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Abstract: We investigated the biological impact of extensive Manila clam (Ruditapes philippinarum)
aquaculture on macrobenthic communities in a tidal ecosystem in Korea. We collected macrobenthos
(>1 mm in length) samples seasonally in the intertidal zone in Geunsoman, Taean, Korea from
April 2011 to December 2014. We identified 146 macrobenthos species, including 60 polychaetes,
53 crustaceans, and 16 mollusks. A biota–environment matching (BIO–ENV) analysis indicated
that the benthic community was affected by mean sediment grain size (Mz), total organic carbon
(TOC), and R. philippinarum biomass. We found no correlation between R. philippinarum and the
main dominant species (Heteromastus filiformis, Ceratonereis erythraeensis, and Ampharete arctica),
which have a different feeding strategy; thus, this may result in a lack of competition for food
resources. In addition, we found that flourishing R. philippinarum positively affects the macrobenthos
density but negatively affects the biodiversity index. Moreover, competition between species does
not occur clearly, and environmental variables (sediment, organic carbon) are important.
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1. Introduction

The distributions of intertidal macrobenthic taxa are strongly influenced by environmental factors
such as sediment type, temperature, salinity, organic carbon, etc. [1]. They play a critical role in the
structure and functioning of marine ecosystems [2]. Benthos are consumed by fish and mammals, thereby
providing food for higher trophic levels [3]. Macrobenthos are also important in organic matter cycling
and nutrients and provide a link between the benthic and pelagic division of marine ecosystems [4].
They are used as indicators of coastal ecosystem health and environmental quality because this group
is characterized by long-lived species with limited habitat ranges and high sensitivity to environmental
change [5]. Macrobenthic animals are critical links between primary producers and high trophic level
consumers in coastal food webs [6]. Therefore, macrobenthos are important to research targets in marine
ecology and are essential to the structure and function of coastal ecosystems [7,8].

Studies of competition in marine benthic animals have been pivotal to our understanding of
ecology systems overall; some of the earliest and most influential evidence of competition comes from
studies of sessile marine benthic animals, and we continue to gain an understanding of community
dynamics from this group [9]. Research on competition among marine invertebrates tends to focus
on interference rather than exploitation [10]. Benthic organisms transport oxygen and organic matter
from the surface to deeper layers, extending the habitat suitable for smaller fauna [11]. Competition,
disturbance, and predation can also influence the spatial distribution of these small benthic animals [12].
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Species are thought to be in fierce, direct competition for available space, where space is the primary
limiting factor for marine invertebrates [13]. Evolutionary research on marine life further assumes that
this competition for space is interference [14].

The Yellow Sea, situated west of Korea, is a semi-enclosed, marginal sea in the northern
Pacific into which the Huanghe (Yellow) and Changjiang (Yangtze) Rivers flow. The Yellow Sea is
characterized by high organic content, which originates from the surrounding landmasses. Terrigenous
sediments accumulate in the subaqueous deltas of the Yellow Sea [15–17], which has resulted in the
development of extensive aquaculture industry in its intertidal areas. Several bivalve species occur
in the muddy and sandy tidal flats along the Yellow Sea coast in South Korea, including pacific
oyster, Magallana gigas (Thunberg, 1793), and Manila clam, Ruditapes philippinamm (Adam and Reeve,
1850) [18]. R. philippinarum has been introduced to many parts of the world since the 1930s [19],
and is now a dominant species in the intertidal zones of northwestern America, Europe, Korea, China,
and Japan [20]. Manila clams are an important aquaculture species, accounting for 18% of Korea’s
annual shellfish production. However, after reaching a peak in 1990 (74,581 tons), R. philippinarum
production began to decrease rapidly to 18,145 tons in 2013 and 19,853 tons in 2018 [21]. Reduced
production of R. philippinarum may be due to a decrease in habitat area due to the reclamation of
tidal flats, and mass deaths in spring and summer due to climate change [22]. Recently, Nam et al.
(2018) confirmed that the parasite was closely related to the death of the clam during the high water
temperature in summer [23].

R. philippinarum serves important biological functions in the intertidal zone, including filter-feeding,
excretion, respiration, nutrient regeneration, and bio-deposition [24–27]. These processes may have
an indirect impact on macrobenthos assemblages by altering the dominant species and decreasing
macrobenthic fauna diversity in semi-enclosed bays [28,29]. Plankton larvae of R. philippinarum settle
on soft substrates on reaching 0.3 mm in length, which typically occurs in spring or early autumn [30].
This bivalve grows well in an adequate mix of sand and mud (i.e., clay and silt) but tends to decline
when clay and silt contents are too high. In R. philippinarum aquaculture, sediment composition is often
deliberately altered by commercial spraying of sand or oyster shells on the seabed [31]. Attempts to
increase the amount of available habitat for R. philippinarum should be based on an integrated analysis
of environmental and biological factors related to its distribution. Water temperature, salinity, and prey
species composition affect the habitat suitability for R. philippinarum [32,33]. Water temperature affects
the duration of laying and larval growth rates; increased water temperature leads to faster clearance,
ingestion, and respiration rates [34]. Although R. philippinarum is relatively tolerant of changes in
water temperature and salinity [35], high water temperatures and low salinity can significantly affect
its growth and reproduction [36–38].

Bivalves have seldom been the focus of macrobenthic community studies, although early papers
assessed the impact of bivalve aquaculture on intertidal ecosystems [39,40]. In addition, most of the
existing studies have been related to phytoplankton as a source of food, and there are very few articles
with other benthic species in the same space. We examined the status and dynamics of intertidal
macrobenthos communities by examining species richness and density, as well as community structure,
in areas dominated by Ruditapes philippinarum. In the long term, this study will provide data to
understand R. philippinarum management.

2. Materials and Methods

2.1. Study Area and Sampling Routine

Samples were collected seasonally (spring, summer, autumn, winter) from April 2011 to October
2014, and were conducted a total of 15 times at Geunsoman (36◦43.575′ N, 126◦10.269′ E), Korea
(Figure 1). We collected eight replicate samples (total volume: 0.2 m2, 32 core samples per year) with a
can core (0.22 × 0.135 × 0.3 m) haphazardly for macrobenthos community analysis. The reasons for
the single survey site were that clams do not thrive in large areas and the area (0.5 km2) was limited.
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Therefore, instead of multiple sites, one site was selected and sampled randomly. Samples were sieved
through a 1 mm size mesh. Residue on the mesh was sorted and preserved in 10% formalin in seawater.
A sample of surface sediments from the surface layer was collected to analyze sediment grain size (Mz)
and total organic carbon (TOC) concentration, and these samples were frozen before analysis. In the
laboratory, all organisms were sorted from the sediment and their wet weight was measured. Then,
they were identified to the species level under a stereomicroscope.
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2.2. Sediment Analysis

Sediment particle sizes were determined after treating samples with a solution of 10% hydrogen
peroxide. Sediment samples were heated to >100 ◦C to evaporate the hydrogen peroxide and then
washed at least three times with distilled water to remove organisms and salts. Washed samples were
then passed through a 63-µm standard sieve. After drying, the sediments trapped by the sieve were
weighed and subjected to automatic particle size analysis using a SediGraph 5120 device (Kunash
Instruments, Mumbai, India) following the addition of sodium hexametaphosphate as a dispersing
agent. We then calculated the average particle sizes and degrees of sorting. Sediments were categorized
according to Folk’s classification system [41]. The content of total organic carbon (TOC) in sediments
was analyzed using a Shimadzu TOC analyzer, (SSM-5000A, Shimadzu, Japan).

2.3. Statistical Analyses

Density and biomass data are recalculated per square meter; statistical analyses were performed
for all species. The Shannon–Wiener diversity index (H’) was calculated using density data.
Cluster and non-metric multi-dimensional scaling (nMDS) analyses on macrobenthic community
data for each sampling period were analyzed using the Bray–Curtis similarity measure based on
fourth-root transformed density data and group average linkage. A similarity profile (SIMPROF)
permutation test was performed to determine the statistically significant clusters among the samples.
A similarity percentage (SIMPER) analysis was used to determine the contribution of each species
to similarity–dissimilarity among groups. A biota–environment matching (BIO–ENV) analysis was
conducted to determine the environmental factors that affect the spatial distribution of benthic
animals [42]. Spearman’s rank correlation analysis was used to determine relationships between
biological and environmental variables. At the time of analysis, the density of R. philippinarum was
considered an environmental variable and was not included in the calculation of Bray–Curtis similarity.
The biomass of macrobenthos included all benthic animals, and only the biomass of R. philippinarum was
calculated separately. All analyses were performed using PRIMER 6 software with the PERMANOVA
add on package [43].
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3. Results

The mean sediment grain size (Mz) was 6.46, 3.39, and 4.40 ø in April, July, and October 2011,
respectively. In 2012, the average Mz was 4.75 ± 0.96 ø, which was similar to values observed in
2011 (4.75 ± 1.56 ø), but it decreased to 3.70 ± 1.56 ø in 2013 and declined further to 3.15 ± 1.25 ø
in 2014 (Table 1). The TOC was 0.58, 0.31, and 0.44% in April, July, and October 2011, respectively.
The average TOC was 0.99 ± 0.78% in 2012, with the highest value being recorded in October 2012
(2.15%). The average TOC was 0.48 ± 0.07% and 0.46 ± 0.09% in 2013 and 2014, respectively, similar to
the values observed in 2011 (0.44 ± 0.14%) (Table 1). In the sediment type, the ratio of sand and mud
was high, but overall, sand and mud were properly mixed.

Table 1. Sediment characteristics during the study period (Mz=mean grain size, TOC= total organic carbon).

Year Month Type Mz (ø) TOC (%)

2011 Apr sM 6.46 0.58
2011 Jul gmS 3.39 0.31
2011 Oct (g)sM 4.40 0.44
2012 Jan (g)sM 6.15 0.75
2012 Apr (g)mS 4.59 0.59
2012 Jul gmS 4.16 0.47
2012 Oct gM 4.11 2.15
2013 Jan (g)mS 4.32 0.44
2013 Apr (g)mS 5.40 0.42
2013 Jul gmS 2.34 0.49
2013 Oct gmS 2.72 0.58
2014 Jan gM 4.34 0.58
2014 Apr zS 4.06 0.42
2014 Jul gmS 2.49 0.36
2014 Oct S 1.72 0.47

Sediment type: muddy sand (mS), sand (S), gravelly sand (gS), gravel (G), sandy mud (sM), sandy gravel (sG),
muddy gravel (mG), gravelly muddy sand (gmS), slightly gravelly muddy sand ((g)mS), slightly gravelly sand
((g)S), gravelly mud (gM).

We identified a total of 145 macrobenthos species. In April, July, and October 2011, 35, 45, and 47
species appeared, respectively. In 2012, the number of species detected increased from 40 in January to
55 species in April and declined to 39 in July and 36 species in October. On average, 34.8 ± 3.7 species
were recorded in 2013, which increased to 40.8 ± 9.2 species in 2014 (Figure 2).

The average macrobenthos density including Ruditapes philippinarum was 3547 ± 2024
individuals/m2 (Figure 2). In 2011, the average macrobenthos density was 3880 ± 1512 ind/m2;
this increased to 9470 ind/m2 in January 2012, and then decreased to 4810, 5040, and 1580 ind/m2

in April, July, and October 2012, respectively. The average density was 1959 ± 988 ind/m2 in 2013
compared to 3580, 2950, 2905, and 3450 ind/m2 in January, April, July, and October 2014, respectively.
The average density of R. philippinarum was 1335 ± 1188 ind/m2. The density was highest in January
2012 (5100 ind/m2) and lowest in October 2013 (793 g/m2) (Figure 2).

Throughout the study period, the average macrobenthos biomass including Ruditapes philippinarum
was 5990 ± 3837 g/m2 (Figure 2). The biomass was highest in July 2012 (13,914 g/m2) and lowest in
April 2014 (793 g/m2). By year, 2012 was the highest (9684 ± 4511 g/m2) and 2014 was the lowest
(3333 ± 2960 g/m2). The average Ruditapes philippinarum biomass was 5837 ± 3811 g/m2. The highest
biomass was 11,291 g/m2, and the lowest biomass was 729 g/m2. The R. philippinarum biomass was
similar in shape to the macrobenthos biomass (Figure 2).

The Shannon diversity index (H’) was 1.83 in April 2011, increasing to 2.31 and 2.39 in July and October
2011, respectively (Figure 2). The average H’ values were relatively stable (2.25 ± 0.48 in 2012, 2.32 ± 0.12 in
2013, and 2.20 ± 0.55 in 2014). Both the species richness (d) and the Pielou’s evenness (J’) showed a pattern
similar to the diversity index. Both indexes were highest in April 2012 (richness; 6.38, evenness; 0.73), but
the richness was lowest in July 2014 (3.89) and the evenness was lowest in April 2014 (0.46).
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Cluster analysis indicated two main groups (SIMPROF test, p < 0.001) (Figure 3). Group B
was related to the October 2012, January 2013, and April 2013 sampling periods. The remaining
sampling periods were all related to Group A, whereas in April 2011, it was separate from other periods.
The SIMPER test indicated a 49.85% dissimilarity between Groups A and B (Table 2). A total of 15
species appeared, and of these, 6 species were polychaetes, 5 mollusks, and 4 crustaceans. The species
making the largest contribution to this difference was Ampharete arctica Malmgren, 1866 (Polychaete),
with an average dissimilarity of 1.86. The second most influential species was Musculus senhousia
(Benson in Cantor, 1842) (Mollusca), with an average dissimilarity of 1.54. The third species was
Crangon affinis De haan, 1849 (Crustacean), with an average dissimilarity of 1.21.
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Figure 2. Seasonal variation of macrobenthos and ecological indices. (a) Macrobenthos
species number, (b) Macrobenthos density (individuals/m2), (c) Macrobenthos biomass (ind/m2),
(d) Ruditapes philippinarum density(ind/m2), (e) Ruditapes philippinarum biomass (ind/m2), (f) Shannon’s
diversity index: H’, (g) Species richness: d, (h) Pielou’s evenness: J’.



Sustainability 2020, 12, 4205 6 of 12

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 12 

 

 
Figure 3.  Macrobenthic community based on the Bray–Curtis similarity index. (a) Community 
cluster, (b) Multi-dimensional scaling (MDS) analysis. 

Table 2. The results of similarity percentage (SIMPER) analysis and the main species in Groups A and 
B. The average density (fourth-root transformed data) and contribution (%) to the dissimilarity of each 
species are shown, as well as the cumulative percentages (P, polychaete; M, Mollusca; C, crustacean). 

Species 
Group A 
Average 
Density 

Group B 
Average 
Density 

Average 
Dissimilarity 

Contribution  
% 

Cumulative 
% 

Groups A & B 
Dissimilarity 

Ampharete arctica (P) 3.05 0 1.86 3.89 3.89 49.85 
Musculus senhousia (M) 3.15 0.7 1.54 3.23 7.12  

Crangon affinis (C) 2.12 0.95 1.21 2.54 9.67  

Chone teres (P) 1.85 0 1.1 2.3 11.97  

Ilyoplax pingi (C) 1.87 1.2 0.85 1.77 13.74  

Amaeana occidentalis (P) 1.32 0 0.78 1.64 15.38  

Diastylis paratricincta (C) 1.8 1.47 0.78 1.63 17.01  

Mediomastus californiensis (P) 1.51 0.5 0.77 1.61 18.63  

Ruditapes philippinarum (M) 5.93 4.79 0.76 1.59 20.22  

Philine argentata (M) 1.16 0.81 0.75 1.56 21.78  

Palaemon serrifer (C) 0 1.19 0.73 1.53 23.31  

Grandidierella japonica (C) 2.51 1.34 0.72 1.52 24.83  

Reticunassa festiva (M) 1.05 1.9 0.65 1.37 26.2  

Anoides oxycephala (P) 1.31 0.5 0.65 1.37 27.56  

Eteone longa (P) 1.42 1.2 0.61 1.28 28.84  

The BIO–ENV analyses and nMDS bubble plot showed the density and biomass of Ruditapes 
philippinarum, and the TOC showed the highest correlations with a macrofaunal composition (Rho = 
0.32, P < 0.05; Table 4). However, the mean grain size (Mz) had relatively little effect (Table 3, Figure 
4). 

Apr 
2014

Group average

0 7 0 7 7 7 0 0

100

80

60

40
Si

m
ila

rit
y

Transform: Fourth root
Resemblance: S17 Bray Curtis similarity

Cluster
A
B

Oct 
2012

Jan 
2013

Apr 
2013

Jul 
2011

Oct 
2011

Jul 
2012

Jul 
2013

Jul 
2014

Oct 
2013

Jan 
2014

Oct 
2014

Apr 
2012

Apr 
2011

Jan 
2012

(a)

Transform: Fourth root
Resemblance: S17 Bray Curtis similarity

Cluster
A
B

Similarity
53

2D Stress: 0.2

Apr 
2014

Oct 
2012

Jan 
2013

Apr 
2013

Jul 
2011

Oct 
2011

Jul 
2012

Jul 
2013Jul 

2014

Oct 
2013

Jan 
2014

Oct 
2014

Apr 
2012

Apr 
2011

Jan 
2012

(b)

Figure 3. Macrobenthic community based on the Bray–Curtis similarity index. (a) Community cluster,
(b) Multi-dimensional scaling (MDS) analysis.

Table 2. The results of similarity percentage (SIMPER) analysis and the main species in Groups A and
B. The average density (fourth-root transformed data) and contribution (%) to the dissimilarity of each
species are shown, as well as the cumulative percentages (P, polychaete; M, Mollusca; C, crustacean).

Species
Group A
Average
Density

Group B
Average
Density

Average
Dissimilarity

Contribution
%

Cumulative
%

Groups A & B
Dissimilarity

Ampharete arctica (P) 3.05 0 1.86 3.89 3.89 49.85
Musculus senhousia (M) 3.15 0.7 1.54 3.23 7.12
Crangon affinis (C) 2.12 0.95 1.21 2.54 9.67
Chone teres (P) 1.85 0 1.1 2.3 11.97
Ilyoplax pingi (C) 1.87 1.2 0.85 1.77 13.74
Amaeana occidentalis (P) 1.32 0 0.78 1.64 15.38
Diastylis paratricincta (C) 1.8 1.47 0.78 1.63 17.01
Mediomastus californiensis (P) 1.51 0.5 0.77 1.61 18.63
Ruditapes philippinarum (M) 5.93 4.79 0.76 1.59 20.22
Philine argentata (M) 1.16 0.81 0.75 1.56 21.78
Palaemon serrifer (C) 0 1.19 0.73 1.53 23.31
Grandidierella japonica (C) 2.51 1.34 0.72 1.52 24.83
Reticunassa festiva (M) 1.05 1.9 0.65 1.37 26.2
Anoides oxycephala (P) 1.31 0.5 0.65 1.37 27.56
Eteone longa (P) 1.42 1.2 0.61 1.28 28.84

The BIO–ENV analyses and nMDS bubble plot showed the density and biomass of
Ruditapes philippinarum, and the TOC showed the highest correlations with a macrofaunal composition
(Rho = 0.32, p < 0.05; Table 4). However, the mean grain size (Mz) had relatively little effect (Table 3,
Figure 4).
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Table 3. Environmental and biological variables affecting the macrobenthos community as determined
by a biota–environment matching (BIO–ENV) analysis (Mz = mean grain size, TOC = total organic
carbon, RP = Ruditapes philippinarum).

Number of Variables Correlation (%) Best Variables

3 0.320 TOC, RP density, RP biomass
2 0.299 TOC, RP biomass
2 0.289 TOC, RP density
1 0.270 TOC
3 0.251 Mz, TOC, RP biomass
1 0.249 RP biomass
4 0.247 Mz, TOC, BP density, RP biomass
2 0.244 BP density, RP biomass
2 0.208 Mz, TOC
3 0.199 Mz, TOC, BP density
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density, (d) Ruditapes philippinarum (RP) biomass.

Correlation analysis showed that the number of macrobenthos species was positively correlated
with the Shannon diversity index (Table 4). The diversity index had a negative correlation with
Ruditapes philippinarum density. Additionally, macrobenthos biomass including R. philippinarum was
positively correlated with R. philippinarum biomass. Two dominant species (Heteromastus filiformis and
Ceratonereis erythraeensis) were positively correlated with the number of macrobenthos species; these
two species are deposit and detritus feeders polychaetes, respectively, whereas R. philippinarum is a
suspension feeder.
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Table 4. Spearman rank correlations between biological and environmental variables (Mz, TOC,
macrobenthos species richness, biomass, and density, Shannon diversity: H’, Ruditapas philippinarum (RP)
density and biomass) (HF = Heteromastus filiformis, CE = Ceratonereis erythraeensis, AA = Ampharete arctica)
(* = p < 0.05; ** = p < 0.01, *** = p < 0.001).

TOC Species Density Biomass H’ RPSu den RPSu bio HFDe CEDt AADe

Mz 0.320 0.271 0.211 0.146 0.043 0.118 0.100 0.004 0.182 −0.460
TOC 0.271 0.144 0.286 0.050 −0.115 0.279 0.273 0.363 −0.374

Species 0.515 * 0.004 0.648
** −0.020 0.004 0.608 * 0.705

** 0.133

Density 0.021 −0.125 0.657 ** 0.018 0.493 0.714
** 0.453

Biomass −0.004 −0.054 0.996 *** 0.339 0.300 −0.357
H’ −0.679 ** 0.007 0.232 0.289 −0.072

RPSu den −0.068 −0.004 0.179 0.422
RPSu bio 0.346 0.318 −0.327

HFDe 0.779
*** −0.027

CEDt 0.164
AADe

(Su; suspension feeder, De; deposit feeder, Dt; detritus feeder).

4. Discussion

Ruditapes philippinarum accounted for 37.6% of the total macrobenthos density and had greater
biomass than all other species. Therefore, this species occupied more space than the other species in
the study area and led to reduced macrobenthos species richness. The use of univariate measures
of diversity (Shannon–Weaver diversity; H’) is used to assess the level of stress in macrobenthos
communities [44,45]. The index (H’) was highly related to macrobenthos species richness [46].
Somerfield et al. (2009) [47] suggested that local species diversity is determined by disturbance,
predation, and competition, and also by environmental structure and regional processes. In this study,
the prosperity of the clams made the diversity index low. This is because a large increase in one species
affects the entire benthic ecosystem. The correlation between the clams and other dominant species
was not significantly related. This is because they do not compete for food, but coexist and survive.

Spatial patterns of dominant species allow us to understand the structure of target populations [48,49].
Choi (2003) [50] found that benthic groups at Gwangyang reflected the degree of dominance and
regional distribution of dominant species. The proportion of the community occupied by dominant
species plays a significant role in the overall community structure and provides a lens through which to
interpret environmental conditions [51,52]. Although Ruditapes philippinarum was affected by multiple
environmental factors (i.e., sediment type, temperature, salinity, organic carbon, etc.), it was most
influenced by sediment composition [53]. Sediment characters are the key drivers of macrobenthos
communities [54]. The proportion of sand in the substrate is important for Ruditapes philippinarum,
which prefers substrates with a 50%–80% sand content [55]. The sediment in our study area had a sand
content of 54%, which is suitable for R. philippinarum. Previous research in four areas in Gyeonggi Bay that
had high densities of R. philippinarum found an average sediment grain size of 3.8 ± 0.1 ø [56], which was
similar to the average grain size in our study area (4.1± 1.4 ø). The grain size and composition of sediment
affect the lifecycle of benthic animals [57]. In a study conducted in Seonjaedo, Korea, Kim (2005) [58]
reported an Mz of 3.47 ± 0.45 ø in the eastern part of the study area and 3.60 ± 0.34 ø in the western
part. Thus, our study area had a sediment environment suitable for the clams to thrive and also had
appropriate substrate conditions for clam growth.

A biota–environment matching (BIO–ENV) analysis indicated that the total organic carbon (TOC)
influenced benthos communities. Analyzing environmental variables such as TOC is important for
evaluating coastal marine ecosystems [59]. TOC is highly related to benthic food sources and is
therefore associated with macrobenthic fauna [60]. Because the amount of clams is overwhelming, their
presence has influenced the benthic fauna community, and it is necessary to examine the relationship
with the dominant species other than the clams. The second most dominant species, the polychaete
Heteromastus filiformis, is also a dominant species in other areas, such as Asan Bay and Gyeonggi Bay [61].
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Spiridonov (2016) [62] suggested that H. filiformis prefer fine-grained sediments with high organic
matter content. H. filiformis and the other dominant species, Ceratonereis erythraeensis, are deposit and
detritus feeders, respectively, whereas R. philippinarum is a suspension feeder [63]. Deposit feeders
consume organic matter attached to sediment particles, whereas detritus feeders obtain nutrients
by consuming detritus [64]. Due to these major differences in feeding type, there would be little
competition between R. philippinarum and these two dominant species.

We recorded 145 macrobenthos species at Geunsoman, similar to Antoniadou (2010) and findings
from Anmyeon Island [65,66]. Furthermore, macrobenthos species richness can differ according to
survey timing and sampling methods. However, broad patterns of diversity in similar areas can
be predicted with reasonable accuracy [67]. In particular, polychaetes are in an important position.
Polychaetes alter the quality and size of sedimentary facies through feeding and therefore play an
important role in benthic ecosystems [68,69]. In this study, polychaete species comprised 55% of
the total macrobenthos population; the respective values were 67% for the Hallyeohaesang National
Park area, 56% for the Kakinada tidal flat, and 50% for the Mormugao tidal flat [70,71]. We found no
correlation of Ruditapes philippinarum with overall species richness, nor with the richness or proportion
of polychaetes species. The correlation analysis indicated that R. philippinarum was not associated with
other dominant species.
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