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Abstract: Manufacturers worldwide are nowadays in pursuit of sustainability. In the Industry 4.0 era,
it is a common practice to implement decentralized logistics areas, known as supermarkets, to achieve
production sustainability via Just-in-Time material delivery at assembly lines. In this environment,
manufacturers are commonly struggling with the Supermarket Location Problem (SLP), striving to
efficiently decide on the number and location of supermarkets to minimize the logistics cost. To address
this prevalent issue, this paper proposed a Simulated Annealing (SA) algorithm for minimizing the
supermarket cost, via optimally locating supermarkets in assembly lines. The efficiency of the SA
algorithm was tested by solving a set of test problems. In doing so, a holistic performance index,
namely the total cost of supermarkets, was developed that included both shipment cost and the
installation cost across the assembly line. The effect of workload balancing on the supermarket cost
was also investigated in this study. For this purpose, the SLP was solved both before and after
balancing the workload. The results of the comparison revealed that workload balancing could
significantly reduce the total supermarket cost and contribute to the overall production and economic
sustainability. It was also observed that the optimization of material shipment cost across the assembly
line is the most influencing factor in reducing the total supermarket cost.

Keywords: assembly line; optimization; production sustainability; supermarket location; simulated
annealing

1. Introduction

Manufacturers nowadays are realizing the significant economic benefits of sustainable
production practices [1,2]. Production sustainability denotes the application of economically-efficient
manufacturing and management processes that reduce manufacturing costs and wastes while pursuing
operational efficiency [3,4]. In their quest for achieving production sustainability, modern manufacturers
need to materialize the concept of the sustainable production line [5,6]. Nowadays, assembly lines are
widely used in different industries due to their advantages in effectively dealing with high volume
production [7]. The efficiency of an assembly line, to a great extent, depends on its configuration and
design. Thus, many managers are eager to find a suitable solution method to deal with the long-term
decision problem of assembly line design from the sustainable workload distribution and material
supply point of view [8].

The task of workload distribution at assembly lines is known as the assembly line balancing
problem (ALBP) [9]. The ALBP concerns the proper allocation of work tasks to a set of stations so that
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all the stations have an equal amount of work while considering and satisfying all the operational and
technological requirements [10].

Material supply is concerned with efficient delivery of material to the point of use to avoid any
excessive cost as well as to avoid shortages at stations [11]. The most known philosophy for efficient
material delivery is called Just-in-Time (JIT), where material should only be delivered where needed,
when needed, and with the necessary amount. Recently, a new concept known as Just-in-Sequence (JIS)
delivery is also introduced and widely used in the industry. Following JIS, the supplier sorts the parts
into bins in a specific order facilitating the work of the production operators so that parts are withdrawn
by operators according to the production sequence. Both JIT and JIS concepts contribute to production
sustainability by reducing delivery cycles through a detailed plan for logistics operations [12].

With the introduction of JIT and JIS concepts, a large number of manufacturers around the world
have applied the supermarket concept in feeding materials to assembly lines. In a logistics definition,
supermarkets are decentralized storage areas close to the assembly lines acting as intermediate storage
for stations. Generally, human-driven or automated tow trains are used for material delivery from
supermarkets to stations through milk-run delivery. Tow trains operate based on a predetermined
schedule and feed parts from supermarkets to the stations that are located on their predetermined
routes across an assembly line. The use of supermarkets and tow trains allow parts to be frequently
delivered in small lots, which leads to the reduction of inventory level at the stations and removal
of long-distance deliveries from the centralized storage [13,14]. These features provided by the
use of supermarkets significantly contribute to transportation sustainability in the manufacturing
environment [15]. However, and because of the general space scarcity across the shop floor, an increase
in the number of supermarkets would be associated with an overall higher logistics cost. Alternatively,
lowering the number of supermarkets below the minimum requirement increases the travel distance,
leading to an increase in transportation costs across the assembly line [12,16]. In such circumstances,
the Supermarket Location Problem (SLP), which concerns the problem of identifying the suitable
location and number of supermarkets, is commonly regarded as a long-term decision problem within
the supermarket-based sustainable material delivery context [17].

This study aims to contribute to the production sustainability background by investigating the
effect of assembly line balancing on overall logistics costs, the issue that has received lesser attention
to date. Since both the SLP and ALBP are complex combinatorial optimization problems [18,19],
there has been a growing trend toward using metaheuristics to address them. Considering that the SLP
is less developed compared to ALBP, this study contributes to the literature by emphasizing SLP and
benefiting from the established results on ALBP widely available within the literature to perform the
necessary comparisons and benchmarking. In this regard, this study proposes a Simulated Annealing
(SA) algorithm to address the SLP during the strategic decision-making phase to promote production
sustainability via logistics cost efficiency. In particular, the study benefits from two distinct cost-related
indices related to the use of supermarket for material delivery at assembly lines, namely supermarket
installation cost and material transportation cost. The efficiency of the proposed SA algorithm was
tested against the optimum solution obtained by mathematical optimization. The present study not only
investigates and explains how contemporary manufacturers can achieve a higher level of production
efficiency via optimally positioning supermarkets across assembly lines but also mathematically
compares the role and importance of supermarket installation cost and material transportation cost in
the achievement of logistics cost efficiency and sustainability.

The remainder of the paper is organized as follows. Section 2 provides a literature review on SLP.
In Section 3, the description of the SLP as a long-term decision problem as well as its assumptions
and mathematical formulation are presented. Section 4 describes the proposed solution approach to
deal with the SLP. The computational results are presented in Section 5, while the analysis of results
and complementary discussions are outlined in Section 6. Section 7 offers the concluding remarks and
discusses the limitations of the study.
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2. Literature Review

Review of the literature shows that although ALBP has been studied for decades, and a rich
literature exists on this topic, there are less than a handful of studies addressing the SLP while pursuing
production sustainability. It is worth mentioning that there are also some similarities between the
SLP addressed in this study and the studies related to the location selection problem and inventory
management. However, this review is limited to only the most related studies where the SLP was
addressed. The researchers interested may refer to Chen et al. [20] and Zeng et al. [21] for further
reading about the two related topics mentioned above. Moreover, the studies by Li et al. [22] and
Eghtesadifard et al. [23] provide a comprehensive review of recent trends and advances on ALBP.
To provide an insight into the SLP literature, a review of the most relevant studies is provided below.

Battini et al. [24] proposed a step-by-step decision support procedure to address the SLP while
taking the transportation and inventory costs of supermarkets into consideration. Based on the
procedure proposed for different part components, the best feeding strategy ranging from the
complete centralized, supermarket, or complete decentralized areas was found. In this study, it is
assumed that each supermarket feeds several assembly lines, while in practice, many real-world
manufacturers employ more than one supermarket to feed each assembly line. Emde and Boysen [16]
applied the Dynamic Programming (DP) approach to cope with the SLP while minimizing the
supermarket installation and the tow train transportation costs. The results of the study showed that
the proposed DP could optimally solve the industrial-size SLP within polynomial computational time.
Through comprehensive simulation experiments, the quality of the solutions has been validated from
operational and economic aspects while compared to the centralized warehouse area. The proposed DP
in this study is applicable when supermarkets could be placed anywhere on the factory layout, which
might not be feasible due to space limitations on the shop floor. Alnahhal and Noche [18] addressed
the SLP by applying a Genetic Algorithm (GA) to optimize the total transportation and installation
costs while tow trains were used for milk-run material delivery. The performance of the proposed
GA was tested by solving a set of problems and comparison against the optimal solutions found by a
mathematical optimization model. Despite the results obtained being motivating, no discussions or
insights in terms of transportation and installation costs were provided in this study.

Nourmohammadi and Eskandari [25] developed a hierarchical approach based on mathematical
models to optimize the assembly line design in terms of workload balancing and SLP. The models
proposed were validated by solving a set of standard test problems using GAMS/CPLEX solver.
The results obtained showed the efficiency of the models in solving problems up to a certain size.
Despite the complexity of the SLP, no meta-heuristic algorithm was proposed in this study to address
large-size problems. Nourmohammadi et al. [26] investigated the effect of the stations’ demand
variations on the SLP solutions. To this attempt, the authors developed a mathematical model for the
stochastic SLP by assuming the station demands to follow a normal distribution where supermarkets
had to keep safety stocks to respond to the demand variations. The results of the study showed that
the mathematical optimization approach proposed could optimally solve SLP while minimizing the
shipment, inventory, and installation costs. Considering the complexity of SLP, the optimization
approach proposed only tested on problems of limited-size, and no huristic/met-heuristic approach
was developed to tackle large size problems. Nourmohammadi et al. [27] addressed the ALBP and SLP
using a hierarchical stochastic mathematical model while assuming that the task times and demands
follow the normal distribution. The proposed model was validated by solving a set of test problems
and computational analysis. Despite the satisfying performance of the model on solving small size
problems, due to the stochastic and complex nature of the SLP, there is no guarantee that large-size
problems could efficiently be solved using the same model. Thus, the lack of an efficient approximation
method/algorithm is felt in this study.

Zhou and Tan [28] addressed the SLP by considering the limited capacity and the utilization
rate of supermarkets. The authors proposed an algorithm based on Differential Evolution (DE) to
optimize the installation/operation cost of the supermarket as well as the transportation cost. The results
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of the study showed that the proposed DE is capable of finding good solutions for the considered
problems. The performance of the DE was tested through comparison with an existing GA approach.
However, no comparison with exact methods (i.e., mathematical model) was performed to evaluate
the quality of the solutions obtained and making a reliable judgment about the efficiency of the
DE developed. Recently, Nourmohammadi et al. [17] addressed the joint supermarket location and
transport vehicle selection problem by assuming different transportation modes for parts feeding.
The authors proposed a mixed-integer programming model and a Hybrid Genetic Algorithm (HGA)
with a variable neighborhood search to address large-sized problems with the objectives of minimizing
the procurement and shipment costs of vehicles as well as the installation cost of supermarkets. To test
the efficiency of the proposed HGA, a set of standard test problems was solved by the algorithm,
the mathematical model, and another heuristic algorithm. The computational results showed that the
HGA could provide quality solutions in a reasonable time. This study was merely concentrated on
SLP and did not investigate the effect of the ALBP on the solutions.

The current study proposes an efficient SA algorithm customized for solving the SLP problem.
In contrast with the previous studies, it is assumed that several supermarkets can be used to feed a single
assembly line, and only specific places in the lineside can be chosen for establishing supermarkets.
The effect of the workload balancing was also investigated on the supermarket cost, which was
considered to be the sum of both the installation cost and the transportation cost. To this aim, SLP was
solved twice (i.e., before and after addressing the ALBP) and the supermarket costs are compared for a
reliable conclusion on the effect of line balancing on the supermarket cost.

3. Problem Description

A general description of the SLP, its assumptions and mathematical formulation are presented in
this section.

3.1. Description of SLP

Assuming a straight assembly line where supermarkets supply stations w = 1, . . . , W (W =number
of stations) with dw bins of parts, stations across the assembly line are designated by (xw, yw).
Alternatively, the locations for supermarkets are demonstrated by (Xs, Ys); s = 1, . . . , PSP where PSP
denotes the possible number of places for establishing supermarkets. To determine the distance traveled
by tow trains for supplying bins of parts to various stations, the three variables of (1) distance between
supermarkets to stations, (2) distance from the station to station, and (3) the distance from the station
back to the supermarket are calculated. In other words, distsvw that indicates the collective distance
train travels from supermarket s to station v, then from station v to w and back from station w to
supermarket s is calculated via the following equation.

distsvw =
{
|Xs − xv|+

∣∣∣Ys − yv
∣∣∣}+ {

|xv − xw|+
∣∣∣yv − yw

∣∣∣}+ {
|Xs − xw|+

∣∣∣Ys − yw
∣∣∣} (1)

Considering the above description, the SLP strives to discover the optimal number of supermarkets
from a possible number of locations. More importantly, SLP attempts to identify the stations that
should be supplied via each supermarket, considering certain assumptions. Figure 1 shows a layout of
an assembly line where two supermarkets are established for material delivery to stations by tow trains.
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3.2. The SLP Assumptions

According to the literature (e.g., [16,28]), the main assumptions of SLP can be summarized
as follows.

• The order (sequence) through which each supermarket visits stations is consecutive. This means,
for example, a particular supermarket is not allowed to serve stations 1, 2, and 5 if stations 3 and 4
are served by other supermarkets.

• The optimal number and location of supermarkets should be selected from the candidate
supermarket places. Supermarket capacity, when it comes to serving the stations, is assumed to
be limited. Thus, additional supermarket positions have to open when the capacity limitation of a
particular supermarket is reached.

• The bins holding parts are identical and standardized in size.
• The arrangement of stations follows a straight-line pattern. Therefore, and considering the shop

floor space limitation, supermarkets are assumed to be located as close to the stations as possible.
Consistently, it is assumed that the supermarket locations smoothly scatter next to the shooter
racks of workstations.

3.3. Problem Formulation

The SLP problem considered in this study is similar to the one addressed in Alnahhal and
Noche [18] in terms of assumptions and constraints. To better understand the problem, the mathematical
programming model of the considered SLP in this study is presented below. The notations used in the
model are given in Table 1.

Table 1. List of notations.

Notations Description

Indices:
w, v station index

s supermarket index
Parameters

W number of stations
PSP possible supermarket places
SIC supermarket installation cost

demw demand for station k per shift
xw,yw x and y coordinates of station w
Xs,Ys x and y coordinates of supermarket s

Tdemvw total demands of all stations from v to w

distsvw
distance AGV/tow train travels from supermarket s to feed all stations from v to w;
distsvw =

{
|Xs − xv|+

∣∣∣Ys − yv
∣∣∣}+ {

|xv − xw|+
∣∣∣yv − yw

∣∣∣}+ {
|Xs − xw|+

∣∣∣Ys − yw
∣∣∣}

SUC the shipment unit cost that occurs by moving one bin for one unit of distance
DSDvw demand standard deviation for all stations from v to w

CAP supermarket capacity in terms of the number of bins
SL service level for the probability of not exceeding the supermarket capacity

Decision variables
Zsvw ∈ (0, 1) 1 if supermarket s feeds all stations from v to w; otherwise 0
NS ∈ Integer number of supermarkets installed

According to the above notations, the Mixed Integer Programming (MIP) formulation of SLP is
given as follows.

Minimize TC =
PSP∑
s=1

W∑
v=1

W∑
w=v

SUC× Tdemvw × distsvw ×Zsvw + SIC×NS (2)

PSP∑
s=1

W∑
v=1

W∑
w=v

Zsvw = NS (3)
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PSP∑
s=1

u∑
v=1

Zsvu =
PSP∑
s=1

W∑
w=u+1

Zs(u+1)w;∀u = 1, . . . , W − 1 (4)

W∑
v=1

W∑
w=v

Zsvw ≤ 1; s = 1, . . . , PSP (5)

(Tdemvw + SL×DSDvw) ×Zsvw ≤ CAP;∀s = 1, . . . , PSP,∀v = 1, . . . , W,∀w = v, . . . , W (6)

NS ≥ 1 (7)

In this model, the objective function aims to minimize the total cost (TC) of supermarkets,
which includes the shipment cost (SC) and the installation cost (IC) as calculated by the first and
the second terms in Equation (2), respectively. Equation (3) determines the number of supermarkets
established for parts supply to stations. Equation (4) ensures that the established supermarkets feed
each group of stations known as cells. Equation (5) guarantees that each group of stations/cells is
supplied by only one supermarket. The capacity limitation of the established supermarkets is satisfied
by Equation (6). This inequality ensures that the average demands of a group of stations assigned to
each supermarket, considering a certain safety level and demand fluctuation at stations, does not exceed
the supermarket capacity. Finally, Equation (7) ensures that at least one supermarket is established for
material supply to stations.

4. The Proposed Solution Approach

In this study, a SA algorithm is proposed to address the SLP. To better clarify the solution procedure,
the general structure for solving the SLP is proposed in Figure 2.

4.1. Simulated Annealing for SLP

SA is a generic probabilistic metaheuristic algorithm that was first introduced by Kirkpatrick
et al. [29]. This algorithm is capable of producing near-optimum solutions with the polynomial cost for
NP-hard problems. In SA, the search process is similar to the local search method in the sense that it starts
with an initial solution in the search space and iteratively investigates the neighbors of each state and
accepts a better solution until it has achieved a near-optimal solution. However, SA can skip local traps
by accepting worse solutions with a certain probability. As suggested in the literature (e.g., [30–32]),
the acceptance probability in this study is calculated according to the Equation presented below.

P(∆E, T) = exp
(

∆E = f (IS′) − f (IS)
T

)
(8)

where T is the annealing temperature that imitates the reducing temperature, which is applied in the
metal annealing process, and f (IS) and f (IS′) are the fitness function values of the current and the
candidate neighbor solutions, respectively. This probability function is reduced as T is updated by a
cooling schedule. To accept the worse solution, a number between 0 and 1 is randomly generated.
The worse solution is accepted if and only if the generated number is smaller than or equal to P;
otherwise, it is rejected.

4.1.1. Initial Temperature and Cooling Rate

The SA algorithm starts with an initial randomly generated vector of integer numbers. The initial
temperature is crucial, given its sheer impact on the identification of good solutions. The selection of
the starting temperature is based on the nature of the problem and the related literature. Based on some
pilot studies, we have set the value of the starting temperature equal to 1000 to keep the intensification
property of the SA algorithm as precise and gentle as possible. In addition, the cooling schedule is
calculated using the Equation presented below.

Tγ+1 = Tγ − 1 (9)
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where Tγ is the temperature in the iteration γ.
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4.1.2. Solution Representation

Two representations types, namely “Prüfer number representation” and “cell boundary”, exist in
the SLP literature, see Alnahhal and Noche [18]. In this study, the second type of representation is
used to enhance the algorithm’s search efficiency. This representation, which is also called “rightmost
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station”, constitutes a string of integer numbers representing a series of stations to be served by each
supermarket. The number in each cell represents the last station to which each supermarket will serve.
Figure 3 shows the cell boundary representation for a ten-supermarket instance. According to this
figure, for instance, supermarket 4 will serve stations 6 to 9 where 6 and 9 are the leftmost and the
rightmost stations/boundaries of supermarket 4, respectively.
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Figure 3. The cell boundary representation.

4.1.3. The Neighborhood Search Operator

To search the neighborhood of each solution, the mutation operator is applied. To this aim,
a randomly selected cell boundary is chosen. Based on the position of this selected cell, the cell
boundary is randomly changed without exceeding its right and left most boundaries (see cell boundary
representation depicted in Figure 3). In this study, after some experiments and pilot tests, the mutation
rate is set to 0.3. The pseudocode of the mutation operator is provided in Table 2.

Table 2. The pseudocode of the mutation operator.

1 Select a random position p, i.e., a supermarket ID, on the current solution IS;
/*p ∈ [1, PSP]*/

2 Calculate the leftmost boundary of position p;
/*plb ∈ [(rightmost station in (p− 1) + 1), (rightmost station in position (p) − 1) ]*/

3 Calculate the rightmost boundary of position p;
/*prb ∈ [(rightmost station in (p) + 1, (rightmost station in position (p + 1) − 1 ]*/

4 Generate a random number r within intervals plb and prb calculated above;
5 Replace the current value in position p with r;
6 Return the resulting solution as a new neighborhood solution IS′;

Figure 4 provides a visual overview of the mutation operator used for the neighborhood search.
In this figure, for instance, the 4th cell boundary can be altered to be any value from 6 to 8 and from 10
to 12 as the left and rightmost boundaries, respectively.
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4.1.4. The Evaluation Function and Termination Condition

In addressing the SLP, we aim to minimize the total logistics cost, including (1) the cost of the
weighted distance traveled by tow trains and (2) the installation cost of supermarkets. The weighted
distance cost is calculated through multiplying the total distance traveled from a particular supermarket
for supplying a station group (cell), by the entire demand of this cell, i.e., Qsvw = Tdemvw × distsvw.
Thus, the objective function of the SLP known as total cost (TC) of the supermarket, which is
composed of the supermarkets’ transportation and installation costs, is calculated using the equation
presented below.

Min TC =
PSP∑
s=1

W∑
v=1

W∑
w=v

SUC×Qsvw + SIC×NS (10)

where USC, SIC and NS are the unit shipment cost, the supermarket installation cost, and the number
of supermarkets, respectively.

The SA algorithm continues until a stopping condition is met. In this study, the algorithm is
terminated when the maximum number of iterations is reached.

4.1.5. Pseudocode of the Proposed Algorithm

To better understand the proposed SA algorithm, the pseudocode of the algorithm is provided in
Table 3.

Table 3. The pseudocode of the proposed Simulated Annealing (SA) algorithm for SLP.

1 T = Tmax; /*Initialize the temperature*/

2 Generate a random solution IS0 based on the cell boundary representation (see cell boundary
representation defined in Section 4.1.2); /*The stations have to be ordered ascendingly*/

3 IS = IS0 ; /*initial solution*/
4 Best solution = IS
5 Repeat

6 Generation of a random neighbor IS′ using the neighborhood search operator (see neighborhood
search presented in Section 4.1.3)

7 Evaluate the objective function values of IS and IS′ namely f (IS) and f (IS′) using the relating
evaluation function (see evaluation function presented in Section 4.1.4)

8 If ∆E = f (IS′) − f (IS) ≤ 0
9 Then s = s′ ; /*Accept the neighbor*/

10 Else accept IS′ with the acceptance probability presented in Equation (8) and set IS = IS′

11 Best solution = IS
12 Tγ+1 = Tγ − 1; /*Temperature update according to the cooling schedule*/
13 Until the maximum number of iterations is reached.
14 Return the best solution

5. Computational Results

To assess the efficiency of the proposed SA algorithm, several test problems with differentiae
characteristics are solved. It is worth mentioning that the test problems are taken from the
“Assembly Line Balancing Data Sets & Research Topics” (see the data sets here, https://assembly-
line-balancing.de/) and adapted to this study by adding the information about the material demand.
The problems are divided into small, medium, and large size based on the number of assembly tasks.
All the problems are solved for two scenarios in terms of possible supermarket locations in the assembly
lines (i.e., PSP = 4 and 5). To further analyze and assess the effect of the installation cost on the solution,
two different values are considered for the supermarket installation cost (i.e., SIC = 500 and 1000).
It is also assumed that the demand for tasks is known in advance in terms of the number of bins.
The demand for each task in bins is generated using uniform distribution U(1, 10). Assuming that the
capacity of supermarkets is limited, the maximum capacity of each supermarket was chosen as equal
to 150 bins. The shipment unit cost (SUC) is considered to be 10 units of cost.

https://assembly-line-balancing.de/
https://assembly-line-balancing.de/
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To make a reliable comparison, considering the defined assumptions, all the problems were solved
by both CPLEX and the SA algorithm proposed. No time limit was given for CPLEX and therefore,
all the problems were solved to optimality. The stopping condition of the SA was set as when the final
temperature of zero is reached using the relating cooling schedule. The SA algorithm was coded in
Matlab R2018a and run on a computer with 2.4 GHz Core i7 CPU.

Table 4 represents the comparison of the best solutions obtained by the SA with the optimal
solutions obtained by CPLEX in terms of the total cost (TC). The gap between the obtained solution by
SA and the optimum solution is also reported for each problem solved. All the problems were solved
for two possible supermarket places (i.e., PSP = 4 and 5) and two different supermarket installation
costs (i.e., SIC = 500 and 1000 unit cost). To view the stochastic treatment of the algorithm, the results are
obtained after running the SA on the considered test problems 10 times, and the best-found solutions
are reported.

Table 4. The results obtained by the CPLEX and the proposed SA for the test problems.

Problem CT

SIC = 500 SIC = 1000

PSP = 4 PSP = 5 PSP = 4 PSP = 5

SA CPLEX Gap (%) SA CPLEX Gap (%) SA CPLEX Gap (%) SA CPLEX Gap (%)

Jackson 7 7400 7400 0.0 7400 7400 0.0 8960 8960 0.0 8960 8960 0.0
9 6928 6928 0.0 6900 6900 0.0 8300 8300 0.0 8300 8300 0.0

Mitchell 14 14,480 14,480 0.0 14,480 14,480 0.0 16,480 16,480 0.0 16,698 16,480 −1.3
15 14,480 14,480 0.0 14,440 14,440 0.0 16,480 16,480 0.0 16,940 16,480 −2.7

Buxey 36 25,455 25,455 0.0 23,860 23,860 0.0 27,455 27,455 0.0 26,360 26,360 0.0
41 23,360 23,360 0.0 23,126 23,126 0.0 25,360 25,360 0.0 25,626 25,360 −1.0

Sawyer 41 20,840 20,840 0.0 20,584 20,584 0.0 22,840 22,840 0.0 23,084 22,840 −1.1
48 20,435 20,435 0.0 20,440 20,408 −0.2 22,435 22,435 0.0 22,940 22,408 −2.3

Gunther 44 25,240 25,240 0.0 24,190 24,190 0.0 27,240 27,240 0.0 26,690 26,690 0.0
49 24,550 24,550 0.0 23,000 23,000 0.0 26,550 26,550 0.0 25,500 25,500 0.0

Kilbridge 62 33,320 33,320 0.0 32,152 32,152 0.0 35,320 35,320 0.0 34,652 34,652 0.0
69 32,000 32,000 0.0 31,276 31,276 0.0 34,000 34,000 0.0 33,776 33,776 0.0

Arcus1 3786 80,620 80,620 0.0 72,360 71,720 −0.9 82,620 82,620 0.0 74,940 74,220 −1.0
4454 74,300 74,300 0.0 67,400 67,400 0.0 76,300 76,300 0.0 69,900 69,900 0.0

Tonge 160 81,680 81,680 0.0 72,880 72,700 −0.2 83,680 83,680 0.0 75,560 75,200 −0.5
168 80,440 80,440 0.0 71,360 71,360 0.0 82,440 82,440 0.0 74,360 73,860 −0.7

To investigate the effect and influence of the workload balancing on the solution of SLP, all the
test problems are solved before and after balancing the workload (i.e., considering the feasible and
the optimum solution for ALBP). Tables 5 and 6 show the obtained results by SA for two possible
supermarket places (i.e., PSP = 4 and 5) on the considered test problems by considering the two different
supermarket installation costs (i.e., SIC = 500 and 1000 unit cost). The solutions are reported and

compared in terms of IC =
PSP∑
s=1

W∑
v=1

W∑
w=v

SUC×Qsvw and SC = SIC×NS as well as the TC representing

the installation cost of the supermarkets (IC), the shipment cost (SC), and the total cost (TC), respectively.
Each problem is solved two times, once with a feasible solution and once with the optimum solution
for the ALBP.
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Table 5. The computational results of applying feasible and optimal assembly line balancing problem (ALBP) + SLP on different test problems for SIC = 500.

No. Problem CT

PSP = 4 PSP = 5

Feasible ALBP + SLP Optimal ALBP + SLP Feasible ALBP + SLP Optimal ALBP + SLP

m IC SC TC m IC SC TC m IC SC TC m IC SC TC

1 Jackson 7 9 2000 5600 7600 8 2000 5400 7400 9 2000 5680 7680 8 2000 5400 7400
2 9 7 1500 5700 7200 6 1500 5428 6928 7 2000 5424 7424 6 2000 4900 6900
3

Mitchell
14 10 2000 13,500 15,500 8 2000 12,480 14,480 10 2000 13,520 15,520 8 2500 11,980 14,480

4 15 9 2000 12,700 14,700 8 2000 12,480 14,480 9 2500 11,960 14,460 8 2500 11,940 14,440
5 Buxey 36 11 2000 24,140 26,140 10 2000 23,455 25,455 11 2500 22,140 24,640 10 2500 21,360 23,860
6 41 9 2000 22,040 24,040 8 2000 21,360 23,360 9 2500 21,084 23,584 8 2500 20,626 23,126
7 Sawyer 41 9 2000 19,640 21,640 8 2000 18,840 20,840 9 2500 18,480 20,980 8 2500 18,084 20,584
8 48 8 2000 18,840 20,840 7 2000 18,435 20,435 8 2500 18,138 20,638 7 2500 17,940 20,440
9

Gunther
44 15 2000 25,720 27,720 12 2000 23,240 25,240 15 2500 23,920 26,420 12 2500 21,690 24,190

10 49 11 2000 22,660 24,660 11 2000 22,550 24,550 11 2500 20,820 23,320 11 2500 20,500 23,000
11 Kilbridge 62 10 2000 32,823 34,823 9 2000 31,320 33,320 10 2500 30,000 32,500 9 2500 29,652 32,152
12 69 9 2000 31,380 33,380 8 2000 30,000 32,000 9 2500 29,080 31,580 8 2500 28,776 31,276
13

Arcus1
3786 22 2000 81,100 83,100 21 2000 78,620 80,620 22 2500 75,340 77,840 21 2500 69,860 72,360

14 4454 21 2000 79,080 81,080 18 2000 72,300 74,300 21 2500 71,840 74,340 18 2500 64,900 67,400
15 Tonge 160 26 2000 87,750 89,750 23 2000 79,680 81,680 26 2500 75,300 77,800 23 2500 70,380 72,880
16 168 24 2000 82,440 84,440 22 2000 78,440 80,440 24 2500 75,150 77,650 22 2500 68,860 71,360

Table 6. The computational results of applying feasible and optimal ALBP + SLP on different test problems for SIC = 1000.

No. Problem CT

PSP = 4 PSP = 5

Feasible ALBP + SLP Optimal ALBP + SLP Feasible ALBP + SLP Optimal ALBP + SLP

m IC SC TC m IC SC TC m IC SC TC m IC SC TC

1 Jackson 7 9 3000 6200 9200 8 3000 5960 8960 9 3000 6440 9440 8 3000 5960 8960
2 9 7 3000 5700 8700 6 2000 6300 8300 7 2000 6872 8872 6 2000 6300 8300
3

Mitchell
14 10 4000 13,500 17,500 8 4000 12,480 16,480 10 5000 12,456 17,456 8 5000 11,698 16,698

4 15 9 4000 12,700 16,700 8 4000 12,480 16,480 9 5000 12,000 17,000 8 5000 11,940 16,940
5 Buxey 36 11 4000 24,340 28,340 10 4000 23,455 27,455 11 5000 22,360 27,360 10 5000 21,360 26,360
6 41 9 4000 22,040 26,040 8 4000 21,360 25,360 9 5000 21,060 26,060 8 5000 20,626 25,626
7 Sawyer 41 9 4000 19,640 23,640 8 4000 18,840 22,840 9 5000 18,480 23,480 8 5000 18,084 23,084
8 48 8 4000 18,840 22,840 7 4000 18,435 22,435 8 5000 18,138 23,138 7 5000 17,940 22,940
9

Gunther
44 15 4000 25,580 29,580 12 4000 23,240 27,240 15 5000 23,604 28,604 12 5000 21,690 26,690

10 49 11 4000 22,660 26,660 11 4000 22,550 26,550 11 5000 21,020 26,020 11 5000 20,500 25,500
11 Kilbridge 62 10 4000 32,822 36,822 9 4000 31,320 35,320 10 5000 30,000 35,000 9 5000 29,652 34,652
12 69 9 4000 31,380 35,380 8 4000 30,000 34,000 9 5000 29,080 34,080 8 5000 28,776 33,776
13

Arcus1
3786 22 4000 81,520 85,520 21 4000 78,620 82,620 22 5000 73,454 78,454 21 5000 69,940 74,940

14 4454 21 4000 79,740 83,740 18 4000 72,300 76,300 21 5000 72,640 77,640 18 5000 64,900 69,900
15 Tonge 160 26 4000 87,750 91,750 23 4000 79,680 83,680 26 5000 75,280 80,280 23 5000 70,560 75,560
16 168 24 4000 82,920 86,920 22 4000 78,440 82,440 24 5000 73,502 78,502 22 5000 69,360 74,360
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6. Analysis of Results and Discussion

This section provides a detailed analysis of the results presented in Tables 4–6. Moreover, the results
are discussed in terms of the contribution to the literature.

Analyzing the results presented in Table 4 shows that the SA algorithm has been successful in
achieving the optimal solutions in most of the test problems except for a few problems. In some cases
where the optimal solution could not be found, the gap was negligible, which could be justified by
the complexity of the problem. According to this table, for SIC = 500, the SA has been capable of
finding the optimal TC for all the problems considering the PSP = 4. For PSP = 5, the optimal solution
was found for 13 out of 16 problems (81% of the problems). Similarly, for SIC = 1000, considering
PSP = 4, the SA algorithm was capable of finding the optimum solution for all the problems. For PSP
= 5, the optimum solution was obtained in 9 out of 16 problems. For the other seven problems or
which the optimal solution could not be found, the gaps are less than 2.7%. According to these results,
it can be concluded that the performance of the SA algorithm proposed, in terms of finding the (near)
optimal solutions, is promising, particularly by taking into account its minimal computational time,
which ranged between 1 and 5 s for small and large size problems, respectively.

By analyzing the results reported in Tables 5 and 6, it can be seen that both SC and TC are
reduced when the SLP was solved after balancing the workload at stations. These results can verify the
argument that optimal workload balancing can positively affect the resolution of SLP. Moreover, the
comparison of results obtained for SLP after balancing the workload and before balancing indicates
that for SIC = 500 the TC has improved by 5.2% and 5.5% for PSP = 4 and PSP = 5, respectively.
For SIC = 1000, TC has been enhanced by 5.2% and 4.6% for PSP = 4 and PSP = 5, respectively.
Additionally, comparison of SLP solutions after and before balancing the workload for both SIC = 500
and SIC = 1000, show that the improvement in TC has been mainly caused by an improvement in
SC rather than IC (i.e., equal IC while SC has almost improved in the majority of the test problems
solved). Additionally, for SIC = 500, the comparison of SLP solutions after balancing the workload for
PSP = 4 and PSP = 5, shows that the increase of the potential number of supermarkets has resulted
in 81% (13 out of 16 problems) decrease in TC. The same effect can be seen for SIC = 1000 where a
similar comparison shows 56% (9 out of 16) reduction in TC. This improvement can be justified to be
the direct result of more freedom in choosing the location for establishing supermarkets, which leads
to lesser transportation.

To provide a more detailed synthesis of results obtained, a comparison measure, known as the
Relative Percent Deviation (RPD), is defined and presented as Equation (11). Using this measure,
the relative percent deviation of different cost terms, namely installation cost (IC), shipment cost (SC),
and total costs (TC) for comparing two scenarios (i.e., Feasible ALBP + SLP with Optimal ALBP + SLP)
can be calculated.

RPDCost term =
Cost termFeasible ALBP+SLP −Cost termOptimal ALBP+SLP

Cost termFeasible ALBP+SLP
; Cost term =IC, SC, TC (11)

Figures 5 and 6 show the comparison of Feasible ALBP + SLP with Optimal ALBP + SLP in terms
of RPDIC, RPDSC, and RPDTC for supermarket installation cost (SIC) of 500 and 1000, respectively,
as well as PSP = 4 and PSP = 5. In both figures, positive RPD(%) shows improvement, while negative
RPD(%) shows a dis-improvement in the relating cost term.

According to Figure 5, for PSP = 4 the amount of improvement in RPDTC is mainly caused by
improvement in RPDSC. For PSP= 5, again RPDSC improvement has brought about the improvement
in RPDTC. It is worth noting that for PSP = 5, despite negative RPDIC in problem 3 the positive RPDSC
has led to positive RPDTC (i.e., +6.7%) in total.

Figure 6 also shows the same pattern that the improvement of RPDSC led to an improvement
in RPDTC with only one exception for PSP = 4, problem 2, where the positive RPDIC dominated the
negative RPDSC resulting in positive RPDTC (i.e., +4.6).
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Figure 5. Comparison of Feasible ALBP + SLP and Optimal ALBP + SLP in terms of RPDIC, RPDSC and
RPDTC for SIC = 500.
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Figure 6. Comparison of Feasible ALBP + SLP and Optimal ALBP + SLP in terms of RPDIC, RPDSC and
RPDTC for SIC = 1000.

7. Conclusions

To promote sustainability in the daily production processes, managers look for the best methods
when dealing with the long-term decision problem of the assembly line design, specifically in terms
of locating supermarkets. Additionally, the supermarket-concept has been recently adopted by
many manufacturers to allow flexible and reliable Just-in-Time material delivery to assembly lines.
Thus, this study aimed to optimize the configuration of assembly lines by considering the supermarket
location problem known as SLP. For this purpose, the SA algorithm was developed to address SLP.
The computational results on known test problems over the two possible supermarket places and two
installation costs combinations verified that the proposed algorithm could optimize the configuration
of the assembly lines from SLP considerations in terms of supermarket transportation and installation
costs in a variety of test problems. Moreover, the effect of workload balancing on the solution of SLP was
also investigated. The results revealed that the workload balancing reduces the total supermarket cost
significantly and contributes to the overall environmental sustainability and economic sustainability of
manufacturers by promoting production sustainability.

Limitation and Future Directions

The study might be considered limited in the sense that it benefited from the SA algorithm to address
SLP. As future research directions, other meta-heuristic algorithms can be applied to solve the same
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problem and benchmarked against the SA algorithm developed in this study. Moreover, the present
study and the algorithm developed could not, conceivably, incorporate the complete stochastic nature
of production processes and activities within the manufacturing industry. Consistently, the stochastic
nature of the production and material demand can also be taken into consideration in future studies.
Additionally, the present study was developed based on the assumption of unique bin size and
supermarket capacity, while future research can relax this particular assumption by considering bins
with different sizes and supermarkets with different capacities. More importantly, and to address any
limitations that the present study might have regarding the scope of production-related problems,
investigating the effect of SLP on other operational decision problems such as routing, scheduling,
and loading problems and their impacts on various dimensions of sustainability can also be an
interesting research area for the future research.
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