algorithms. The SLR metric represents the schedule quality of each algorithm
(lower is better). The closer the SLR value to one, the better the scheduling policy. As the normalization
uses the theoretical minimum computation costs, the SLR cannot be less than one.

Figure 4. Comparison of the Schedule Length Ratio (SLR).

As can be seen from Figure 4, the ADTS algorithm outperforms both the HEFT and CPOP
algorithms. In the 20 tasks DAG graph, the average SLR of ADTS algorithm is 3.391 and the average
SLR of HEFT and CPOP are 4.262 and 4.323 respectively, which has 25% reduction of the average SLR.
Similarly, in the 40, 60, 80 and 100 tasks of DAG graph scheduling experiments, the SLR of ADTS
is consistently lower than both HEFT and CPOP algorithms. The lower SLR achieved by the ADTS
algorithm demonstrates that the reinforcement learning could better explore the long term reward,
which leads to the better scheduling policies than the traditional heuristic algorithms. Obviously,
the RANDOM algorithm has the largest SLR across all settings.

Figure 5 shows the comparison of the average speedup between the ADTS, HEFT, CPOP, and
RANDOM algorithms. The average speedup represents the algorithm’s ability of scheduling tasks to
explore parallel performance (higher is better). Note that the speedup value is calculated via dividing
the sequential execution time by the makespan. The sequential execution time is represented by
assigning all tasks to a single processor that minimizes the cumulative computation costs. If selecting

Sustainability 2019, 11, 1826 12 of 16

the processor that maximizes the cumulative computation costs, the value of speedup will be higher.
As can be seen from Figure 5, the ADTS algorithm achieves better speedup than HEFT and CPOP
algorithms. In the 20 tasks DAG graph experiment, the speedup of ADTS algorithm is 1.087, while
the speedup of HEFT and CPOP algorithms are 0.879 and 0.886 respectively. The ADTS algorithm
could achieve more than 20% speedup improvement compared with HEFT and CPOP algorithms.
The average speedup of the RANDOM algorithm is around 0.4 in all tested DAG graphs.

Figure 5. Comparison of the average speedup.

Figure 6 shows the comparison of the average running time of the ADTS, HEFT, CPOP, and
RANDOM algorithms. The average running time of a scheduling algorithm represents the average
computation costs of execution the algorithm. As can be seen from Figure 6, the ADTS algorithm
has higher running time compared with the HEFT and CPOP algorithms. This is because the ADTS
algorithm involves the deep neural network reference computations to produce the scheduling policy,
which has higher overhead compared with the HEFT and CPOP algorithm. The CPOP algorithm
has higher running time compared with the HEFT algorithm. The time complexity of both the CPOP
algorithm and the HEFT algorithm is O(e × q), where e is the number of edges in the graph and
q is the number of processors. The time complexity of the ADTS algorithm depends on the policy
network architecture. If the neural network reference computation cost is defined as c, then the time
complexity of the ADTS algorithm is O(c× v), where v is the number of tasks. As the RANDOM
algorithm uses naive policy and only satisfies task precedence constraints, its time complexity is O(n).
However, to demonstrate that the RANDOM algorithm could not progress towards better results as
the number of trials increases, we ran the RANDOM algorithm many times, which corresponded to
(or even exceeded) the time spent in our proposed algorithm.

4.3. Discussion

From the above comparative performance evaluation, we observe that the reinforcement learning
algorithm could achieve better scheduling policies than the classic HEFT and CPOP algorithms.
However, as the deep reinforcement learning involves neural network parameters training and
inference computation overhead, the running time of the ADTS algorithm is somewhat higher than
the traditional heuristic greedy-based algorithms. Fortunately, the ADTS algorithm is designed
for static DAG scheduling, which is acceptable for the relatively high running time considering its

Sustainability 2019, 11, 1826 13 of 16

better schedule quality. What is more, the ADTS algorithm is non-deterministic. In some cases,
the training process could not successfully converge to obtain the good policy network model.
The reinforcement learning parameters tuning and the network architecture design need some trials to
obtain a robust algorithm.

Figure 6. Comparison of the average running time.

Figure 7 shows a learning curve of the ADTS training algorithm under the 20 tasks DAG
scheduling environment. As can be seen from the learning curve, the algorithm learns very fast
within 400 episodes and gradually exceeds the classic HEFT algorithm after 500 episodes of training.
In our experiments, some of the DAG graphs cannot be successfully trained to surpass the classic
algorithms. We infer that this problem is due to the unsuitable parameters and the neural network
architecture configurations. This unstable training problem needs further investigation and remains as
future work.

Figure 7. The learning curve of the Adaptive DAG Tasks Scheduling (ADTS) training algorithm.

5. Conclusions

In this paper, we proposed a trust-aware Adaptive DAG tasks scheduling (tADTS) algorithm
using deep reinforcement learning and Monte Carlo tree search. The efficient scheduling state space,
action space, and reward function were designed to train the policy gradient-based REINFORCE
agent. Using the Monte-Carlo method, a large amount of training episodes were generated in a

Sustainability 2019, 11, 1826 14 of 16

scheduling simulator and the policy network parameters were updated using the simulated episodes.
Experimental results showed the effectiveness of the proposed tADTS algorithm compared with the
competitive HEFT and CPOP algorithms.

In future work, we plan to investigate the method of hyperparameters tuning to achieve more
stable performance of the proposed algorithm. As different hyperparameters will significantly affect
the performance of the reinforcement learning and MCTS [44], it is important to find an efficient and
automatic way to tune hyperparameters and study their effects in addressing the DAG tasks scheduling
problem. As the proposed method is quite general and could be adapted to many applications, future
works for applications of this method may include: (1) the implementation of smart task scheduler
in heterogeneous high-performance computing or deep learning framework (such as TensorFlow,
PyTorch) with hardware constraints, (2) the application of this method used for both online and offline
usage scenarios, and (3) the variants of time-sensitive task scheduling with hard or soft deadlines.

Author Contributions: Conceptualization, Y.C. and Y.W.; methodology, Y.C.; software, Z.W.; validation, Z.W.
and K.L.; formal analysis, Q.W.; investigation, Y.W.; resources, Q.W.; data curation, Z.W.; writing—original draft
preparation, Y.C. and Y.W.; writing—review and editing, Y.W.; visualization, Y.C.; supervision, Q.W.; project
administration, Q.W.; funding acquisition, Y.C.

Funding: This research was funded by the National Science Foundation for Young Scientists of China grant
number 61802096.

Acknowledgments: Thanks to the anonymous reviewers for their helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Meng, W.; Li, W.; Wang, Y.; Au, M. H. Detecting insider attacks in medical cyber–physical networks based
on behavioral profiling. Future Gener. Comput. Syst. 2018. [CrossRef]

2. Wang, Y.; Meng, W.; Li, W.; Li, J.; Liu, W.X.; Xiang, Y. A fog-based privacy-preserving approach for
distributed signature-based intrusion detection. J. Parallel Distrib. Comput. 2018, 26–35. [CrossRef]

3. Wang, Y.; Meng, W.; Li, W.; Liu, Z.; Liu, Y.; Xue, H. Adaptive Machine Learning-Based Alarm Reduction via
Edge Computing for Distributed Intrusion Detection Systems. 2019. Available online: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpe.5101 (accessed on 26 March 2019).

4. Alajali, W.; Zhou, W.; Wen, S.; Wang, Y. Intersection Traffic Prediction Using Decision Tree Models. Symmetry
2018, 10, 386. [CrossRef]

5. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;
Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv
2016, arXiv:1603.04467.

6. Ullman, J.D. NP-complete scheduling problems. J. Comput. Syst. Sci. 1975, 10, 384–393. [CrossRef]
7. Mayer, R.; Mayer, C.; Laich, L. The tensorflow partitioning and scheduling problem: it’s the critical path!

In Proceedings of the 1st Workshop on Distributed Infrastructures for Deep Learning, Las Vegas, NY, USA,
11–15 December 2017; pp. 1–6.

8. Topcuoglu, H.; Hariri, S.; Wu, M.Y. Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]

9. Wu, A.S.; Yu, H.; Jin, S.; Lin, K.C.; Schiavone, G. An incremental genetic algorithm approach to multiprocessor
scheduling. IEEE Trans. Parallel Distrib. Syst. 2004, 15, 824–834. [CrossRef]

10. Ahmad, I.; Kwok, Y.K. On exploiting task duplication in parallel program scheduling. IEEE Trans. Parallel
Distrib. Syst. 1998, 9, 872–892. [CrossRef]

11. Mirhoseini, A.; Pham, H.; Le, Q.V.; Steiner, B.; Larsen, R.; Zhou, Y.; Kumar, N.; Norouzi, M.; Bengio, S.;
Dean, J. Device placement optimization with reinforcement learning. In Proceedings of the 34th International
Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2430–2439.

12. Zhang, W.; Dietterich, T.G. A reinforcement learning approach to job-shop scheduling. IJCAI 1995, 95,
1114–1120.

http://dx.doi.org/10.1016/j.future.2018.06.007
http://dx.doi.org/10.1016/j.jpdc.2018.07.013
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5101
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5101
http://dx.doi.org/10.3390/sym10090386
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/TPDS.2004.38
http://dx.doi.org/10.1109/71.722221

Sustainability 2019, 11, 1826 15 of 16

13. Mao, H.; Alizadeh, M.; Menache, I.; Kandula, S. Resource management with deep reinforcement learning.
In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, Atlanta, GA, USA, 9–10 November
2016; pp. 50–56.

14. Orhean, A.I.; Pop, F.; Raicu, I. New scheduling approach using reinforcement learning for heterogeneous
distributed systems. J. Parallel Distrib. Comput. 2018, 117, 292–302. [CrossRef]

15. Goldie, A.; Mirhoseini, A.; Steiner, B.; Pham, H.; Dean, J.; Le, Q.V. Hierarchical Planning for Device Placement.
In Proceedings of the Sixth International Conference on Learning Representations, Vancouver, BC, Canada,
30 April–3 May 2018; pp. 1–11.

16. Browne, C.; Powley, E. A survey of monte carlo tree search methods. IEEE Trans. Intell. AI Games 2012,
4, 1–49. [CrossRef]

17. Kwok, Y.K.; Ahmad, I. Static scheduling algorithms for allocating directed task graphs to multiprocessors.
ACM Comput. Surv. 1999, 31, 406–471. [CrossRef]

18. Amalarethinam, D.; Josphin, A.M. Dynamic Task Scheduling Methods in Heterogeneous Systems: A Survey.
Int. J. Comput. Appl. 2015, 110, 12–18. [CrossRef]

19. Arabnejad, H.; Barbosa, J.G. List scheduling algorithm for heterogeneous systems by an optimistic cost table.
IEEE Trans. Parallel Distrib. Syst. 2014, 25, 682–694. [CrossRef]

20. Palis, M.A.; Liou, J.C.; Wei, D.S.L. Task clustering and scheduling for distributed memory parallel
architectures. IEEE Trans. Parallel Distrib. Syst. 1996, 7, 46–55. [CrossRef]

21. Kanemitsu, H.; Hanada, M.; Nakazato, H. Clustering-Based Task Scheduling in a Large Number of Heterogeneous
Processors. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 3144–3157. [CrossRef]

22. Xu, Y.; Li, K.; Hu, J.; Li, K. A genetic algorithm for task scheduling on heterogeneous computing systems
using multiple priority queues. Inf. Sci. 2014, 270, 255–287. [CrossRef]

23. Meng, X.; Liu, W. A DAG scheduling algorithm based on selected duplication of precedent tasks.
Comput.-Aided Des. Comput. Graph. 2010, 22, 1056–1062. [CrossRef]

24. Rimmel, A.; Teytaud, O.; Lee, C.S.; Yen, S.J.; Wang, M.H.; Tsai, S.R. Current frontiers in computer Go.
IEEE Trans. Comput. Intell. AI Games 2010, 2, 229–238. [CrossRef]

25. Schadd, M.P.; Winands, M.H.; Jaap van den Herik, H.; Chaslot, G.M.J.B.; Uiterwijk, J.W.H.M. Single-Player
Monte-Carlo Tree Search. In Proceedings of the International Conference on Computers and Games 2008,
Beijing, China, 29 September–1 October 2008; pp. 1–12.

26. Bjornsson, Y.; Finnsson, H. Cadiaplayer: A simulation-based general game player. IEEE Trans. Comput.
Intell. AI Games 2009, 1, 4–15. [CrossRef]

27. Lai, T.L.; Robbins, H. Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 1985, 6, 4–22.
[CrossRef]

28. Agrawal, R. Sample mean based index policies by o (log n) regret for the multi-armed bandit problem.
Adv. Appl. Probab. 1995, 27, 1054–1078. [CrossRef]

29. Matsumoto, S.; Hirosue, N.; Itonaga, K.; Yokoo, K.; Futahashi, H. Evaluation of simulation strategy on
single-player Monte-Carlo tree search and its discussion for a practical scheduling problem. In Proceedings of
the International MultiConference of Engineers and Computer Scientists, Hongkong, China, 17–19 March
2010; Volume 3, pp. 2086–2091.

30. McGovern, A.; Moss, E.; Barto, A.G. Building a basic block instruction scheduler with reinforcement learning
and rollouts. Mach. Learn. 2002, 49, 141–160. [CrossRef]

31. Pellier, D.; Bouzy, B.; Métivier, M. An UCT approach for anytime agent-based planning. In Advances
in Practical Applications of Agents and Multiagent Systems; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 211–220.

32. Chaslot, G.; De Jong, S.; Saito, J.T.; Uiterwijk, J. Monte-Carlo tree search in production management problems.
In Proceedings of the 18th BeNeLux Conference on Artificial Intelligence, Namur, Belgium, 5–6 October
2006, pp. 91–98.

33. Lenstra, J.K.; Rinnooy Kan, A.H.G. Complexity of Scheduling Under Precedence Constraints. Oper. Res.
1978, 26, 22–35. [CrossRef]

34. Sahni, S.; Horowitz, E. Combinatorial Problems: Reducibility and Approximation. Oper. Res. 1978, 26, 718–759.
[CrossRef]

35. Garey, M.R.; Johnson, D.S. “Strong” NP-Completeness Results:Motivation, Examples, and Implications.
J. ACM 1978, 25, 499–508. [CrossRef]

http://dx.doi.org/10.1016/j.jpdc.2017.05.001
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.5120/19318-0859
http://dx.doi.org/10.1109/TPDS.2013.57
http://dx.doi.org/10.1109/71.481597
http://dx.doi.org/10.1109/TPDS.2016.2526682
http://dx.doi.org/10.1016/j.ins.2014.02.122
http://dx.doi.org/10.3724/SP.J.1089.2010.10865
http://dx.doi.org/10.1109/TCIAIG.2010.2098876
http://dx.doi.org/10.1109/TCIAIG.2009.2018702
http://dx.doi.org/10.1016/0196-8858(85)90002-8
http://dx.doi.org/10.2307/1427934
http://dx.doi.org/10.1023/A:1017976211990
http://dx.doi.org/10.1287/opre.26.1.22
http://dx.doi.org/10.1287/opre.26.5.718
http://dx.doi.org/10.1145/322077.322090

Sustainability 2019, 11, 1826 16 of 16

36. Kasahara, H.; Narita, S. Practical Multiprocessor Scheduling Algorithms for Efficient Parallel Processing.
IEEE Trans. Comput. 1984, 33, 1023–1029. [CrossRef]

37. Wu, Q.; Wu, Z.; Zhuang, Y.; Cheng, Y. Adaptive DAG Tasks Scheduling with Deep Reinforcement Learning.
In Algorithms and Architectures for Parallel Processing; Vaidya, J., Li, J., Eds.; Springer International Publishing:
Cham, Switzerland, 2018; pp. 477–490.

38. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2011.
39. Kocsis, L.; Szepesvári, C. Bandit based monte-carlo planning. In European Conference on Machine Learning;

Springer: Berlin/Heidelberg, Germany, 2006; pp. 282–293.
40. Williams, R.J. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning.

In Reinforcement Learning; Sutton, R.S., Ed.; Springer: Boston, MA, USA, 1992; pp. 5–32.
41. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning

with Function Approximation. In Proceedings of the 12th International Conference on Neural Information
Processing Systems, Denver, CO, USA, 29 November–4 December 1999; MIT Press: Cambridge, MA, USA,
1999; pp. 1057–1063.

42. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.;
Bolton, A.; et al. Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]

43. Auer, P.; Cesa-Bianchi, N.; Fischer, P. Finite-time Analysis of the Multiarmed Bandit Problem. Mach. Learn.
2002, 47, 235–256. [CrossRef]

44. Islam, R.; Henderson, P.; Gomrokchi, M.; Precup, D. Reproducibility of Benchmarked Deep Reinforcement
Learning Tasks for Continuous Control. arXiv 2017, arXiv:1708.04133.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TC.1984.1676376
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1023/A:1013689704352
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Trust-Aware Adaptive DAG Tasks Scheduling Algorithm Design
	Problem Definition
	Reinforcement Learning Formulation
	Trust-Aware Single-Player MCTS Method
	Training Algorithm

	Experiments
	Methodology
	Performance Comparison
	Discussion

	Conclusions
	References

