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Abstract: Water is a fundamental resource and, as such, the object of multiple environmental policies
requiring systematic monitoring of its quality as a main management component. Automatic
sensors, allowing for continuous monitoring of various water quality variables at high temporal
resolution, offer new opportunities for enhancement of essential water quality data. This study
investigates the potential of sensor-measured data to improve understanding and management
of water quality at watershed level. Self-organizing data maps, non-linear canonical correlation
analysis, and linear regressions are used to assess the relationships between multiple water quality
and hydroclimatic variables for the case study of Lake Mälaren in Sweden, and its total catchment
and various watersheds. The results indicate water discharge from dominant watersheds into a
lake, and lake water temperature as possible proxies for some key water quality variables in the
lake, such as blue-green algae; the latter is, in turn, identified as a potential good proxy for lake
concentration of total nitrogen. The relationships between water discharges into the lake and lake
water quality dynamics identify the dominant contributing watersheds for different water quality
variables. Seasonality also plays an important role in determining some possible proxy relationships
and their usefulness for different parts of the year.

Keywords: water quality; water discharge; hydroclimate; data mining; automatic sensor; monitoring;
watershed; lake Mälaren; Stockholm region

1. Introduction

Availability of clean water is critical for life and human societies. Systematic monitoring of
water availability and quality is a key management requirement, for example, in global sustainable
development goal (SDG) 6 of the United Nations [1] and the European Water Framework Directive
(WFD) [2]. Nevertheless, water quality monitoring is still largely lacking, years after WFD
implementation and even in countries at the forefront of environmental management, such as
Sweden [3]. A general need for improved and more efficient water monitoring is recognized [4], and
the rapidly growing field of information and communication technology [5] can play a key role in
meeting this challenge.

For example, new opportunities for meeting water monitoring needs may be provided by the
Internet of Things (IoT). The IoT concept is about connecting identifiable devices that can observe
the world and interact with other devices, with information and communication networks that can
support and inform decision-making [5]. This study tests the potential usefulness of relatively cheap
automatic sensors for continuous water quality monitoring, which can, e.g., be part of an IoT concept
for water resources management. In testing, we considered the example case of the whole regional
catchment and (sub)watersheds within it that feed water and waterborne tracers, nutrients, and
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possible pollutants into Lake Mälaren (Figure 1), the third-largest lake in Sweden and the main water
supply for 1.7 million people living in and around the Swedish capital Stockholm [6].
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Figure 1. Map of Lake Mälaren showing the location of the automatic sensor (red dot) and the total
catchment area of the lake. The total catchment is divided into unmonitored parts (gray) and monitored
(sub)watersheds (colored fields with names), defined by the corresponding watershed outlets (light
blue triangles). The Lake Mälaren outlet to the Baltic Sea (green dot) is also the monitoring point for
total nitrogen (TN) and total phosphorus (TP) data.

To address this aim, we analyzed available data from an automatic water quality sensor installed
in Lake Mälaren (red circle, Figure 1) and measuring a range of variables with high time resolution
(minute data), but also with some hiatuses, over the year between October 2016 and October 2017. The
sensor-measured water quality variables are: water temperature (Tw, ◦C), electrical conductivity (EC,
uS/cm), pH, oxidation reduction potential (ORP, mV), dissolved oxygen (ODO, %), turbidity (FNU),
fluorescent dissolved organic matter (fDOM, RFU), chlorophyll (Chl, ug/L), and blue-green algae
(BGA, ug/L). In addition, using measured Tw and EC values, water salinity was calculated in terms of
the concentration of total dissolved solids (TDS, mg/L). In order to explore the relationships between
these sensor variables and a basic set of independently measured (i) hydroclimatic variables, and (ii)
additional (nutrient-related) water quality variables of main water resource management importance
in the region, we also examined data on (i) water discharge (Q, m3/s) into Lake Mälaren from its whole
catchment and individual watersheds within it (Figure 1), air temperature (Ta, ◦C) and precipitation
(P, mm/day) over the catchment and individual watersheds, and (ii) concentrations of waterborne total
nitrogen (TN, ug/L) and total phosphorus (TP, ug/L) measured at the Lake Mälaren outlet (green circle,
Figure 1).

The relationships between all these variables are investigated in order to assess whether, and
to what degree, variables of high environmental relevance, e.g., for WFD-required ecological status
assessment (such as Chl, BGA, TN, TP), relate to spatiotemporal variations in other water quality
and/or hydroclimatic variables that are monitored more simply, cheaply, or over longer time periods. If
strong relationships can be found, they can provide an important novel way of using already available
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long-term data or intensively monitored new data as proxies for more complex water quality variables.
New data on these variables from automatic sensors can further feed into cloud communication
and Artificial Intelligence interpretation algorithms for direct, effective guidance of water resources
management. Moreover, spatial assessment of strong relationships between hydroclimatic drivers in
contributing watersheds and water quality variables in receiving lakes can identify critical watershed
conditions and contributions for resulting lake water quality, which can also guide adaptation for
projected future hydroclimatic scenarios. To determine these spatiotemporal relationships, a set of
statistical tools is used in this study. Beyond simple linear regressions, more advanced tools include
Non-Linear Canonical Correlation Analysis (NLCCA), a generalization of Canonical Correlation
Analysis (CCA) [7], which is used to analyze the complexity of interrelations among sets of variables,
and Self-organizing Maps (SOM) [8], which are used for clustering temporal data relations over the
study period and measurement hiatuses within it.

2. Materials and Methods

2.1. Study Area

Lake Mälaren covers an area of 1074 km2 [9] and its total hydrological catchment has an area
of 22,640 km2 [10], with a total population of 2,074,844 [11]. The lake has 12 main tributaries, the
monitored watersheds of which are shown in color in Figure 1. The sum of discharge from these
watersheds accounts for 84% of total inflow to the lake, while the remaining inflow comes from
unmonitored parts (gray in Figure 1) within the lake’s total regional catchment [12]. Table 1 lists some
main characteristics of the monitored watersheds.

Table 1. Characteristics of the monitored watersheds within the total Lake Mälaren catchment. Temporal
average values for each watershed are over the study period, with available data of about a year
(352 days from October 2016 to October 2017). The top row shows corresponding spatial sums or
area-weighted average values over all monitored watersheds (sums for area, discharge (Q), population;
area-weighted averages for air temperature (Ta), precipitation (P), population density).

Area a

(km2)
Ta

b

(C◦)
P b

(mm/year)
Q c

(m3/s)

Total
Population d/a

(persons)

Population
Density d/a

(persons/km2)
Total sum or

average 17,189 6.5 608 68.0 890,316 52

Arbogaån 3490 6.2 730 21.6 54,933 16
Eskilstunaån 4179 7.1 584 9.2 293,099 70

Fyrisån 2003 6.6 620 6.0 195,440 98
Hedstrommen 1048 6.2 694 5.2 7987 8
Kolbäcksån 3170 5.6 657 14.3 79,532 25
Köpingsån 377 6.8 584 1.3 21,204 56
Märstaån 79 7.0 584 0.4 31,913 406

Orsundaån 735 6.7 584 2.2 13,860 19
Oxundaån 272 7.3 584 1.0 112,732 415
Råckstaån 262 7.0 548 0.5 5133 20

Sagaån 856 6.6 548 3.8 27,502 32
Svartån 720 6.5 584 2.4 46,981 65

a [10] b [13] c [14] d [11].

2.2. Data

The time period with available sensor data is limited by the sensor operation period, which
was 26 October 2016 to 12 October 2017. The water quality data obtained from the automatic sensor
include the variables outlined in Section 1 of this paper: Tw, EC, pH, ORP (measured with a platinum
electrode), ODO, FNU, fDOM, Chl. and BGA. The last three variables are measured based on the
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fluorescent response of specific fractions of organic elements present in the water, with UV light
used for DOM, an in vivo fluorescence technique used for BGA, and fluorescence at wavelength
435–470 nm used for Chl; further specific information for each variable measurement can be found
at https://www.ysi.com/parameters. In addition, using the Tw and EC data, TDS concentration is
calculated as (Equation (1) from [15]; Equation (2) from [16]):

EC25 =
EC

1 + [0.025(Tw − 25)]
(1)

TDS = 0.55EC25 (2)

where EC25 is normal EC at a temperature of 25 ◦C.
The temporal resolution of the available sensor data is at the scale of minutes. However, the

hydroclimatic variables have only daily resolution. To be directly comparable, the finer-resolution
sensor datasets are aggregated to daily data for each variable. Moreover, an important issue with the
sensor data is that measurements were interrupted, due to technical sensor failure, on four occasions
during 2017: 5–7 February, 22 April–11 May, 5–7 August, and 9–11 October. The three shorter hiatuses
are excluded from the study, while the handling of the longer hiatus (22 April–11 May) is explained
further in Section 2.3.1. Some of the water quality time series (Turbidity, Chl, BGA, Cond, and TDS)
show apparent data discontinuities in the trajectories from before to after the longer hiatus. Further
discussion on these discontinuities can be found in Section 3.1.

Plots of the available data time series of the sensor-based water quality variables are shown in
Supplementary Material (SM), Figures S1–S12. Further descriptions of technicalities of the collection
process for quality data are also provided in SM.

The independently measured hydroclimatic data represent conditions in the monitored watersheds
within the total Lake Mälaren catchment, and are taken from the Swedish Meteorological and
Hydrological Institute (SMHI), as referred to in Table 1. The P and Ta values are based on raster data
provided by SMHI [13] that have been cropped and spatially averaged over the shape of each watershed.
The Q data are provided by SMHI as daily time series for each watershed (http://vattenwebb.smhi.se/),
based on combined measurements and model interpretations by the SMHI model Hydrological
Predictions for the Environment (HYPE) [17]. Time series of Ta and Q over the study period and the
total Lake Mälaren catchment are shown in Figure 2a,b, and the corresponding P time series is shown
in Figure S13 in SM.

Furthermore, independently measured TN and TP concentrations close to the Lake Mälaren outlet
to the Baltic Sea (green circle, Figure 1) are considered as reported from the official Swedish national water
quality database by the Swedish University of Agricultural Sciences (SLU) (http://miljodata.slu.se/mvm/).
The reported data are monthly, meaning that only 11 monthly data points are available for direct
comparison with the sensor data. Time series of the TN and TP concentrations over the sensor data
period are shown in Figures S13 and S14 in SM.

This study does not consider time lags between the data, because all chemical variables are
measured at the same location by the same sensor, except TN and TP that are measured a few kilometers
downstream. Furthermore, there is no particular need to consider time lags between the water quality
variables and the water discharges into the lake (that integrate and represent the most downstream
outcome of the hydroclimatic processes in the contributing watersheds), as the data analysis shows
high correlation results even without any time lag consideration (see result Sections 3.2 and 3.3).

https://www.ysi.com/parameters
http://vattenwebb.smhi.se/
http://miljodata.slu.se/mvm/
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Figure 2. Time series of (a) mean air temperature (Ta) over the total Lake Mälaren catchment (blue line;
smoothed time series shown by red line), and (b) total water discharge from all monitored watersheds
within the Lake Mälaren catchment. The gray fields in (a,b) show the times of data hiatuses within
the total sensor operation period October 2016–October 2017. (c) Two-dimensional representation of
data distances in the self-organizing data-space map (SOM), leading to identification of four main
temporal data clusters (Cluster 1: from 26 October to 25 November 2016, Cluster 2: from 26 November
2016 to 27 February 2017, Cluster 3: from 28 February to 21 April 2017, Cluster 4: from 12 May to
8 October 2017).

To summarize, the structure of the dataset used in this study comprises three different components:

• 352 × 10 (day × water quality parameter) data matrix of water quality measured with the
automatic sensor

• 352 × 12 × 3 (day ×watershed × hydroclimatic variable) data matrix of discharge, air temperature,
and precipitation divided for each specific watershed

• 11 × 2 (day × nutrient) matrix of available data on TN and TP during the operation of the
automatic sensor.
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The number of days in the total time period of study is 352 with the hiatuses included and 323
without the hiatuses.

2.3. Methods

2.3.1. Data Clustering and Self-Organizing Map (SOM)

Visual inspection of the sensor data time series (Figures S1–S10 in SM) indicates the presence of
possible temporal data clusters in different periods of the year, with notable differences between data
values before and after the long sensor hiatus (22 April–11 May 2017). Based on that indication, a data
clustering exploration step was applied using the SOM concept [18]. SOM algorithms have various
applications, but are commonly used for identification of data clustering [19–21]. The underlying
principle of SOM algorithms has been explained as: “Every input data item shall select the model that
matches best with the input item, and this model, as well as a subset of its spatial neighbors in the grid,
shall be modified for better matching” [22]. In the present case, we use the SOM concept to investigate
if data value discontinuities depend on (and thus are explainable by and cluster according to) actual
condition shifts from before to after the data hiatuses, or are indicative of potential measurement errors.
To investigate the potential data self-organization in condition-consistent clusters, we use a map of 15
by 15 possible models (also referred to as nodes) and take as input to this model (node) network a
series of 323 vectors (sensor operation days, excluding hiatuses). Each vector contains eight values of
the sensor-measured water quality variables (excluding EC and TDS, as explained below), one value
representing time, and 12 discharge values from the different watersheds. The variable values in each
vector are normalized to be in the range 0–1, in order to make them directly comparable with each
other in spite of their different magnitude ranges and units.

The EC and directly related TDS values are excluded from the clustering analysis because they
exhibit both a particularly major drop and a highly different variability pattern from before to after the
main April-to-May hiatus. More specifically, while the EC value exhibits an almost stationary behavior
in the period October–March, it has much higher variability over the rest of the monitoring period.
Even though EC values still remain within the freshwater range (50–1500 uS/cm) [23], this changed
variability behavior may be indicative of potential measurement error; as such, EC and the derived
TDS time series are excluded from the clustering analysis to avoid confounding the results for the
potentially more reliable data for the other water quality variables. The Q values are included in the
clustering analysis, as representative of the hydroclimatic conditions in the watersheds and because
preliminary regression analysis indicated discharge as the hydroclimatic variable most closely related
to several of the sensor-measured water quality variables.

For the data clustering analysis, the most important SOM result is a distance matrix (illustrated in
Figure 2c), which visualizes in a two-dimensional space the Euclidean distance between various nodes
of the SOM. This distance matrix shows clouds of relatively well-clustered (similar normalized) data
values, and boundary regions between these where the data density (degree of similarity) is lower [8].
Note that small differences may occur in this network structure if the method is repeated due to an
element of randomness intrinsic to the method itself.

2.3.2. Non-Linear Canonical Correlation Analysis (NLCCA)

NLCCA is a generalization of the underlying linear CCA method of multivariate analysis of
interrelationships between two sets of variables, with each set aggregated into a canonical variable
such that correlation can be analyzed between two canonical variables [7]. The limitation of linearity in
CCA can be overcome by use of a neural network in creation of the canonical variables in NLCCA [24].
This study uses the Hsien version of NLCCA, with a code available under GNU General Public License
for the Matlab environment [25]. The method allows for selection between the biweight midcorrelation
and the Pearson correlation as methods of analysis of the relationship between the canonical variables.
The biweight midcorrelation method is used in this analysis, based on its greater robustness [26].
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The NLCCA method is further used to explore the potential relationships of each hydroclimatic
variable for each watershed with the set of different water quality variables. The NLCCA analysis is then
iterated three times, such that the coupling of the water quality dataset is at each time explored against
a different hydroclimatic variable, i.e., the air temperature Ta, the discharge Q, or the precipitation
P of each watershed. In each such iteration, the NLCCA is performed with a number of neuron
layers varying from 1 to 4. Increasing the numbers of layers increases the NLCCA capacity to handle
non-linearity, with use of just one single layer being equivalent to the linear CCA method [24].

2.3.3. Linear Regressions

Application of the NLCCA method in identification of hydroclimatic variable correlations with the
sensor-measured set of water quality variables showed that linear correlations are mostly as good as or
better than the studied non-linear correlations. Based on this result, the study focuses on quantifying
the degree of linear correlation between pairs of variables. The linear correlation between each pair of
variables is evaluated through a series of linear regressions, each of which relating the time series of:
(a) a water quality variable and a watershed discharge; (b) two different water quality variables. The
coefficient of determination is calculated for each linear regression as a key parameter expressing the
degree of linear correlation. For each variable pair, statistical significance is tested for the obtained
slope of the associated regression line by checking that zero slope is not included in the 95% confidence
interval of slope values [27,28].

The variables considered and coupled in this regression analysis include the 10 sensor-measured
water quality parameters (i.e., including also EC and TDS), the discharge Q from the 12 watersheds, and
their total Q into Lake Mälaren. In addition, the degree of linear regression between the TN and TP data,
measured at the Lake Mälaren outlet (green circle, Figure 1), is checked against all sensor-measured
water quality variables and total Q. As mentioned in Section 2.2, the TN and TP concentrations are
measured once per month, independently from the automatic sensor and its hiatuses. Therefore, it is
possible to use more TN, TP, and Q data for statistical analysis, so that the linear regressions between
each of the nutrients and Q are studied over a longer period (from 1 January 2014 to 26 February 2018).

3. Results and Discussion

3.1. SOM Application and Data Clustering

The SOM algorithm identifies four main data clusters (Figure 2c), each representing somewhat
different data conditions than the others, including to contain data only from a unique associated
time interval within the studied year. This temporal clustering suggests a seasonality effect on data
conditions, which can at least to some degree explain data discontinuities from before to after a hiatus
and is not a forced or predetermined result, as time is one of the data values included in each daily
vector considered in the cluster analysis.

Figure 2c shows the resulting SOM distance mapping of the study data, with lighter and darker
map areas representing shorter and longer Euclidean distances in the SOM space, respectively. The
clearest boundary visible in the map is that starting in the top left corner and extending to the center of
the map at the bottom (Figure 2c). On the left side is a relatively homogeneous area identified as a
single main cluster (Cluster 4, from 12 May to 8 October 2017). Another main homogeneous map area
stretches over the top three quarters of the right side of the map (identifying data Cluster 2: from 26
November 2016 to 27 February 2017). Two more area divisions in the top left and bottom right parts of
the map identify two more data clusters (Cluster 1: from 26 October to 25 November 2016, and Cluster
3: from 28 February to 21 April 2017).

The visual indication of data clustering before (Clusters 1–3) and after (Cluster 4) the longest sensor
hiatus (22 April–11 May 2017) is thus also supported by the SOM tool application, which, in addition,
gives a further division of the data before that hiatus into Clusters 1–3. This result is relevant to solve
an important question with regard to some of the water quality parameters. However, the period of the



Sustainability 2020, 12, 396 8 of 15

year in which the hiatus occurs presents a challenge since, as shown in Figure 2a, the hiatus lies in the
transition between the colder period of the year and the warmer period. In conjunction, as observed in
Section 2.2, some of the water quality time series show strong discontinuities around the hiatus. It is
difficult to define whether these discontinuities are due to sensor bias, or are a seasonal fluctuation
due to the change from a colder to a warmer season. The identification by the SOM algorithm of a
well-defined cluster boundary in association with the longer hiatus suggests that these discontinuities
are more likely to be caused by seasonal effects, rather than by sensor bias. This is because this finding
applies for all water quality indices, i.e., those with trajectory discontinuity and those without, together
with the discharges not affected by the hiatus.

A comparison of Figure 2a,b shows how this time-based clustering relates to the temporal behavior
of the two hydroclimatic variables air temperature Ta and water discharge Q. Specifically, average Ta

values are distinctly higher, while average Q values are lower, in the data for Cluster 4 (after the longest
hiatus) than for Clusters 1–3 (before that hiatus), with no such clear relation evident for precipitation
P; see Figure S11 in SM). Cluster 2 roughly overlaps with a period of average Ta decrease to below
0 ◦C, while Clusters 1 and 3 are low-temperature periods but still remaining on average above 0 ◦C
(Figure 2a). In terms of discharge, Clusters 1–3 represent times of relatively high and/or increasing Q
values, while Cluster 4 is a period of low average Q (Figure 2b).

The data cluster results thus reflect seasonal hydroclimatic variations in the Lake Mälaren
catchment, which have been reported to affect water quality [29–31]. Some studies propose use of
time-dependent model parameters to analyze relationships between dissolved oxygen and water
flows [32]. In this study, the SOM algorithm application led to consistent time division into statistically
homogeneous seasonal periods, with possible different relationships among water quality variables
and between these variables and the hydroclimatic variables.

The fine temporal resolution of available sensor data is important for facilitating clear identification
of data clustering. In the present case study, this fine time resolution allows for 352-day division of the
study period, providing a sufficient number of data for statistical analysis. A major limitation of the
study is that the availability of data is limited to a single year. Further fine-resolution monitoring and
research is thus needed to explore and test the seasonality effects and variable relationships observed
in this study.

3.2. NLCCA Application

Figure 3 shows the results of the NLCCA application for the main (longest) period with continuous
data, Clusters 2 and 4, expressed as the biweight midcorrelation between the studied canonical variables
for different analysis modes. The mode numbering represents the number of layers used in the neural
network model, with higher number indicating higher non-linearity in variable correlations. While it
is difficult to make an exact physical interpretation of resulting correlation values, the highest values
indicate the overall strongest water quality relationships with the studied hydroclimatic variables.
Overall, for the main data Clusters 2 and 4 (and for the relatively minor Clusters 1 and 3, not shown),
the results show that the discharge (Q) dataset has the strongest relationships with and across the
water quality data (Figure 3). Air temperature, Ta, exhibits the next strongest relationships, while the
precipitation (P) dataset often suffers from overfitting issues, even with just two neuron layers and
especially for the warm Cluster 4 period. For both clusters, allowing the NLCCA method to account
for higher degree of non-linearity does not increase the degree of correlation. Based on these findings,
the further analysis of relationships between the Q dataset and water quality data focuses on the linear
regression approach.
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Figure 3. Canonical correlations between water quality indices and the studied hydroclimatic variables
discharge (Q), air temperature (Ta), and precipitation (P) for (a) data Cluster 2 and (b) data Cluster 4.
Higher model number implies higher number of layers in the neural network model and higher degree
of non-linearity in variable correlations (missing values for P imply failed test on overfitting).

In general, the NLCCA application reveals a dominant role of Q as an overall water quality driver
in comparison with the other studied hydroclimatic variables. It also reveals important differences
between the Q relationship and the considerably weaker P relationship with water quality. Relationships
between water discharge and various water quality variables have been studied previously [32–34].
In the more detailed linear regression analysis, the present study goes further in showing which specific
water quality variables are pair-wise most strongly related with each other and with total and specific
watershed Q around Lake Mälaren, as well as how seasonality affects these relationships.

3.3. Linear Regressions

Figures 4–6 show the coefficient of determination (R2) for different pairs of the studied variables.
Slope and intercept values for the linear regression equations between Q (from different watersheds)
and each sensor-measured water quality variable, and between each possible pair of the latter, are also
shown in Figures S16 and S18, respectively (see SM).



Sustainability 2020, 12, 396 10 of 15

Sustainability 2019, 11, x FOR PEER REVIEW 10 of 15 

0.07). For the warm Cluster 4 period, correlations of total Q and Q from Arbogaån are also high (R2 ≥ 
0.6) for fDOM, Chl, and EC. 

 
Figure 4. Coefficient of determination (R2) values for linear regression lines between the data for total 
water discharge (Q) (top row), and Q from each individual watershed (rows below the top), into Lake 
Mälaren, and the different water quality data. (a) Data Cluster 2 (26 November 2016–27 February 
2017). (b) Data cluster 4 (12 May–8 October 2017). Gray cells represent no significant regression line 
slope (0.05 significance level). 

Seasonal effects are also apparent in the regressions focusing on cross-correlations between 
water quality variables (Figure 5). Again, correlations are mostly higher for the warm Cluster 4 period 
than the cold Cluster 2 period. However, water temperature, Tw, exhibits relatively high correlation 
levels (R2 > 0.5) also in the Cluster 2 period, with most other water quality variables except for Chl 
and EC. The pairs of water quality variables with the highest cross-correlations (R2 > 0.7) are ODO–
pH, BGA–ODO, ODO–TDS, and BGA–TDS in the cold Cluster 2 period, and nearly all pair 
combinations among fDOM, Chl, BGA, EC, and TDS (with the few exceptions still having R2 > 0.5), 
and between all of these and Tw, in the warm Cluster 4 period. Overall, the water quality variables 
that exhibit relatively low linear correlation with (some dominant discharge) Q tend to be even less 
well correlated with the other water quality variables, especially in the warm Cluster 4 period. 

Figure 4. Coefficient of determination (R2) values for linear regression lines between the data for total
water discharge (Q) (top row), and Q from each individual watershed (rows below the top), into Lake
Mälaren, and the different water quality data. (a) Data Cluster 2 (26 November 2016–27 February 2017).
(b) Data cluster 4 (12 May–8 October 2017). Gray cells represent no significant regression line slope
(0.05 significance level).

For Q from different watersheds and in total, the linear regression analysis reveals strong seasonal
effects. Overall, correlations between Q and various water quality variables are higher in the warm
Cluster 4 period (Figure 4b) than the cold Cluster 2 period (Figure 4a). This seasonal difference is
apparent for total Q, and for Q from some individual watersheds. Among the watersheds, Arbogaån
(with the highest individual Q) and Eskilstunaån (with the largest catchment area, the largest population
in the catchment, in combination with the third largest Q) have the overall highest R2 values. In
the warm Cluster 4 period (Figure 4b), the total Q from all watersheds into Lake Mälaren exhibits
mostly similar or somewhat lower correlations compared with Q from the most dominant watershed,
Arbogaån. The correlations of Q from Arbogaån remain high (R2

≥ 0.7) for the water quality variables
Tw, BGA, and TDS in the cold Cluster 2 as in the warm Cluster 4 period; for ODO, the Arbogaån Q
correlation is even much higher in Cluster 2 (R2 = 0.72) than Cluster 4 (R2 = 0.07). For the warm Cluster
4 period, correlations of total Q and Q from Arbogaån are also high (R2

≥ 0.6) for fDOM, Chl, and EC.
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Figure 6. Coefficient of determination (R2) for linear regressions between independently measured
data for total nitrogen (TN) or total phosphorus (TP) concentration and data for total discharge (Q)
(first row; for the extended study period, 1 January 2014–26 February 2018) or sensor-measured water
quality data (for the basic study period 26 October 2016–8 October 2017). For regressions based on data
over the basic study period, there is no significant correlation between TN or TP concentration and Q.
For each study period, the regression analysis considers data for all days with available TN and TP
measurements, without clustering.
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Seasonal effects are also apparent in the regressions focusing on cross-correlations between water
quality variables (Figure 5). Again, correlations are mostly higher for the warm Cluster 4 period than
the cold Cluster 2 period. However, water temperature, Tw, exhibits relatively high correlation levels
(R2 > 0.5) also in the Cluster 2 period, with most other water quality variables except for Chl and
EC. The pairs of water quality variables with the highest cross-correlations (R2 > 0.7) are ODO–pH,
BGA–ODO, ODO–TDS, and BGA–TDS in the cold Cluster 2 period, and nearly all pair combinations
among fDOM, Chl, BGA, EC, and TDS (with the few exceptions still having R2 > 0.5), and between
all of these and Tw, in the warm Cluster 4 period. Overall, the water quality variables that exhibit
relatively low linear correlation with (some dominant discharge) Q tend to be even less well correlated
with the other water quality variables, especially in the warm Cluster 4 period.

The relatively readily and cheaply sensor-measured water quality data may or may not also
correlate with TN and TP concentrations. On the one hand, loads of TN and TP are known to
drive eutrophication and algae blooms [35–37], and are key variables for assessing hydro-ecological
conditions and status [3,38]. On the other hand, nutrient load is the product of concentration and
discharge, Q, with Q found to dominate nutrient load variability, while concentration levels are much
less variable over time [3,39]. As such, nutrient concentrations may not correlate well with Q or with
other water quality variables that are highly correlated with Q. The measured TP and TN concentration
data are monthly values, meaning that there are only 11 data points available over the present study
period. For these 11 data points, no significant linear correlation is evident between TP or TN and
total Q, as a relevant discharge measure for the Lake Mälaren outlet. As the nutrient data are not
measured with the automatic sensor, their correlation with Q is also tested over the longer time series
from 1 January 2014 to 26 February 2018, with the results listed in the first row of Figure 6. While
some considerable correlation is found between the TN concentration and total Q (R2 = 0.49), the
corresponding correlation for the TP concentration is much lower (R2 = 0.14). Furthermore, the TN
concentration exhibits high correlation with some of the sensor-measured water quality variables,
including ORP and BGA (at R2 > 0.7) and fDOM, EC, and TDS (at R2 > 0.5), whereas no correlation is
found between the TP concentration and the sensor-measured variables (Figure 6, with corresponding
additional regression line parameters (slopes, intercepts) listed in Figure S18 in SM).

The capability of modern automatic sensors of recording concurrent time series of multiple water
quality variables at high temporal resolution has led to meaningful seasonality analysis and results,
even though the temporal extent of the available data time series is limited to only one year. The
richness of the temporally high-resolved datasets still facilitates linear correlation analysis of a large
number of daily data points (92 for cluster 2 and 147 for cluster 4), which are, in turn, based on an even
larger number of finer-resolved observation data (SM Section 1). Although seasonality effects could
only be studied over a single year, the findings are clear in that potentially useful proxy relationships,
e.g., between water discharges and some water quality variables, or among some of the latter, cannot
be expected to remain constant over any year, but vary seasonally over each year. More research, with
multivariable datasets extending over longer time scales than just one year, is needed to further assess
the details of seasonality effects, as well as the relevance and usefulness of potential proxy relationships
for multivariable water quality evolution.

These regression results indicate a potential for possible use of some measured sensor data, such
as ORP or BGA, as potential proxies for other water quality conditions, such as the monthly TN
concentrations. With ORP and BGA data not exhibiting strong correlation with each other, especially
under warm Cluster 4 conditions (Figure 5b), these would then be potential independent proxies.
However, more investigations are needed to test this potential further, beyond the limited data
availability and coarse temporal resolution of nutrient concentration data in the present study.

4. Conclusions

This study shows promising results for potential use of water discharge, Q, from dominant
watersheds into a lake, and lake water temperature, Tw, as possible proxies for some key variables of



Sustainability 2020, 12, 396 13 of 15

lake water quality, such as blue-green algae, BGA. The latter is, in turn, indicated as a possible good
proxy for TN concentration in the lake. In general, the relationships between water discharges into the
lake and lake water quality dynamics can identify the dominant contributing watersheds for different
water quality variables. Furthermore, seasonality plays an important role in determining some other
possible proxy relationships and their usefulness for different parts of the year (e.g., EC for fDOM, Chl,
BGA in the warm season).

These findings call for further investigation and testing of their robustness, generality, and
transferability, based on longer-term and more consistently time-resolved datasets for different study
locations and scales around the world. If similar or additional proxies are found to be useful in
new extensive studies, the results can be widely useful for: (a) expanding water quality monitoring
based on proxy measurements by automatic sensors; (b) constructing better models and interpretation
algorithms, e.g., in an IoT concept, based on data for a range of variables and accounting for important
seasonality effects to obtain better water quality results; (c) identifying and directing effective pollution
mitigation measures to dominant watershed sources and drivers of water quality changes; and, (d)
assessing and deciding on adaptation and mitigation measures for future water quality based on
projected hydroclimate and discharge scenarios.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/1/396/s1.
This supplemental material provides a description of the automatic sensor and the methodology used for water
quality data collection, and a set of additional graphs and figures about the water quality data from the automatic
sensor and other related data: Figures S1–S12, time series of sensor-measured water quality variables; Figure S13,
Time series of independently measured catchment-average precipitation (P); Figures S14 and S15, Time series
of independently measured nutrient concentrations; Figure S16, Slope and intercept values of linear regression
lines between water discharge Q and water quality variables; Figure S17, Slope and intercept values of linear
regression lines water quality variables; Figure S18, Slope and intercept values of linear regression lines between
water discharge Q and nutrient concentrations.
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