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Abstract: According to the data from Alzheimer’s Disease International (ADI) in 2018, it is estimated
that 10 million new dementia patients will be added worldwide, and the global dementia population
is estimated to be 50 million. Due to a decline in the birth rate and the development and great
progress of medical technology, the proportion of elderly people has risen annually in Taiwan. In fact,
Taiwan has become one of the fastest-growing aged countries in the world. Consequently, problems
related to aging societies will emerge. Dementia is one of most prevailing aging-related diseases,
with a great influence on daily life and a great economic burden. Dementia is not a single disease,
but a combination of symptoms. There is currently no medicine that can cure dementia. Finding
preventive measures for dementia has become a public concern. Older people should actively
increase brain-protective factors and reduce risk factors in their lives to reduce the risk of dementia
and even prevent the occurrence of dementia. Studies have shown that engaging in mental or
creative activities that stimulate brain function has a relative risk reduction of nearly 50%. Elderly
people should develop the habit of life-long learning to strengthen effective neural bonds between
brain cells and preserve brain cognitive functions. Playing chess is one of the suggested activities.
This paper aimed to develop a Chinese robotic chess system for the elderly. It mainly uses a camera to
capture the contour of the Chinese chessman, recognizes the character and location of the chessman,
and then transmits this information to the robotic arm, which will grab and place the chessman in
the appropriate position on the chessboard. The camera image is transmitted to MATLAB for image
recognition. The character of the chessman is recognized by convolutional neural networks (CNNs).
Forward and inverse kinematics are used to manipulate the robotic arm. Even if the chessmen are
arbitrarily placed, the experiment showed that their coordinates can be found through the camera
as long as they are located within the working scope of the camera and the robotic arm. For black
chessmen, no matter how many degrees they are rotated, they can be recognized correctly, while the
red ones can be recognized 100% of the time within 90◦ of rotation and 98.7% with more than a
90◦ rotation.

Keywords: Chinese robotic chess system; convolutional neural network; dementia; forward and
inverse kinematics

1. Introduction

The data from Alzheimer’s Disease International (ADI) in 2018 estimate that 10 million new
dementia patients will be added worldwide. This means that an average of one person will suffer from
dementia every 3 s. The global dementia population is estimated to be 50 million, and by 2050 the
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number will reach 152 million. In addition, the cost of care for dementia was estimated to be USD
1 trillion in 2018 and will double to USD 2 trillion by 2030 [1].

Due to a decline in the birth rate and the great development and progress of medical technology,
the proportion of elderly people has risen annually in Taiwan. In fact, Taiwan has recently become
one of the fastest-growing aged countries. Consequently, problems related to aging societies will
emerge. Dementia is one of the prevailing age-related diseases with the greatest influence on daily
life and the greatest economic burden. Based on the results of an epidemiological survey of dementia
commissioned by the Taiwan Alzheimer’s Disease Association in 2011 and the demographic data of
the Ministry of the Interior at the end of December 2018, there were 3,433,517 elderly people aged 65 or
older (14.56%), of which 626,026 had mild cognitive impairment (MCI), accounting for 18.23%, and
269,725 had dementia, accounting for 7.86% (of which 109,706 had extremely mild dementia) [1]. That
is to say, there was about one case of dementia for every 12 people over 65 years of age, and there one
case of dementia for every five people over 80 years of age.

Dementia is not a single disease, but a combination of symptoms. Its symptoms are not only
memory loss, but also the degradation of other cognitive functions, including language ability, sense of
space, computing ability, and the functions of judgment, abstract thinking ability, and attention. At the
same time, symptoms such as disturbing behavior, personality changes, delusions, or hallucinations
may occur. The severity of these symptoms is sufficient to affect patients’ interpersonal relationships
and workability. There is currently no medicine that can cure dementia, so how to prevent dementia
has become a topic of public concern. As the research on dementia continues to progress, we have
become more aware of the factors that help prevent or delay dementia. The public should actively
increase brain-protective factors and reduce risk factors in their lives to reduce the risk of dementia
and even prevent its occurrence. Studies have shown that engaging in mental or creative activities that
stimulate brain functions can reduce the risk of developing dementia, with a relative risk reduction of
nearly 50% [1]. Elderly people should develop the habit of life-long learning to strengthen effective
neural bonds between brain cells and preserve brain cognitive functions. Playing chess is one of the
suggested activities.

Chinese chess is played with flat discs, and the total chessmen are divided into two parts, generally
a red and a black side, each with seven different Chinese characters and 16 chessmen, as shown in
Figure 1. It is a very popular two-player board game in Taiwan, China, and some other Asian countries.
It is especially popular with retired seniors. When the elderly play chess, a robotic chess system
including a simple and low-cost camera and a small robotic arm can be used to implement an automatic
chess-placing system to help the elderly place the chessmen and reduce some chores. People may even
play chess with a chess robot that includes the robotic chess system and software for playing.

In recent years, vision sensors and image processing technologies have been continuously
developed. Their main applications consist of automatic manufacturing, product inspection, welding
automation, packaging, and logistics. The vision system can obtain accurate object measurement
through a camera, image processing, and system calibration, such that it can increase the ability of the
robotic arm to detect the scene, track, and adapt to scene changes. In order to improve the accuracy
and intelligent control, researchers applied visual recognition to robotics. The robotic arm uses the
camera’s focus to visually identify the center of gravity and direction of the workpiece [2] to carry out
automatic picking and placing tasks and improve production efficiency [3].

Since the picking and placing task in the eye-to-hand configuration has many conveniences,
its construction tends to be rigid, to reduce the possibility of displacement. Althloothi et al. [4]
proposed multiple kernel learning (MKL) using an RGB-D camera to recognize human activities.
With the same camera, Jalal et al. [5] used a shape and motion feature approach to detect human
activities with sharp visual results. Song et al. [6] introduced robust features for depth video,
and this work was achieved to approximate the object-centered feature. Unlike the previous studies,
Ge et al. [7] retained the traditional Hough transform image processing technique to recognize the
classifications of strawberry environments, although applied to the eye-to-hand configuration. In a
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similar environmental application, Chen et al. [8] blended the geometry with the epipolar constraint to
achieve 3-D recovery in the concise eye-to-hand manipulator for localization and recognition.
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Before we applied convolutional neural networks (CNNs) in the Chinese chess game, previous
studies focused massively on recognition and detection for applications such as healthcare,
education, e-commerce, surveillance systems, and many others [9–15]. Regarding these strategies,
Manwatkar et al. [16] introduced the process of converting images to text using document image
analysis (DIA). A more sophisticated method was carried out by Lara et al. [17] and Jalal et al. [18]
using human activity recognition (HAR). Although the method is not specifically used for text, its
performance is quite good, with a recognition rate of 97.16%. In another paper [19,20], the hidden
Markov model (HMM) was used to detect shapes and motion features. Thus, several methods for
detecting moving targets have been introduced. However, in this paper, the chessman’s target is not
moving. Its position is very random, determined by the Chinese symbol.

General optical character recognition (OCR) begins by recognizing printed numbers and letters,
and then develops to recognize the printed texts. Chinese chess has various font types and various
characters. Wen [21] proposed an input image and database feature comparison method that consists
of the noise filter, object extraction, normalization, feature calculation of the distance between the
contour of the character and the center of the chessman, and maximum energy slop algorithm, for the
Chinese chessmen. Seniman et al. [22] presented the backpropagation algorithm of a feed-forward
neural network as well as direction feature extraction method by iterating and calculating the directions
surrounding each pixel in the image to obtain the features and recognize Chinese chess characters.
The proposed method had the ability to resist noise, brightness changes and rotation, and was tested
by five different fonts. The image preprocessing and advanced Hough transformation [23] was used
to segment the image and calculate the location of the center of the chessman and the circle edge of
the chessman, respectively. Fang [24] designed a machine vision system for Chinese chess-playing
robots with two color cameras taking two images from different angles simultaneously. A hierarchical
Hough transform algorithm was used to detect lines and circles in the binarized image and the
backpropagation neural network and ring intersection points were adopted to recognize the Chinese
characters. In addition, experimental results verified that it can work well with higher reliability.

CNN is used to recognize Chinese chessmen in this paper; several previous studies have
applied it to human activity recognition, face recognition, and text recognition [25–27]. Most of the
recognition and segmentation work has involved hybrid methods, such as object recognition, human
tracking, activity recognition, and human gait [28–30]. Meanwhile, [30] used depth image for face
recognition, [26] adopted a similar technique but applied to time attendance systems, and [31] proposed
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high multiplexing system performance to support face recognition over Wi-Fi. Action recognition,
proposed by [32–35], is more complicated and can be solved using an RGB-D camera with intrinsic
features. However, the whole process of identification used a fixed orientation. It is very diverse
from Chinese chess, where the position of a round piece can change its orientation when picked by a
gripper so that it will become an obstacle during recognizing. For this reason, in recognizing targets,
approaches such as a human way of thinking are needed.

Previously, the artificial neural network (ANN) is a model developed based on imitating the
structure and operation of the brain and becomes the basis of the convolution network. This method
can be used to simulate complex models and prediction problems. The traditional neural network
consists of three parts: the input layer, the hidden layer, and the output layer. The hidden layer has
many neurons, and each neuron in each layer is connected to all neurons in the next layer. A network
with multiple hidden layers is called a multilayer perceptron (MLP) [36].

For computer vision, a convolutional neural network (CNN) [37] is mainly used for image
classification and object recognition. The main difference between an MLP and CNN is that only the last
layer of a CNN is fully connected, while in an MLP, each neuron is connected to each neuron of the next
layer, resulting in a large increase in the number of parameters. For large images, it generates complex
vectors. In addition, it ignores spatial information and flattens the image as input. J. Jin et al. [38] used
CNNs to recognize traffic signs and used hinge loss stochastic gradient descent to train CNNs which
were evaluated on the German traffic sign recognition benchmark. Chen et al. [39] presented a hybrid
deep convolutional neural networks (HDNNs) to recognize vehicles in satellite images by dividing the
maps of the last convolutional layer and the max-pooling layer of DNN into multiple blocks of variable
receptive field sizes or max-pooling field sizes to enable the HDNN to extract variable-scale features.
In addition to images, CNNs are also used for speech recognition. O. Abdel-Hamid et al. [40] used a
limited-weight-sharing scheme to simulate speech features in CNNs. Compared with DNNs, the bit
error rate of the proposed method is reduced by 6–10%.

In this paper, the chess piece is photographed by a camera and the picture is input to a convolutional
neural network (CNN) for chess recognition. At the same time, the coordinates of the chessman are
obtained by image processing and sent to a robot system to grab the target chessman using the forward
and inverse dynamics. In this paper, the CNN will be used to recognize the characters on the chessmen
and distinguish the front or backside of the chessmen, even when they are randomly placed. The robot
arm will be controlled to accurately grasp the chessmen and place them on exact positions of the
chessboard. The remainder of this paper is organized as follows: the Chinese chess robotic system is
introduced in Section 2 and the convolutional neural network is indicated in Section 3. Experimental
results are analyzed in Section 4 along with the conclusions in Section 5 of the paper.

2. Chinese Chess Robotic System

The chessmen are photographed through the camera and the image is processed. Then,
the coordinate transformation for the chessmen is setup by PC. Finally, the chessmen are randomly
picked up by the robot arm through the gripper and placed on the proper positions on the chessboard,
as shown in Figure 2. The robotic arm uses five-degree-of-freedom (5DOF) Microbot’s TeachMover II,
whose variables of the kinematics model are shown in Figure 3 [41], where the distance between each
joint is respectively represented by constants H, L and LL with values of 195.0, 177.8, and 96.5 mm.
Table 1 lists the relation between the motor step and the actual joint rotation.

In order to define the coordinate system of the robotic arm, it is necessary to first establish a
coordinate on each link and use the Denavit–Hartenberg (DH) rule to determine the DH transformation
matrix of each link. As long as this transformation matrix is used to achieve the transformation of the
two coordinate systems, thus the equations of forward and inverse kinematics are derived.

Table 2 shows the D–H parameters of the robot, where αi, ai, di, and θi respectively, represent link
twist, link length, link distance, and link angle.



Sustainability 2020, 12, 3980 5 of 20
Sustainability 2020, 12, x FOR PEER REVIEW 5 of 21 

Camera
PC (camera to robot 

coordinate 

transformation)

Robot arm and 

gripper controller
Chessman

Capture Image

Image

Grab

Chessman 

Coordinate

 

Figure 2. The system flow architecture. 

 

Figure 3. Schematics of Robotic arm. 

Table 1. Relation between the motor step and the actual joint rotation. 

Motor Joint Steps Per Degree 

1 Base 19.64 

2 Shoulder 19.64 

3 Elbow 11.55 

4 Right wrist 4.27 

5 Left wrist 4.27 

In order to define the coordinate system of the robotic arm, it is necessary to first establish a 

coordinate on each link and use the Denavit–Hartenberg (DH) rule to determine the DH 

transformation matrix of each link. As long as this transformation matrix is used to achieve the 

transformation of the two coordinate systems, thus the equations of forward and inverse kinematics 

are derived.  

Table 2 shows the D–H parameters of the robot, where i
 , i

a , i
d , and i

  respectively, represent 

link twist, link length, link distance, and link angle. 

Table 2. Denavit–Hartenberg (D–H) parameters of TeachMover II. 

Link Joint Name i  ia
 id

 i  

1 Base 0 
2



 
h  1  

Figure 2. The system flow architecture.

Sustainability 2020, 12, x FOR PEER REVIEW 5 of 21 

 

Figure 2. The system flow architecture. 

 

Figure 3. Schematics of Robotic arm. 

Table 1. Relation between the motor step and the actual joint rotation. 

Motor Joint Steps Per Degree 
1 Base 19.64 
2 Shoulder 19.64 
3 Elbow 11.55 
4 Right wrist 4.27 
5 Left wrist 4.27 

In order to define the coordinate system of the robotic arm, it is necessary to first establish a 
coordinate on each link and use the Denavit–Hartenberg (DH) rule to determine the DH 
transformation matrix of each link. As long as this transformation matrix is used to achieve the 
transformation of the two coordinate systems, thus the equations of forward and inverse kinematics 
are derived.  

Table 2 shows the D–H parameters of the robot, where iα , ia , id , and iθ  respectively, represent 
link twist, link length, link distance, and link angle. 

Table 2. Denavit–Hartenberg (D–H) parameters of TeachMover II. 

Link Joint Name iα  ia  id  iθ  

1 Base 0 
2
π

 
h  1θ  

Figure 3. Schematics of Robotic arm.

Table 1. Relation between the motor step and the actual joint rotation.

Motor Joint Steps Per Degree

1 Base 19.64
2 Shoulder 19.64
3 Elbow 11.55
4 Right wrist 4.27
5 Left wrist 4.27

Table 2. Denavit–Hartenberg (D–H) parameters of TeachMover II.

Link Joint Name αi ai di θi

1 Base 0 π
2 h θ1

2 Shoulder L 0 0 θ2
3 Elbow L 0 0 θ3
4 Pitch 0 π

2 0 π
2 + θ4

5 Roll 0 0 LL θ5

Inverse kinematics estimates the motion angle of each joint axis if the position of the end-effector
of the robotic arm is given. The angle of each joint can be also derived from the geometric point of view.
As shown in Figure 4, when the point P at the end-effector of the arm with the known coordinates is
projected onto the XY plane, we can find the angle θ1. Referring the picture and geometric figure of
the robotic arm in Figure 5, we may obtain the angles of θ2,θ3 and θ4 as follows,

θ2 = π− θa − θb − θc (1)
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θ3 = θa + θc (2)

θ4 =
π
2
− θ3 (3)

where d is the distance between points O and E, p is the distance between points B and D, and

θa = tan−1(q/d) (4)

θb = cos−1(
L12 + L22

− p2

2× L1× L2
) (5)

θc = cos−1(
L2 + p2

− L2

2pL
) (6)
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3. Convolutional Neural Network

A convolutional neural network (CNN) consists of one or more convolutional layers, and then one
or more fully connected layers (FCs) which are similar to the neural network structure. The structural
design of the CNN uses the two-dimensional structure of the image as inputs to achieve local connection,
weighting, and then pooling, which equips CNN translation-invariant features. Compared to neural
networks with similar layers, CNNs have fewer parameters and connections and are therefore easier
to train. CNNs consist of many convolutional and pooling layers, and finally a fully connected
layer. A convolution layer adopts an image as its input and is formed by a plurality of different,
generally 3× 3, filters (called convolution kernels) to conduct convoluting operation and then produce
different features.

The convolutional principle uses a small-sized window to slide from left to right and top to
bottom to obtain the local features in the image as the inputs of the next layer. This sliding window
is called a convolution kernel or filter. The matrix formed by sliding and calculating on the image is
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called a convolution feature or feature map. The feature map is the output to the next layer through a
rectified linear unit (ReLU) for activation function. It is a type of downsampling, because the size of
the data will be reduced, so the number of parameters and calculations are reduced, which speeds
up the system operation, reduces the possibility of overfitting, and has the effect of anti-interference.
After sampling, the outputs are inputted to the fully connected layer [23,24]. The fully connected layer
is a general neural network for classification. The connection layer is also the easiest way to learn a
non-linear combination of the features from the previously convolutional layer and pooling layer. We
flatten the feature map in the fully connected layer and update the weights in the neural network
through backpropagation.

The softmax function is used in the output of the fully connected layer. The softmax function can
convert an N-dimensional vector containing any real number into another N-dimensional real vector
so that the range of each element in the vector is between 0 and 1, and the sum of all elements is 1. The
equation of softmax function is described as

σ(z) j =
ez j∑K

k=1 ezk
, j = 1, . . . , K. (7)

Since the output of the Softmax function is between 0 and 1, it can be regarded as the probability
of one type of class prediction. The loss function is an important part of the artificial neural network.
It is used to measure the inconsistency between the predicted value and the actual label. Its output is a
non-negative value. The robustness of the model increases as the value of the loss function decreases.
This paper uses a cross-entropy algorithm to calculate the loss function, shown in Equation (8),

loss = −
N∑

i=1

K∑
j=1

ti j ln σ(z)i j (8)

where N is the number of samples, K is the number of classifications, and ti j is the actual label.
This paper uses the stochastic gradient descent method to update the network parameters (weights) in
each iteration to minimize the loss function through the negative gradient direction of the loss function.
The equation for updating parameters is as follows:

z`+1 = z` − α∇loss(z`) (9)

where l is the number of iterations, ∇loss(w) is the gradient of the loss function, and α is the learning
rate. The expression for calculating the loss function gradient is as follows:

∂loss
∂zi

=
∂loss
∂σ(z) j

∂σ(z) j

∂zi
= −

ti

σ(z)i
× σ(z)i(1− σ(z)i) = −ti + tiσ(z)i (10)

where j means all outputs and i is one of them.
The CNN architecture used in this paper is shown in Figure 6, including three convolutional

layers, three pooling layers, and one connection layer.
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4. Experimental Results

This proposed system includes a robotic arm and a camera, where the camera communicates
PC via USB, and PC sends signals to the robotic arm controller via RS232 to complete the action.
The camera is set up directly above the chessboard. All chessmen are randomly placed on the
chessboard. The camera captures the image in this range, and then, from left to right and from bottom
to top, the image is cut out sub-images of multiple chessmen. The sub-image is input to the CNN for
recognition, and the recognition is repeated until the recognition of multiple chessmen is completed.
The coordinates where the chessman is currently located and should be placed are transmitted to the
robotic arm. The arm then picks up the recognized chessman and then places it in the correct position
on the board. The system repeats the above procedure until all the chessmen are placed. The system
block diagram is shown in Figure 7 and the experimental environment includes Logitech C310 camera
and PC with CPU of Intel Core i5-3570 3.4 GHz shown in Figure 8.
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This paper uses MATLAB to integrate the program of the camera and the robotic arm, as shown
in Figure 9. Under the GUI operation interface of MATLAB, the system performs basic actions such
as picking up and placing chessmen. The upper left image is the original image, the lower left
image is the binarized image, the upper right image is the chessman image, the lower right table
shows the prediction result and its coordinates, and the system control block provides the keys for all
operational functions.



Sustainability 2020, 12, 3980 9 of 20

Sustainability 2020, 12, x FOR PEER REVIEW 9 of 21 

Robot Arm

Camara

Checkerboard

 

Figure 8. Experimental environment. 

This paper uses MATLAB to integrate the program of the camera and the robotic arm, as shown 
in Figure 9. Under the GUI operation interface of MATLAB, the system performs basic actions such 
as picking up and placing chessmen. The upper left image is the original image, the lower left image 
is the binarized image, the upper right image is the chessman image, the lower right table shows the 
prediction result and its coordinates, and the system control block provides the keys for all 
operational functions. 

 

Figure 9. User interface. Figure 9. User interface.

When grasping an object, the exact coordinates of the object are required. But when using
the camera, the imaging will be more or less distorted due to the problem of the camera itself [42].
Therefore, the camera must be calibrated to obtain the intrinsic parameters. The distortion is corrected
through these parameters to obtain a correct image. The correction method uses a black and white 9× 7
checkerboard diagram. Its grid size is 28× 28 (mm2). After placing the checkerboard image in front of
the camera and allowing the camera to take the complete checkerboard image, we change the direction
of the checkerboard image facing the camera for adjustment. Logitech’s network camera C310 with
resolution of 1280 × 960 pixels is used in this paper. The extrinsic parameters of the camera can be
calculated by the cameraCalibrator function based the image captured by the camera [43]. The matrix
of intrinsic parameters is:

fx 0 cx

0 fy cy

0 0 1

 =


1416.7011 0 682.3046
0 1417.6963 494.6859
0 0 1

 (11)

where fx and fy are the focal lengths in the X and Y directions of the image plane, cx and cy are the
reference points which are ideally the center of the image.

CNN learns various chessmen’s features to recognize them. To obtain training data, a large
number of images, which will be binarized, are obtained by rotating and translating the chessmen,
as shown in Figure 10. Using these images as training data to train CNN, the trained CNN will have
high accuracy in recognition and can accurately determine the characters of chessmen. The training
process is shown in Figure 11. The upper part depicts the change in accuracy during training and
the lower figure shows the change in loss during training. The horizontal axis is the number of
iterations. In the ninth training period (Epoch 9), the accuracy does not change much. The recognition
time of a single piece is about 0.35 s, and it takes about 11 s to recognize all chessmen. During the
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recognition process, if affected by reflection, the chessman character will be incomplete, as shown
in Figures 12 and 13. Table 3 shows the recognition tests of chessmen rotated by 0◦, 45◦, 90◦, 105◦, 120◦,
and 180◦. For black chessmen, no matter how many degrees the chessmen are rotated, they can be
recognized correctly, while the red ones can be recognized 100% of the time within 90◦ of rotation, and
some chessmen are unable to reach a 100% recognition rate at more than a 90◦ rotation. The recognition
of the red chessmen is obviously worse than that of the black ones, mainly because the characters of
the black chessmen are quite different, but the red chessmen have the same radical, and the strokes are
more likely to affect the recognition result. For the arbitrary placement test, considering the confusion
matrices of red and black chessmen as shown in Tables 4 and 5, the accuracy of black chessmen is
100%, and the accuracy of red chessmen is 98.7%. In the case, the three chessmen of
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When the camera captures the image, the coordinates of the chessman will be different from the
actual ones due to the height of the chessman. Therefore, the real coordinates of the chessman must
be corrected to obtain an accurate grab, as shown in Figure 14. Point D is the camera position, point
C is the actual position of the chessman, and point B is the position of the chessman estimated by
the camera. The errors before and after the correction of the coordinates of the chessman are shown
in Figure 15 and Table 6. Since the height h of the chessman is known, the actual coordinates of the
chessman can be obtained through the trigonometric function after finding the camera position O and
its height H,

C = B− d, d =
p× h

H
(12)
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Table 3. Test results of numbers of recognition errors for different rotations.

Chessman
Rotating Degree

0◦ 45◦ 90◦ 105◦ 120◦ 180◦

將 0 0 0 0 0 0
士 0 0 0 0 0 0
象 0 0 0 0 0 0
車 0 0 0 0 0 0
馬 0 0 0 0 0 0
包 0 0 0 0 0 0
卒 0 0 0 0 0 0
帥 0 0 0 0 0 0
仕 0 0 0 0 0 0
相 0 0 0 0 0 0
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(1082,590) (1090,593) 8.54 (1081.7,589.7) 0.42
(1220,488) (1230,493) 11.18 (1218.7,491.9) 4.11

Before recognizing, the original image must be cut into images of chessmen. After the original
image is binarized, connected-component labeling (CCL) [44] is used to find the position of each
chessman, as shown in Figure 16. These chessmen are cut out and recognized using CNN, as shown in
Figure 17. The connected-component labeling algorithm scans the input binarized image and calculates
its eight connectivity pixels when it encounters a value of 1. The labeling rules are [44]:

(a) If the values in all four directions are 0, then a new label is created at that position;
(b) If the labels in the four directions are the same, then the position label is the label of its field;
(c) If the labels in the four directions have two different labels, choose one of them, and record the

two different labels.

After doing the image segmentation and CNN recognition, the character and coordinates of each
chessman are known. Then, its coordinates are transferred to the robot arm for grabbing. Since the
chessmen are randomly placed on the chessboard, the order of grabbing begins from the chessmen
placed on both sides of the chessboard until all chessmen are placed, as shown in Figure 18. If there
are back-side chessmen, the system can identify the situation and notify the robotic arm to turn over
those first, and then perform image recognition, as shown in Figure 19. Figure 20 depicts the complete
process of chess placement, beginning with the interface, locating the first chessman at the side of the
chessboard, turning over the back-side chessman, finally finishing the placement.
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Figure 19. Turning over the back-side chessman and recognizing. (a) First, turning over a back-side
chessman, (b) turning over the back-side chessman, (c) next, putting the chessman back, (d) then,
putting it in front of the camera to be recognized, (e) lastly, the chessman is captured by the camera,
(f) the chessman傌 is recognized by the camera and the cut-out image is captured.
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Figure 20. Process of chessmen placement. (a) The random black chessman picked up and placed in
the correct location, (b) a random back-side chessman is recognized and picked up, (c) the random
back-side chessman is placed on the side and turned over, (d) the random back-side chessman is turned
over and will be placed in front of the camera to be recognized, (e) the random back-side chessman is
placed in its correct location, (f) another random red chessman is recognized and picked up, (g) the
random red chessman is placed in its correct location.

In summary, correct recognition will have the correct picking and placing of the chessmen.
The failure cases come from three points, the first: the chessmen
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and傌; and the third: the strokes of these three chessmen are more likely to affect the
recognition result. As a result, another auxiliary way may be included to eliminate these cases.

5. Conclusions

This paper proposes a system for chessman recognition and automatic placement. First, through
the techniques of image processing and convolutional neural network technology, the character of
arbitrarily placed chessman is recognized and its position is found. If there are back-side chessmen,
the system will turn over those first and then perform image recognition. After obtaining the coordinates
of the chessman and through coordinate transformation, the coordinates are transmitted to the robot
arm to grab the chessman and place it at the correct location on the chessboard. Comparing the
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proposed method with several methods/approaches and improving the performance will be our future
work. In the future, both the hardware and the functions of image vision and convolutional neural
network technology can be improved to increase the recognition rate and speed and enhance the ability
of the robot in playing chess. Then, if the software for playing chess is added, it will not only be a
simple chessman placement system but also provide the function of playing chess with people. As a
result, the proposed system can further enhance the elders’ favor and develop their habit of playing
chess to strengthen effective neural bonds between brain cells and reserve brain cognitive functions.
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