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Abstract: In this paper, a direct power control (DPC) technique is proposed for matrix converter-fed
grid-connected doubly fed induction generators (DFIGs). In contrast to what has been investigated
in the past for direct torque control (DTC) or DPC of matrix converter-fed DFIGs, the active and
reactive powers are regulated in a fixed switching frequency using indirect space vector modulation
(ISVM) technique. Hence, designing input filters for matrix converters (MCs) becomes convenient.
In addition, the reactive component of input side of MC is controlled which leads to reduction of
distortion in grid current waveform. Also, an extensive discussion is addressed for nonlinear voltage
errors of MC that may cause inaccurate power control. Simulation results done in MATLAB/Simulink
show the effectiveness of the proposed method.

Keywords: active power; direct power control (DPC); fixed switching frequency; matrix converter
(MC); reactive power; space vector modulation

1. Introduction

In recent decades, there has been a growing interest in investing in renewable energy sources
and these resources are supposed to play a key role in power generation due to enviromental
and geopolitical concerns [1–4]. Among different renewable energy sources, wind based energy
production has drawn widespread research attentions and also has been proliferated in to the industry.
Wind turbine-based doubly fed induction generators (WT-DFIGs) have been extensively used in wind
energy conversion systems (WECSs) due to different advantages such as variable speed operation,
lower converter ratings, and lower power loss compared to direct connected generators [5]. A broad
research field has been addressed in the literature in control of output power of DFIGs, which can
be mainly divided into two categories: vector control (VC) schemes and direct power control (DPC)
techniques. A VC method for power control of DFIG has been introduced in [5], where a mathematical
model was developed to decouple output active and reactive power of stator. In [6] a method was
proposed to independently control active and reactive powers generated or absorb by DFIG. Both
aforementioned methods work on synchronous dq plane fixed to stator voltage. Although VC methods
have shown good performances; however, since they are dependent to the parameters of DFIG,
the control schemes becomes prone to error with parameters variations and also in addition the
controller is complicated and very precise current control loop tuning is demanded. In turn, DPC
technique which was proposed for the first time in [7] for a DFIG supplied with a back-to-back
converter, is independent of model parameters and also has better dynamic performance compared
to VC method. This method was inspired by the direct torque and flux control (DTFC) of induction
motors [8] and instead of torque and flux control variables, active and reactive powers are regulated
using hysteresis controllers. Analogous to DTC method, large power ripples and variable switching
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frequency were the two major drawbacks of this control technique. To tackle these problems, various
methods have been reported in the literature such as space vector modulation (SVM), predictive
control, sliding mode control, etc. [9–13]. In [9] a DPC method was proposed in which the hysteresis
control loops were eliminated and instead the required rotor voltage was calculated in a fixed
switching frequency based on rotor position, stator flux linkage, and the error between set points
and observed powers. Then the rotor side converter is commanded based on these calculated
voltages. A model-based predictive DPC technique was proposed in [10], where the active and
reactive powers of stator are predicted in one sampling frequency and based on this prediction the
rotor voltage is calculated and then appropriate PWM signal is commanded. A sliding mode DPC
method was proposed in [11], where the performance of DGIG in balanced and unbalanced grids were
investigated. A predictive DTC method for DFIG was addressed in [12], where reducing the ripples of
electromagnetic torque and stator flux was the main aim of this work. In [13] the behavior of DFIG
under unbalanced grid voltage conditions was extensively studied and a DPC control technique was
proposed as being appropriate to overcome this condition.

Matrix converter (MC), as a three-phase to three-phase converter, has different merits compared
to conventional back-to back converters, such as lack of bulky dc link capacitors, lower volume and
size, high quality output power wave forms, and bidirectional power flow. Due to their lack of bulky
electrolytic dc-link capacitors, matrix converters are attractive alternatives for the applications where
low volume and high reliability are important. Due to these advantages, the application of MCs are
extended from electrical drives to grid-connected renewable resources [14–17]. In [14] a comprehensive
review has been done for matrix converter technology including different modulation schemes and
commutation methods. In [15], the indirect space vector modulation of matrix converters was presented
for the first time. A self-commissioning technique was proposed in [16] capable of identifying the
matrix converter nonlinear voltage errors. In [17], the application of matrix converters in sensorless
control of synchronous reluctance motor drives was investigated and the effect of nonlinear voltage
errors on the control was analyzed. Also, the application of matrix converters in wind turbine based
generators have attracted researchers’ attention in recent years [18–21]. In [18], the active and reactive
power diagrams of DFIGs fed by matrix converters were studied for different wind speeds and the
capability of this generation system to deliver the maximum powers was analyzed. A maximum power
tracking strategy was proposed in [19] based on voltage oriented vector control for WECSs in which
a permanent magnet synchronous generator is connected to grid through a three-phase to three-phase
MC. A control technique along with stability analysis has been done in [20] for quasi-Z-source MCs
as a grid interface in WECSs. Also, in [21] a stability analysis has been done for a 4 kW matrix
converter-fed DFIG.

Despite the aforementioned advantages of MCs and DPC method, to the best of authors
knowledge, there are only a few references hitherto, reporting the DPC or DTC of MC-fed DFIGs.
In [22,23], a DPC method was used for active and reactive power regulation aiming at power ripple
reduction using MC space voltage vectors. A DTC method was proposed in [24] which reactive
power and electromagnetic torque were the control variables to be regulated using MC voltage vectors.
However, all the above methods work with variable switching frequency, since hysteresis controllers
are employed in these techniques.

In this paper, a direct power control technique is presented for MC-fed DFIGs which work at
constant switching frequency. Active and reactive powers are regulated using the ISVM of matrix
converters, where the input current vectors and output voltage vectors are commanded simultaneously
based on the input and output current and voltage sectors. In addition, the unity input power factor
of MC is analyzed and it is shown that reactive power injection/absorption to/from the grid can be
controlled. Furthermore, the nonlinearities of matrix converters that may cause inaccurate power
regulation are investigated in details. Extensive simulations and analysis are presented to show the
effectiveness of the proposed method.
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2. Direct Power Control Theory

Figure 1 shows the DFIG circuit in dq synchronous frame [7], where ω1 denotes for synchronous
speed, ωr stands for rotor speed, and superscript s expresses the synchronous frame. Rr and Rs

are rotor and stator resistances, respectively. Lm is mutual inductance and Lσr and Lσs express the
rotor and stator leakage inductances, respectively. Eventually, ψr and ψs denote for rotor and stator
flux, respectively. Rotor and stator flux in synchronous dq frame is illustrated in Figure 2, where
αβ and αrβr are stationary and rotor frames, respectively. θs and θr stand for stator flux and rotor
angles, respectively.

Figure 1. Doubly fed induction generator (DFIG) circuit in synchronous dq reference frame.

According to Figure 1, the stator voltage vector can be drived as (1). Assuming that the staor flux
lies on d-axis (see Figure 2) and also under balance grid the stator flux is constant (derivative is zero),
Equation (1) can be expressed as (2). The stator resistance is neglected in this equarion.

Vs
s = Rs Is

s +
dψs

s
dt

+ jω1ψs
s (1)

Vs
s = jω1ψsd (2)

Figure 2. Vector diagram of rotor and stator flux linkages in synchronous frame.

On the other hand, using the equivalent circuit shown in Figure 1, rotor and stator fluxes in dq
frame are obtained as (3) and (4), where Ls = Lσs + Lm, Lr = Lσr + Lm. Using these two equations,
stator current in synchronous frame is achieved as (5), where σ = (LsLr − L2

m)/LsLr.

ψs
r = Lr Is

r + Lm Is
s (3)

ψs
s = Ls Is

s + Lm Is
r (4)
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Is
s =

Lrψs
s − Lmψs

r
LsLr − L2

m
=

ψs
s

σLs
− Lmψs

r
σLsLr

(5)

The input active and reactive power from the grid to DFIG is calculated using Equation (6) [25].

Ps − jQs =
3
2

Vs
s × Îs

s (6)

By replacing (2) and (5) in (6), Equation (7) is obtained, where kσ = 1.5Lm/(σLsLr).
Ps = −kσω1ψsdψrq

Qs = kσω1ψsd(ψrd −
Lr

Lm
ψsd)

(7)

As previously stated, the stator flux is considered constant. Therefore, the changes of powers in
a constant sample time Ts can be expressed as (8).{

∆Ps = −kσω1ψsd∆ψrq

∆Qs = kσω1ψsd∆ψrd
(8)

Noting the rotor side of DFIG circuit in Figure 1 and with a simple KVL, the following equation
can be explicitly obtained, where ωs = ω1 −ωr is the slip frequency.

dψs
r

dt
= Vs

r − Rr Is
r + jωsψs

r (9)

Neglecting the effect of rotor resistance and with projection of (9) into the synchronous dq reference
frame, the changes of rotor flux in dq-axis are obtained as (10).{

∆ψrd = VrdTs + ωsψrqTs

∆ψrq = VrqTs −ωsψrdTs
(10)

Replacing (10) in (8) and after a straightforward manipulation, the following equation is derived.
Vrd =

∆Qs

kσω1ψsdTs
−ωsψrq

Vrq =
−∆Ps

kσω1ψsdTs
+ ωsψrd

(11)

Finally, using Equations (7) and (11), rotor voltage in synchronous dq frame is deduced as (12). It is
concluded from (12) that the reactive power variation is regulated using d-axis voltage, while active
power is controlled via q-axis channel.

Vrd =
1
Ts

∆Qs

kσω1ψs
d
+ ωs

Ps

kσω1ψs
d

Vrq =
1
Ts

−∆Ps

kσω1ψs
d
+ ωs(

Qs

kσω1ψs
d
+

Lr

Lm
ψs

d)
(12)

The general schematic diagram of DPC of MC-fed DFIG is illustrated in Figure 3. As seen,
the reference voltage vectors in dq frame (Vrdq) are transfered to rotor stationary frame (αrβr) and then
are fed to indirect space vector modulation. Ps and Qs are instantaneous active and reactive powers,
∆Ps = P∗s − Ps and ∆Qs = Q∗s −Qs are the power variations in one sample time, where P∗s and Q∗s are
the desired power set points.
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Figure 3. Schematic diagram of direct power control of DFIG.

3. Matrix Converter

Matrix converter is a three-phase to three-phase ac/ac converter as shown in Figure 4,
which consists of nine bidirectional switches so that each switch connects one phase to one input
phase. In this work, an ISVM modulation is considered to combine the output voltage and input
current vectors of the converter. In addition, it has been proved in [26–28] that inverter nonlinear
voltage errors including dead time and voltage drop on IGBTs may cause imprecise current or power
control. Therefore, these errors must be identified and precisely compensated for. Analogous to
conventional voltage source inverters, matrix converters also suffer from nonlinear voltage errors due
to commutations between input phases. A four step current-based commutation (FS-CBC) is adopted
in this work which will be analyzed along with its correspondent nonlinear voltage error called edge
uncertainty [17].

Figure 4. Matrix converter (MC) topology.

3.1. Indirect Space Vector Modulation

Indirect space vector modulation (ISVM) of matrix converters was proposed for the first time
in [15]. In this modulation technique, the input current and output voltage vectors are combined
simultaneously. The input and output vectors of MCs are illustrated in Figure 5, where θ∗o and v∗o are
the desired phase angle and amplitude of output vectors. In fact, this voltage vector is Vrdq voltage
after transformation to rotor stationary frame, as shown in Figure 3. In addition, Vin and Iin are the
input voltage and current vectors, before input filter of MC. θ∗in stands for phase angle of Vin and Imc

denotes input current vector. ∆θ represents displacement angle among Vin and Imc. In ISVM, Imc is
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controlled so that to lag Vin by the ∆θ angle to compensate the impact of input filters to obtain unity
input power factor.

In ISVM technique, the matrix converter is split into an artificial voltage source rectifier (VSR)
and a fictitious voltage source inverter (VSI), as reported in Figure 6. The phase angle of input current
(θ∗in − ∆θ) is controlled using VSR, while v∗o and θ∗o are modulated by means of VSI.

Figure 5. Matrix converters’ (a) output and (b) input vectors.

Figure 6. Fictitious voltage source rectifier (VSR) and fictitious voltage source inverter (VSI) conversions.

For further investigation it is supposed that both output and input vectors are in sector 1©
(see Figure 5). With this assumption, the virtual pn rail of the VSR can be VAB, VAC, or zero. On the
other hand, for VSI stage, the output vector can be pnn, ppn, or zero. Therefore, with combination
of VSR and VSI stages five states can be obtained: pnn − VAC, pnn − VAB, ppn − VAC, ppn − VAB,
and zero. For instance, the combination of ppn− VAC means that in VSR stage, the virtual P rail is
linked to the input phase A (IP-A), and virtual n rail is linked to the input phase C (IP-C). On the VSI
stage, output phases b (OP-b) and a (OP-a) are linked to the virtual p rail, and output phase c (OP-c) is
connected to the virtual n rail. Hence, their combination expresses that OP-a and OP-b are connected
to the IP-A, and OP-c is connected to the IP-C. The projection of this explanation into the real MC of
Figure 4, means that for this example switches SaA, SbA, and ScC are ON.

Using these output and input vectors, duty cycles are calculated as expressed from (13) to (17).
It is noted that subscripts µ and ν denote for the duty cycles for two adjacent vectors in each sector for
VSI stage. Similarly, subscripts δ and γ stand for duty cycles of two adjacent vectors in each sector in
VSR stage.
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dµγ = dµ · dγ =
2√
3
|V∗o |
|Vin|

sin(
π

3
− θ∗in) sin(

π

3
− θ∗o ) (13)

dµδ = dµ · dδ =
2√
3
|V∗o |
|Vin|

sin(θ∗in) sin(
π

3
− θ∗o ) (14)

dνδ = dν · dδ =
2√
3
|V∗o |
|Vin|

sin(θ∗in) sin(θ∗o ) (15)

dνγ = dν · dγ =
2√
3
|V∗o |
|Vin|

sin(
π

3
− θ∗in) sin(θ∗o ) (16)

d0 = 1− (dµγ + dµδ + dνδ + dνγ) (17)

3.2. Four Step Current-Based Commutation (FS-CBC) and Edge Uncertainty (EU) Effect

In matrix converters, when output phase connection is changed between different input phases,
a voltage error is produced because of commutations that is called as edge uncertainty voltage effect.
Considering Figure 4 and under the assumption that OP-a is connected to the IP-A and then changes to
the IP-B, the FS-CBC can be illustrated as in Figure 7, where the commutation is reported for positive (a)
and negative (b) output phase current, under the assumption that VA > VB. tc denotes commutation
time, td1 and td2 are delay times, tr and t f are IGBTs rising and falling times, respectively. As an
example in Figure 7a it is seen that at fist step of commutation switch SaA2 disconnects but still the
current conducts through the switch SaA1. At second step, SaB1 connects, but since VA > VB and
output current is positive, the current is again conducted through switch SaA1. At the third step, switch
SaA1 is disconnected and a hard commutation happens and output phase a is connected to the input
phase B. At step four, switch SaB2 is connected and bi-directional power flow is obtained. It is seen that
there is a time-area voltage error between ideal and actual IGBT commutation which are expressed as
(18) and (19), where EU stands for edge uncertainty voltage error. Also, commutation from IP-B to
IP-A can be analyzed in the same manner, which is not discussed here [17].

EUA→B(ia > 0) = v∗ − v = −VAB(td1 + tc + t f /2) (18)

EUA→B(ia < 0) = v∗ − v = −VAB(td1 + tr/2) (19)

Figure 7. Four step current-based commutation (FS-CBC) from A→ B: (a) positive and (b) negative
output current.
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By extending this analysis into one switching cycle and assuming that input and output vectors
of matrix converter are in sector 1© and output phase current is positive, Figure 8 is obtained.

Figure 8. Fours-step current based commutation.

Considering Figure 8, the output phase voltage for phase a (va) for both ideal and real IGBT is
expressed as (20) and (21). As can be concluded, a voltage error exists among real and ideal cases
which is obtained as (22), where v∗ and v are reference and actual voltages, respectively.

va(ideal) =
VA(TPWM − T0)

TPWM
(20)

va(real) =
VA(TPWM − T0)

TPWM
+

3VA(tc + t f /2− tr/2)
TPWM

(21)

EU = v∗ − v = −
3VA(tc + t f /2− tr/2)

TPWM
(22)

If the above discussion is extended to all input and output voltage sectors, a general equation for
edge uncertainty voltage error is obtained as (23), where i and j stand for output and input phases.
It is concluded from this equation that edge uncertainty voltage error is dependent to the amplitude
of input phase voltage and sign of output phase current, and also inversely is proportional to PWM
switching time interval. The nonlinear voltage errors for all input sectors are tabulated in Table 1.
In addition, the input phase voltages and their corresponding input sectors are illustrated in Figure 9.

EUi =
−3Vj(tc + t f /2− tr/2)

TPWM
· sign(ii),

j = A, B, C, i = a, b, c
(23)

Figure 9. Input phase voltages in different input sectors.
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Table 1. Edge Uncertainty (EU) voltage error.

Input Sectors VEU

1 −3 VA(tc+t f /2−tr/2)
TPWM

· sign(ii), i = a, b, c

2 −3 VC(tc+t f /2−tr/2)
TPWM

· sign(ii), i = a, b, c

3 −3 VB(tc+t f /2−tr/2)
TPWM

· sign(ii), i = a, b, c

4 −3 VA(tc+t f /2−tr/2)
TPWM

· sign(ii), i = a, b, c

5 −3 VC(tc+t f /2−tr/2)
TPWM

· sign(ii), i = a, b, c

6 −3 VB(tc+t f /2−tr/2)
TPWM

· sign(ii), i = a, b, c

3.3. On-State Voltage Drop

Since in matrix converters, one diode and one IGBT are conducting at any time, the on-state
voltage drop (VDi) is modeled as (24), where Vth is a forward threshold voltage of power device and
Rd accounts for the average resistance of diode and IGBT in series.

V∗ −V = VDi = 2 Vth sign(ii) + Rd ii, i = a, b, c (24)

3.4. Overall Voltage Errors

The overall voltage error in matrix converters is obtained by adding edge uncertainty voltage
error (VEUi) to on-state voltage drop (VDi), as expressed as (25).

verr,i = v∗ − v = VDi + EUi (25)

As seen from Equation (24), the on-state voltage error consists of one nonlinear part and one
resistive voltage drop which is linear part. Therefore, Equation (25) can be extended to (26)

verr,i = V′th · sign(ii) + Rd · ii (26)

where V′th is expressed as (27)

V′th =
−3Vj(tc + t f /2− tr/2)

TPWM
+ 2 Vth (27)

The voltage error of matrix converter is feed-forward compensated in this work.

4. Simulation Results

In this section, in order to demonstrate the effectiveness of the control technique proposed in
Section 3, various simulations are performed and the results are presented and analyzed. The schematic
diagram of the system under test is shown in Figure 10, where RLC filter is considered to absorb the
switching harmonics produced by the modulation of the matrix converter. The power of the double-fed
induction generator under study is 2 MW whose specifications are tabulated in Table 2. In addition,
the switching frequency and sampling frequency has been set at 5 [kHz].
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Figure 10. Schematic diagram of system under investigation.

Table 2. Specifications of doubly fed induction generator (DFIG) under test.

DFIG Parameters

Rated power 2 [MW]
Stator voltage 690 [V]
Stator/rotor turns ratio 0.3
Rs 0.0108 p.u.
Rr 0.0121 p.u. (referred to the stator)
Lm 3.362 p.u.
Lσs 0.102 p.u.
Lσr 0.11 p.u. (referred to the stator)
Lumped inertia constant 0.2 s
Number of pole pairs 2

Matrix Converter Specifications

td1/tc/td2 0.6 [µs]/0.46 [µs]/0.6 [µs]
Input filter inductance 1 [mH]
Input filter capacitance 12 [µF]

Figure 11 reports the simulation results at synchronous speed, where the speed of the rotor is
fixed at 1 p.u. As seen, the reactive power set point was at −0.5 [MVAR], while it goes to 0.5 [MVAR]
at t = 1 [s]. On the other hand, the active power reference has a step change from zero to −2 [MW] at
t = 0.6 [s] and goes to −1 [MW] at t = 1.2 [s], and again goes back to −2 [MW] at t = 1.7 [s]. It is noted
that negative sign “−” implies on active power generation and reactive power absorption by DFIG.
As seen from this figure, both powers follow their set points precisely. Furthermore, rotor current is
shown in this figure. It is evident from the rotor current waveform that it is dc, because of setting rotor
speed at synchronous speed.

Figure 11. Simulation results at synchronous speed (1 p.u.); upper figure: active and reactive powers
waveforms, bottom figure: rotor current waveforms.
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The same test has been done at sub-synchronous speed, where the speed of the rotor has been set
at 0.8 p.u, as illustrated in Figure 12. As seen, similar to previous tests, both powers follow their set
points precisely. In addition, from the rotor current waveform, it is evident that the rotor flux rotates at
10 [Hz].

Figure 12. Simulation results at sub-synchronous speed (0.8 p.u.); upper figure: active and reactive
powers waveforms, bottom figure: rotor current waveforms.

Figure 13 illustrates the input phase voltage and its corresponding filtered current of input side of
MC for IP-A. As shown, the input voltage and input current are in phase thanks to the control of input
power factor and hence input reactive power of MC.

Figure 13. Input phase voltage-A and its corresponding filtered current at sub-synchronous speed
0.8 p.u. (for the test of Figure 12).

Figure 14 reports the simulation results for super-synchronous speed, where the speed of the rotor
is set at 1.2 p.u. Analogous to synchronous and sub-synchronous cases, both reactive and active powers
follow their corresponding set points. In addition, the input phase voltage and its corresponding
filtered current for IP-A of MC is depicted in Figure 15. As it is clear, similar to Figure 13, unity input
power factor is achieved. However, the phase angle between voltage and current is 180 degree due to
the fact that unlike the sub-synchronous case, in super-synchronous mode, the power direction is from
the rotor side to the grid.

Finally, the performance of the proposed control technique in speed transients is investigated in
Figure 16, where the system’s operation changes from sub-synchronous to super-synchronous mode.
The simulation results indicates that in the period of 0.7 [s] to 1.3 [s] rotor speed changes from 0.8 p.u.
to 1.2 p.u. As seen from the results, the system response is precise during speed transients.
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Figure 14. Simulation results at super-synchronous speed (1.2 p.u.); upper figure: active and reactive
powers waveforms, bottom figure: rotor current waveforms.

Figure 15. Input phase voltage-A and its corresponding filtered current at super-synchronous speed
1.2 p.u. (for the test of Figure 14).

Figure 16. Simulation results in speed transients; from top to bottom: rotor speed, active and reactive
powers, and rotor current waveforms.
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As mentioned above, the advantage of the proposed method is to have a fixed switching frequency
for matrix converter modulation. Figure 17 illustrates the switching frequency spectrum of MC under
test. As seen, switching frequency is fixed at 5 kHz. Therefore, the filter design for the input side of
MC becomes more convenient.

Figure 17. Switching frequency spectrum for indirect space vector modulation (ISVM) of the matrix
converter under test.

Comparison with Variable Switching Frequency

In this section, simulation results for direct power control of matrix converter-fed DFIG are
investigated, while the active and reactive powers are controlled via hysteresis controllers. It is known
that due to nature of hysteresis control, switching frequency is variable and also active and reactive
power ripples are larger compared to fixed switching frequency methods. Figure 18 reports the results
for active and reactive power control, where at t = 0.8 s, 2 MW active power is generated and at
t = 1.4 s active power generation decreases to 1 MW. Also until t = 1.1 s, 0.5 MVAR reactive power
is absorbed from the grid and after that the same amount of reactive power is injected to the grid.
As seen, compared to active and reactive power control results from ISVM of MCs, the power ripples in
hysteresis control are visibly larger. In addition, the switching frequency of hysteresis based controller
is depicted in Figure 19. As expected, the switching frequency for this kind of power control is variable.

Figure 18. Active and reactive power control of MC-fed DFIG using hysteresis direct power control
(DPC).
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Figure 19. Switching frequency for modulation of MC in hysteresis based DPC.

5. Conclusions

A direct power control of matrix converter-fed DFIG was presented in this paper, where the matrix
converter is modultaed using ISVM technique. Compared to what has been done in the past for DPC
of MC-fed DFIG, the switching frequency of proposed method is constant at 5 [kHz] which leads to
precise filters design. Furthermore, an extensive discussion was addressed for nonlinearities of matrix
converters due to commutation between input phases and on-state voltage drop. It was shown that if
these nonlinear voltage errors are not compensated properly, the power regulation may be affected
due to these voltage errors. The proposed method was applied on an MC-Fed DFIG, and various
simulation tests have been performed to verify the advantages of matrix converters in DPC of DFIGs.
To do so, three tests have been performed in synchronous, sub-synchronous, and super-synchronous
speeds and in all cases, it has been demonstrated that active and reactive power regulation is precise
and also unity input power factor was achieved.
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