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Abstract: An emission trading system (ETS) is a powerful emission reduction tool for achieving
low-carbon economic development in the world. Focusing on the industrial subsectors, this paper
comprehensively analyzes the environmental and economic effects of the pilot ETS in China from
the perspectives of economic development, technological optimization, and innovation-driven
development by using the propensity score matching–difference in differences (PSM-DID) model
based on 2005–2017 provincial panel data. This paper compensates for the limitations of existing
studies on the effects of ETS on different subsectors; furthermore, the triple difference model (DDD)
model is used to discuss the impacts of differences in environmental responsibility and economic
potential among subsectors on policy effects. The empirical results show that: (1) The pilot ETS
produces a 14.5% carbon reduction effect on the covered subsectors while reducing GDP by 4.8%
without achieving a low-carbon economy. Thus, production decline is the main reason for carbon
emission reductions. (2) Economic development factors have significant positive impacts on carbon
emissions, while technological optimization and innovation-driven development are key factors
for achieving reductions in carbon emissions. (3) The pilot ETS produces a 60.1% carbon emission
inhibition effect and 23.2% GDP inhibition effect on the subsectors with greater environmental
responsibility. Therefore, the Chinese government should fully simulate the impact of technological
innovation and utilize resource endowment differences in the environmental and economic aspects of
different sectors to achieve low-carbon economic development.
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1. Introduction

Global climate change poses a major environmental threat to the sustainable development of
society, while the main cause is excessive greenhouse gas emissions. To cope with global climate change,
major countries in the world have adopted different measures and policy combinations to achieve
energy conservation and emissions reduction targets such as renewable energy subsidies, non-fossil
energy replacement, building and equipment efficiency standards, energy intensity targets, differential
electricity prices, environmental and resource taxes, and national emission trading systems (denoted
as ETS) [1]. An ETS is a key market-based policy tool for addressing climate change and includes
legislative mechanisms, industry coverage, quota allocation methods, monitoring and verification
systems, historical data accounting, and specific set-off rules [2]. An ETS is also a powerful way for all
countries to reduce their greenhouse gas emissions and thus mitigate climate change [3].
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As the largest carbon emitter in the world, China is clearly a main part of the international
carbon emission trading market [4]. It was in recognition of this that the National Development
and Reform Commission of China submitted plans to implement the pilot ETS in 2011, which was
launched in seven regions since 2013, i.e., Beijing, Tianjin, Shanghai, Chongqing, Guangdong, Hubei,
and Shenzhen. Together, these pilot projects involve 1.2 billion tons of carbon dioxide emissions
from different sectors, which exceeds all other emission trading mechanisms in the world except for
the European Union’s ETS [5]. These pilot projects have gradually expanded nationwide since 2017.
They initially incorporated approximately 3.5 billion tons of carbon dioxide emissions from more than
1700 companies, mainly from the power sector. The transaction volume will surpass EU’s ETS to
become the largest ETS in the world [6]. The Chinese government has made clear the need for a green,
open, and innovation-driven low-carbon economy. The industrial sector contributes more than 40% of
the GDP, consumes more than 70% of China’s total energy consumption, and occupies a dominant
position in China’s ETS. It is essential to point out that China’s first seven pilot regions actually cover
eight subsectors, and, except for the air transport sector, the other seven subsectors all belong to
industry (see Appendix A for the details). Could these industrial subsectors achieve low-carbon
economic development through the pilot ETS? To answer this research question, this study attempts to
assess the environmental and economic effects of ETS on the actual coverage of industrial subsectors in
the pilot areas and analyzes the key influencing factors. China’s ETS will gradually upgrade from a
regional ETS to a national ETS; the differences in resource endowments among different subsectors
in provincial regions will inevitably increase the uncertainty for the successful implementation of a
national ETS, at which point the different emitters will need to assume “common but differentiated
responsibilities” to achieve the national emission reduction target [7]. Considering the differences
between historical emission liabilities and economic development capacities, this paper investigates
whether there are significant differences in environmental responsibility and economic potential among
provincial subsectors and discusses their ultimate impact on policy effects, which is another objective
of this research.

Next, this paper examines relevant precedent studies which include ETS in major countries around
the world and focuses on related research and the modeling methods of China’s ETS, as well as on case
studies in the included industrial subsectors. Verbruggen et al. provided a preliminary analysis of the
four main components of EU’s ETS: emission reduction measures, regulatory measures, carbon price
levels, and emission reduction costs; they found that to achieve the coexistence of the industrial low
economy pressure target and the low-carbon environment target, the applicability of the existing ETS
needed to be discussed in depth on the basis of its specific design structure [8]. Nguyen et al. used
Japan as an example and assessed the economic viability and environmental efficiency of ETS. Their
results show that modest carbon prices and inelastic constraints could reduce carbon emissions by
42%, while the best combination of elastic methods could reduce emissions by 34% [9]. Nong et al.
assessed the impact of the Australian ETS on carbon emissions and economy and found that carbon
prices will gradually increase from 4.1 Australian dollars/ton in 2015 to 41.3 Australian dollars/ton
in 2030 and that the 28% carbon emission reduction target by 2030 compared to 2005 is achievable.
Meanwhile, GDP is expected to decrease by 1.6% in 2030 [10]. Oke et al. and Diaz et al. conducted
similar studies on ETS of sustainable development in South Africa and low-carbon development in
New Zealand, respectively [11,12].

From the statistics of international energy agencies, which show global carbon emissions of up to
31.6 billion tons in 2012, the developed countries have achieved less than 20% of the global reduction
target, while developing countries are responsible for the rest. As the largest developing country,
China accounts for nearly 50% of the world’s potential for emission reductions [13]. Therefore, many
scholars have used relevant models to study the policy effects of China’s ETS, mainly discussing the
environmental and economic effects. Wang et al. used inter-provincial panel data to analyze the policy
effects of the pilot ETS by using the propensity score matching-difference in differences model (denoted
as PSM-DID). Their results indicated that the ETS could achieve both environmental and economic
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benefits and the low-carbon economy transformation target [14]. Yu et al. used the data envelopment
analysis model (denoted as DEA) to analyze the potential benefits of the ETS and found that it generated
a 21.0% average potential environmental benefit and a 92.0% average potential economic benefit for
industry [15]. Liu et al. adopted the computable general equilibrium model (denoted as CGE) and
analyzed the environmental and economic effects for Hubei province as the exemplary pilot area. Their
results indicated that in 2014, the ETS reduced the carbon emissions of Hubei by 1%, while the economy
decreased by 0.06% [16]. Some scholars have used hybrid models in their research. For instance,
Zhu et al. combined the PSM-DID model with the DEA model and discussed the impacts of the ETS on
green development efficiency in China. Their conclusions show that the ETS has a significant positive
impact of 4.25% on green development efficiency [17]. Zhang et al. combined the DID model with
the stochastic frontier approach (denoted as SFA) and analyzed the effects of the pilot ETS on carbon
intensity and carbon emissions. It was found that the pilot ETS decreased industrial carbon intensity
and carbon emissions by 0.78% and 10.1%, respectively [18]. As can be seen from the above literature,
scholars mainly used the DID, DEA, and CGE models from a bottom-up perspective, to analyze the
policy effects of ETS regions and whole sectors in China. Almost all of the studies found that the
ETS had a significant inhibitory impact on carbon emissions, but the conclusions related to economic
effect were different [19–24]. In 1991, Porter proposed that reasonable environmental regulations could
send positive signals to enterprises, that resource allocations were inefficient and that the technology
needed to be improved, which would autonomously stimulate the “innovation compensation” effect.
Therefore, Porter’s hypothesis could not only offset the “compliance cost” of enterprises but also
achieve both environmental and economic benefits by improving productivity and international
competitiveness [25]. This raises the question of whether the industrial subsectors covered by China’s
ETS can achieve a win-win situation for the environment and the economy by promoting technological
optimization and innovation-driven development. To answer this question, the limited literature,
which discussed the policy effects of ETS in specific coverage sectors, mainly began at the enterprise and
subsector levels. Focusing on the panel data of listed enterprises in seven energy-intensive industries
in China from 2010 to 2017, Zhang and Liu used the DID model to select the listing age, firm size,
capital structure, liquidity, and R&D investment to analyze the economic effect of ETS on enterprises.
Their conclusions indicated that the regulatory policy had a positive economic impact on electric
power enterprises and a negative economic impact on non-ferrous metal enterprises, and thus showed
clear industrial heterogeneity; it had positive economic impacts on paper production and aviation
enterprises with a lag of two to four years and showed long-term profitability on the whole [26].
Zhang et al. used the same method and selected the listing age, per capita fixed assets, and enterprise
ownership to discuss the effects of ETS on technological innovation by enterprises; they found that the
policy had positive impacts on the technological innovation of power and aviation enterprises but
had negative impacts on the other six industries and thus indicated clear heterogeneity [27]. There
was also research on the total factor productivity of manufacturing enterprises, denoting that the ETS
did not achieve the ideal “Porter effect” [28]. The literature from the enterprise perspective mainly
concluded that ETS policy effects have significant industrial heterogeneity for the listed enterprises in
the covered industries and mainly selected financial indicators to analyze specific reasons such as the
scale of the enterprise and the years of listing. Zhang et al. used the DEA model to analyze policy
effects on carbon emissions and GDP in industrial subsectors. They concluded that the time-restricted
sector trading scenario and the unrestricted sector trading scenario had positive impacts on industrial
added value of 55.17% and 73.76%, respectively, from 2006 to 2015, and reduced carbon emissions
by 58.30% and 65.25%, respectively [29]. Focusing on the panel data of inter-provincial industrial
subsectors from 2005 to 2015, Zhang and Duan used the DID model to select the output, state-owned
asset ratios, fixed asset ratios, and profitability as control variables to discuss the effects of ETS on
the total output and employment of industrial subsectors. Their conclusion is noteworthy in that the
pilot ETS significantly reduced GDP and would lead to significant employment declines in related
subsectors, but would not produce a “decoupling” of carbon emissions and GDP in the short term [30].
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Zhang et al. used the DID model and selected the same control variables to analyze the effects of
ETS. Their conclusion demonstrated that China’s ETS would reduce carbon emissions and show an
increasing trend over the years but would fail to effectively reduce the carbon intensity of the covered
subsectors. They further found that the main reason for reductions in carbon emissions was to reduce
production, so the proportion of free quota should be tightened to facilitate technological innovation
and effectively reduce carbon intensity in the future [31]. The literature on the effects of ETS on the
covered sectors has also mainly selected relevant financial indicators for analysis and argued that the
ETS could promote different levels of carbon emission reductions, but there are some disagreements
regarding whether the economic effect could be achieved.

To summarize, the literature on the policy effects of ETS was mainly based on whole sectors in
China and relevant pilot areas. As sector studies focused on the industrial sectors with the highest
emission levels, research on the specific coverage of ETS in China was sufficiently in-depth; the
research methods used mainly included the DID, DEA, and CGE models, and there was little research
using multiple models from different perspectives. Previous research has mainly addressed the
environmental and economic effects of ETS, and much of this research concluded that an ETS will
produce significant emission reductions, but the economic effect remains to be studied. In view of the
complexity of data collection, the variables selected by the relevant literature for industrial subsectors
were relatively few in number, as the financial indicators were mainly selected at both the enterprise
and departmental levels. These studies were less concerned with significant technical and innovation
indicators to achieve low-carbon economic development, and thus had certain limitations.

Based on the existing research results, this paper makes three main contributions. First, instead
of examining the provincial industrial sector as a whole, because China’s ETS initially covered the
industrial high-emission subsectors of the pilot areas, provincial industrial sectors are subdivided
into 37 subsectors, according to the industrial classification code of national economic activities (GB/T
4754-2011), and seven industrial subsectors involved in the pilot areas are defined as the treatment
group and reflect the actual coverage of the pilot ETS. Second, while most studies used a single
model, we used both the PSM-DID model according to different matching methods, to eliminate the
selection bias of large sample sets, and the triple difference model (denoted as DDD), introduced
on the basis of PSM-DID research to construct a new control group to fix trend differences, thereby
obtaining unbiased estimations of the treatment effect [32]. Third, while previous studies on industrial
subsectors mainly chose the financial indicators, from the perspectives of economic development,
technological optimization, and innovation-driven development, we used the panel data of provincial
subsectors from 2005–2017 to select representative variables, in order to analyze the environmental
and economic effects of the pilot ETS from multiple perspectives. More importantly, on the basis of the
above results, we considered the differences in environmental responsibility and economic potential
among subsectors, and then evaluated the influence of developmental heterogeneity on the ultimate
policy effects, which are further discussed by considering the imbalance of resource endowments
among different subsectors to provide supporting evidence for the national ETS future plan in China.

The remainder of this research is organized as follows. In Section 2, the research design, methods,
and data are introduced. In Section 3, empirical results are presented, including PSM matching results,
DID benchmark regression results, a robustness test, and the triple difference model (DDD) regression
results. Then we discuss and analyze all these empirical results and propose some implications
and suggestions. In Section 4 the conclusion of the research is summarized, putting forward the
policy proposals.

2. Research Design and Methodology

2.1. Research Design

The seven pilot areas covered by the ETS in China have different geographical locations, carbon
emissions, and gross economies, but all pilot areas follow the principle of “invigorating the large ones
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while relaxing small ones”, and mainly cover sectors with strong development endowments and great
emission reduction potential [33,34]. Instead of viewing all sectors as a whole, this study focuses on the
industrial high-emission subsectors covered by the pilot ETS policy in China; the pilot ETS is viewed as a
“quasi-experiment” and take the included industrial subsectors in the pilot areas as the treatment group,
while the industrial subsectors not included in other areas are set as the control group (see Appendix A
for the details). From the perspectives of economic development, technological optimization, and
innovation-driven development, representative indicators are exploited to compare the changes of
carbon emissions and GDP before and after the pilot ETS. Thus, the environmental and economic
benefits of ETS in China are analyzed. By illustrating the environmental responsibility-economic
potential distribution map of industrial subsectors, the impacts of developmental differences on the
ultimate effects of the pilot ETS are further discussed based on the above regression results.

2.2. Methodology

2.2.1. PSM-DID Model

The DID model is widely used to evaluate the effectiveness of sociological public policy
implementations. The basic idea is to divide samples into the treatment group, with policy intervention,
and the control group, without policy intervention. If there is no significant difference between both of
these groups before and after the policy shock, this implies that the change of intervention policies
has no significant effect on the treatment group (counterfactual results). If this is not the case, the
actual effect of the policy shock can finally by obtained by comparing the trend differences between
the treatment group and the control group [35,36]. In order to avoid any bias in the group samples,
the PSM model is further utilized to examine the differences of samples before and after matching,
for the potential deviations according to different matching methods. Thus, the PSM-DID model
constructs a random assignment experiment and ensures effective estimations [37]. Compared with
other methods related to policy effectiveness, the synthetic control method (denoted as SCM) requires
for the counterfactual weight to be kept within the non-negative interval of 0–1. If the gap of the
treatment group is significantly different from that of the control group, a suitable counterfactual set
will not be obtained, and thus the SCM requires a long time span of samples before and after policy
intervention. It is difficult to construct an ideal control group to reflect the actual implementation
effect of the policy in practice [38], because the difference between the regression discontinuity model
(denoted as RD) and the DID model lies in the definition of dummy variables. Thus, the RD model
needs to find the critical point between the treatment and control groups, and then the effect of policy
intervention is inferred based on the change of the samples on both sides of this critical point. The final
outcome will only apply to the samples interval around the critical point and the existing limitations of
external validity will evolve accordingly [39]. In this research, the seven industrial subsectors covered
by the pilot areas are set as the treatment group, while those industrial subsectors not covered in other
areas are set as the control group, and dummy variables are introduced in the experimental period.
Considering the actual situation of the pilot ETS in Hubei and Chongqing, and in order to entirely
reflect the actual policy effects of the pilot ETS, we take 2014 as the baseline year of the pilot. In view of
this, we first use different PSM methods to verify whether the pilot ETS is a randomized assignment
experiment; then, by gradually adding different control variables, the environmental and economic
effects are estimated by regression. The complete DID model is as follows.

Cit = α0 + α1subsi ∗ perit + α2Controlit + ηi + γt + µit (1)

Yit = β0 + β1subsi ∗ perit + β2Controlit + ηi + γt + µit (2)

Here, Cit and Yit are the environmental effect dependent variable and the economic effect
dependent variable of the pilot ETS of industrial subsector i in year t, respectively. Subsi is the subsector
dummy variable; if industrial subsector i belongs to the subsectors included in the pilot ETS, subsi = 1,
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otherwise subsi = 0; perit is the time dummy variable; if it belongs to the pilot ETS implementation year,
i.e., 2014–2017, perit = 1; otherwise perit = 0, i.e., 2005–2013. “Control” reflects the control variables of
environmental effect and economic effect, respectively; η is the subsectors’ fixed term; γ is the time
fixed term; and µ is the time disturbance term. Therefore, the interaction term “Z = subsi*perit” we are
concerned with is represented by the environmental treatment effect and economic treatment effect of
the industrial subsectors included in the pilot ETS in the experimental period after excluding the time
trend differences.

2.2.2. DDD Model

The hypothesis of the common trend of the DID model requires that any change in the treatment
group be the same as that in the control group before the experiment. Otherwise, the DDD model
should be introduced to control trend differences and to achieve unbiased estimations of treatment effect
by constructing a new control group. Based on the above DID estimation results, to further analyze the
influence mechanism of environmental responsibility difference and economic potential difference
among industrial subsectors on the final implementation effects of the pilot ETS, the environmental
responsibility difference dummy variable and economic potential difference dummy variable are
introduced. The triple difference model is constructed as follows.

Cit = α0 + α1subsi ∗ perit ∗ if_cj + α2subsi ∗ perit + α3subsi ∗ if_cj + α4perit ∗ if_cj

+α5controlit + ηi + γt + µit
(3)

Yit = β0 + β1subsi ∗ perit ∗ if_cj + β2subsi ∗ perit + β3subsi ∗ if_cj + β4perit ∗ if_cj

+β5controlit + ηi + γt + µit
(4)

Cit = α0 + α1subsi ∗ perit ∗ if_gj + α2subsi ∗ perit + α3subsi ∗ if_gj + α4perit ∗ if_gj
+α5controlit + ηi + γt + µit

(5)

Yit = β0 + β1subsi ∗ perit ∗ if_gj + β2subsi ∗ perit + β3subsi ∗ if_gj + β4perit ∗ if_gj
+β5controlit + ηi + γt + µit

(6)

Here, if_c is the dummy variable of environmental responsibility difference and if_g is the dummy
variable of economic potential difference. By selecting cumulative carbon emissions and the cumulative
GDP of various industrial subsectors to represent environmental responsibility and economic potential,
if the cumulative carbon emissions and the cumulative GDP of industrial subsector j from 2005 to
2017 rank at the top 50% of all industrial subsectors in a region, the corresponding dummy variables
if_c and if_g are both set to 1, otherwise they are taken as 0. Other variable settings are the same
as for the DID model. We are also interested in the triple interaction term “Z = subsi*perit*if_c” or
“Z = subsi*perit*if_g”, which is further discussed in the developmental differences among industrial
subsectors on the final effects of the pilot ETS. Through the interaction term “Z = subsi*perit”, we
can judge whether development heterogeneity of subsectors exists among different regions and the
validity of the introduced DDD model.

2.3. Data and Variables

According to the research design in Section 2.1, this research first adopts the industrial classification
code of national economic activities (GB/T 4754-2011), dividing provincial industries into specific
subsectors and removing most of the subsectors for which the observed values are zero. Moreover, panel
data from 37 industrial subsectors from 2005–2017 are selected. When considering data availability,
detailed subsector energy consumptions are not given in the statistical yearbooks of Shanghai, Jiangsu,
Zhejiang, Sichuan, and Xizang. And detailed subsector R&D data are not provided in the statistical
yearbooks of Inner Mongolia, Liaoning, Jilin, Anhui, Jiangxi, Hainan, Guizhou, Qinghai, and Ningxia.
Data of Shenzhen comes from Guangdong’s statistical yearbook. Therefore, this study involves the
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seven industrial subsectors included in the pilot areas taken as the treatment group, i.e., Beijing, Tianjin,
Chongqing, Hubei, and Guangdong; and the other excluded industrial subsectors of the above five
areas and remaining twelve areas were taken as the control group, i.e., Hebei, Shanxi, Heilongjiang,
Fujian, Shandong, Henan, Hunan, Guangxi, Yunnan, Shaanxi, Gansu, and Xinjiang (see Appendix A
for the details). Some missing data were supplemented by interpolation methods, and the logarithmic
transformation of related variables was used to eliminate heteroscedasticity. Meanwhile, to prevent
outliers, we truncated the corresponding quantiles of 5% and 95% of the variables involved in the panel
data and ultimately obtained data for 3438 available non-zero annual provincial industrial subsectors.

2.3.1. Indicators of Environmental Effect

As the calculation of carbon emissions contains both fossil fuels and other sources of electricity, the
provincial statistical yearbook (2006–2018) compiled the provincial original data on carbon emissions
of fossil fuels from 2005 to 2017, the standard coal-equivalent coefficient to transfer the other sources
of electricity, the carbon emission coefficient, and the average carbon dioxide emission factors of
regional power grids required for calculating the power carbon emissions. These are derived from
the inter-governmental panel on climate change (IPCC) and the general principles for calculation
of total production energy consumption (GB/T 2589-2008). Given the relevant literature on ETS
and the research needs of this paper, we selected control variables of environmental effect from the
perspectives of economic development, technological optimization and innovation-driven development
and comprehensively evaluated the environmental effect of the pilot ETS. Among them, GDP and
gearing ratio represent economic development factors, labor productivity and energy efficiency
represent technological optimization factors, and R&D ratio and R&D intensity represent innovation
driving factors [40]. The relevant original sources were derived from the provincial statistical yearbook
(2006–2018), the China Industrial Statistical Yearbook (2006–2018), the China Science and Technology
Statistical Yearbook (2006–2018), and the Wind database. The specific meanings and calculation
methods of each indicator are shown in Table 1.

Table 1. Descriptive statistics and calculation method.

Variables Mean N Calculation Method

carbon_emissions 4.406 3438 Logarithm of CO2 emissions
(ten thousand tons) (1.709)

gross_domestic_production 4.628 3438 Logarithm of GDP
(RMB100 million yuan) (1.452)

gearing_ratio(%) 54.940 3438 Liabilities/assets
(9.808)

labor_productivity 37.745 3438 Subsectors output/employment
(ten thousand yuan/person) (22.098)

energy_efficiency 14.950 3438 Subsectors output/energy consumption
(ten thousand yuan/ton standard) coal) (22.127)

R&D_ratio(%) 2.064 3438 R&D staff/employment
(2.099)

R&D_intensity(%) 1.326 3438 R&D expenditure/output
(1.385)

Capital 5.232 3438 Logarithm of assets
(RMB100 million yuan) (1.426)

Labor 7.349 3438 Labor
(ten thousand people) (11.939)
energy_consumption 2.885 3438 Logarithm of energy consumption

(ten thousand tons standard coal) (2.141)

Note: Standard errors in brackets. GDP converted into constant price in 2005.
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2.3.2. Indicators of Economic Effect

The control variables of economic effect are assets, labor, and environmental restriction [22,29].
To ensure comparability, all the original data were converted to constant prices in 2005. The original
data come from the provincial statistical yearbook (2006–2018) and the Wind database. The specific
meanings and calculation methods of each indicator are shown in Table 1.

2.3.3. Indicators of Development Differences

To further measure the final policy impacts of the pilot ETS, based on the results of the DID
estimation above, this paper used the DDD model to evaluate provincial developmental differences in
environmental responsibility and economic potential, and the selected representative indicators were
the cumulative carbon emissions and cumulative GDP of each province from 2005 to 2017; the relevant
data were acquired by calculation [41–43].

3. Empirical Results and Their Implications

3.1. Estimation of PSM Model

We used the PSM model to verify the rationality and feasibility before and after panel data matching.
Figure 1a–f, respectively, represent the control variables equilibrium diagrams of the environmental
and economic effects before and after caliper radius matching, nearest neighbor matching in caliper,
and kernel matching. As can be seen from Figure 1, both environmental effect control variables and
economic effect control variables are significantly improved after matching (the standardized bias
is less than 10%). In addition, the balance test is the standard to judge whether the PSM model is
successful or not. The p > |t| values of each variable in this paper are not significant after the three
aforementioned matching modes (see Appendix B for the details), showing that the selected samples
do not exhibit significant differences before and after the experiment, i.e., that the pilot ETS can be
regarded as a random assignment experiment.

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 21 

 (2.099)   
R&D_intensity(%) 1.326 3438 R&D expenditure/output 

 (1.385)   
Capital 5.232 3438 Logarithm of assets 

(RMB100 million yuan) (1.426)   
Labor 7.349 3438 Labor 

(ten thousand people) (11.939)   
energy_consumption 2.885 3438 Logarithm of energy consumption 

(ten thousand tons standard coal) (2.141)   
Note: Standard errors in brackets. GDP converted into constant price in 2005. 

3. Empirical Results and Their Implications 

3.1. Estimation of PSM Model 

We used the PSM model to verify the rationality and feasibility before and after panel data 
matching. Figures 1a–f, respectively, represent the control variables equilibrium diagrams of the 
environmental and economic effects before and after caliper radius matching, nearest neighbor 
matching in caliper, and kernel matching. As can be seen from Figure 1, both environmental effect 
control variables and economic effect control variables are significantly improved after matching (the 
standardized bias is less than 10%). In addition, the balance test is the standard to judge whether the 
PSM model is successful or not. The p > |t| values of each variable in this paper are not significant 
after the three aforementioned matching modes (see Appendix B for the details), showing that the 
selected samples do not exhibit significant differences before and after the experiment, i.e., that the 
pilot ETS can be regarded as a random assignment experiment.  

   

(a) (b) (c) 

   
(d) (e) (f) 

Figure 1. Balancing test based on three matching algorithms. (a) Caliper radius matching—
environmental effect (b) Caliper radius matching—economic effect (c) Nearest neighbor match in 
caliper—environmental effect. (d) Nearest neighbor match in caliper—economic effect (e) Kernel 
matching—environmental effect (f) Kernel matching—economic effect. 

3.2. Benchmark Regression 

3.2.1. The Overall Impact on the Reduction Effect 

Based on Equation (1) in Section 2.2.1, the emission reduction effect of the pilot ETS on the 
different subsectors is discussed by exploiting the DID model with carbon emissions used as the 

-50 0 50 100
Standardized % bias across covariates

ee

ri

rs

gr

lngdp

lp

Unmatched
Matched

0 20 40 60 80 100
Standardized % bias across covariates

l

lnk

lne

Unmatched
Matched

0 20 40 60 80 100
Standardized % bias across covariates

l

lnk

lne

Unmatched
Matched

Figure 1. Balancing test based on three matching algorithms. (a) Caliper radius
matching—environmental effect (b) Caliper radius matching—economic effect (c) Nearest neighbor
match in caliper—environmental effect. (d) Nearest neighbor match in caliper—economic effect
(e) Kernel matching—environmental effect (f) Kernel matching—economic effect.
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3.2. Benchmark Regression

3.2.1. The Overall Impact on the Reduction Effect

Based on Equation (1) in Section 2.2.1, the emission reduction effect of the pilot ETS on the different
subsectors is discussed by exploiting the DID model with carbon emissions used as the explained
variable and with the subsectors’ dummy, time dummy, and interaction term taken as the explanatory
variables. In addition, we successively added control variables to test the robustness of the DID model.
Table 2 shows the baseline analysis results of the environmental effect of the pilot ETS, in which the
m1 model includes no control variables and the m2 to m7 models gradually add six control variables
from the perspectives of economic development, technological optimization, and innovation-driven
development. The six control variables are GDP, gearing ratio, labor productivity, energy efficiency,
R&D ratio, and R&D intensity, in sequence.

Table 2. Impact of the pilot emission trading system (ETS) on the reduction effect.

m1 m2 m3 m4 m5 m6 m7

Z −0.154 −0.067 −0.109 −0.083 −0.109 * −0.137 * −0.145 *
(0.200) (0.125) (0.126) (0.119) (0.106) (0.104) (0.104)

lngdp 0.824 *** 0.831 *** 0.877 *** 0.860 *** 0.879 *** 0.878 ***
(0.013) (0.014) (0.014) (0.012) (0.012) (0.012)

gr 0.018 *** 0.020 *** 0.017 *** 0.017 *** 0.017 ***
(0.002) (0.002) (0.002) (0.002) (0.002)

lp −0.009 *** −0.006 *** −0.005 *** −0.005 ***
(0.001) (0.001) (0.001) (0.001)

ee −0.027 *** −0.026 *** −0.026 ***
(0.001) (0.001) (0.001)

rs −0.072 *** −0.078 ***
(0.008) (0.012)

ri −0.010 *
(0.017)

cons 4.218 *** 0.490 ***
−0.544 **
−0.544 ***
0.544 ***

−0.546 *** −0.050 −0.055 −0.056

(0.035) (0.063) (0.140) (0.137) (0.117) (0.117) (0.117)
industry yes yes yes yes yes yes yes
period yes yes yes yes yes yes yes

N 3438 3438 3438 3438 3438 3438 3438
adj.R-sq 0.094 0.566 0.577 0.589 0.704 0.708 0.711

Note: Standard errors in brackets. * p < 0.05, ** p < 0.01, *** p < 0.001.

As can be seen from Table 2, the result of the m1 model with a subsector fixed term and time fixed
term illustrates that the interaction term Z is negative but not significant under the condition of no
control variables. After adding the control variables in sequence, the resolvable coefficient R2 from the
m2 to m7 models increases from 0.094 to 0.711. The coefficients of the interaction term Z do not change
significantly while the significance of Z from the m2 to m7 models changes from being insignificant
to significant, which indicates that the pilot ETS mechanism is not stable in the initial stage and is
vulnerable to other policies. Therefore, key control variables need to be introduced to make the model
results more robust. The estimation result of m7 model is analyzed below.

In the m7 model, the coefficient of the interaction term Z shows that the pilot ETS exerts a
significant negative impact on environmental effect and reduces carbon emissions by 14.5%. The
analysis of the control variables shows that the GDP and gearing ratio of the economic development
factors have significant positive impacts on carbon emissions; if the GDP increases by 1%, carbon
emissions increase by 0.878%, and if the gearing ratio increases by one unit, carbon emissions increase
by 0.017 units. Technological optimization factors such as labor productivity and energy efficiency
and driving factors such as R&D ratio and R&D intensity have significant negative impacts on carbon



Sustainability 2020, 12, 5370 10 of 20

emissions. Among them, if labor productivity and energy efficiency are increased by one unit, carbon
emissions will be reduced by 0.005 units and 0.026 units, respectively, whereas if the R&D ratio and
R&D intensity are increased by one unit, carbon emissions will be reduced by 0.078 units and 0.010
units, respectively.

3.2.2. The Overall Impact on the Economic Effect

Based on Equation (2) in Section 2.2.1, the economic effect of the pilot ETS on the subsectors
is discussed by exploiting the DID model with GDP used as the explained variable and with the
subsectors’ dummy, time dummy, and interaction term taken as the explanatory variables. In addition,
we successively added control variables to test the robustness of the DID model. As in Section 3.2.1,
Table 3 shows the baseline analysis results of economic effect of the pilot ETS, in which the m1 model
includes no control variables and m2 to m4 models gradually add three control variables, namely
assets, labor, and energy consumption.

Table 3. Impact of the pilot ETS on the economic effect.

m1 m2 m3 m4

Z −0.106 −0.061 −0.034 * −0.048 *
(0.152) (0.066) (0.059) (0.058)

lnk 0.931 *** 0.825 *** 0.731 ***
(0.009) (0.012) (0.015)

l 0.022 *** 0.019 ***
(0.002) (0.002)

lne 0.107 ***
(0.008)

cons 4.524 *** −0.104 * 0.268 *** 0.452 ***
(0.031) (0.046) (0.053) (0.057)

industry yes yes yes yes
period yes yes yes yes

N 3438 3438 3438 3438
adj.R-sq 0.036 0.808 0.829 0.842

Note: Standard errors in brackets. * p < 0.05, ** p < 0.01, *** p < 0.001.

As can be seen from Table 3, the result of m1 model with a subsector fixed term and time fixed
term shows that the interaction term Z is negative but not significant under the condition of no control
variables. After adding the control variables in sequence, the resolvable coefficient R2 from the m2 to
m4 models increases from 0.036 to 0.842, and the significance of the term Z from the m2 to m4 models
becomes significant. The estimation result of the m4 model is analyzed below.

In the m4 model, the interaction term Z shows that the pilot ETS has a significant negative impact
on economic effect, of 4.8%. The analysis of the control variables shows that assets, labor, and energy
consumption all have significant positive impacts on GDP; if assets and energy consumption increase
by 1%, GDP increases by 0.731% and 0.107%, respectively; and if labor goes up by one unit, GDP
goes up by 0.019 units. The main cause of the negative economic effect is the decline of production in
industrial subsectors covered by the pilot ETS. We found that the labor and energy consumption of
relevant subsectors in pilot areas have declined significantly since the ETS was implemented, which is
also the cause of the economic decline.

3.3. Placebo Test

The above DID regression results satisfy the consistency estimation on the premise that the
treatment group and control group are consistent with the hypothesis of parallel trends, i.e., without
the pilot ETS’ intervention, the environmental and economic effects of the policy show the same trend
without obvious systematic differences. The robustness of the policy effects is evaluated by selecting a
time placebo test for any fixed term. This paper assumes the implementation year of ETS is 2010–2013,
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and, thus, the remaining variables set the same period. If the environmental and economic effects of
the policy have not changed significantly compared to the years 2014–2017, this indicates that the other
policies could result, out of environmental reasons, in the differences between the treatment group and
the control group without any ETS intervention. On the contrary, this finding shows the robustness of
the PSM-DID estimation results [28,32]. The dummy variables if_2010-if_2017 mean that the starting
year of ETS implementation is set as 2010 to 2017, while the m1 and m2 models report placebo tests
for environmental and economic effects, respectively. As shown in Table 4, the m1 model shows
that the interaction terms of the environmental effect from 2010 to 2013 are not significant before the
policy implementation, while from 2014 to 2017, after the policy was actually enacted, the remaining
coefficients are all significant at a level of 10% (except for the interaction term in 2014, which is not
significant). From 2014 to 2017, the environmental effect coefficients are −15%, −14.9%, −14.4%, and
−14.7%, respectively, whereas the interaction term coefficients are stable between −14.4% and −15%.
The m2 model shows that the coefficients of the interaction term of economic effect from 2010 to 2013,
before the policy actually occurred, are all insignificant except in 2013. From 2014 to 2017, after the
policy actually took place, the coefficients of the interaction term are all significant at a level of 10%;
the coefficients of the economic effect are −3.6%, −5.9%, −4.9%, and −4.7%, respectively, while the
coefficients of the interaction term are stable between −3.6% and −5.9%, which indicates the robustness
of the pilot ETS regression results in Section 3.2.

Table 4. Time placebo test.

m1 m2

Z −0.145 *(0.104) −0.048 *(0.058)
Z.if_2010 −0.541(0.239) 0.153(0.098)
Z.if_2011 −0.496(0.230) 0.105(0.089)
Z.if_2012 −0.291(0.222) −0.007(0.089)
Z.if_2013 −0.173(0.216) −0.016 *(0.091)
Z.if_2014 −0.150(0.154) −0.036 *(0.092)
Z.if_2015 −0.149 *(0.145) −0.059 *(0.073)
Z.if_2016 −0.144 *(0.146) −0.049 *(0.075)
Z.if_2017 −0.147 *(0.181) −0.047 *(0.085)
industry no no
period no no

adj.R-sq 0.758 0.834

Note: Standard errors in brackets. * p < 0.05, ** p < 0.01, *** p < 0.001. 2009 as the baseline of 2010–2013, 2013 as the
baseline of 2014–2017.

3.4. Impact of Environmental Responsibility-Economic Potential Differences on Policy Effects

According to the baseline regression results of Section 3.2, we observe that China’s pilot ETS
produced significant positive environmental effects and negative economic effects on the seven
industrial subsectors initially covered. However, the developmental differences of diverse industrial
subsectors at the provincial level will be a major challenge for policy makers when designing a growing
national ETS in the future. Do the differences in resource endowments affect the final effects of ETS? By
calculating the cumulative carbon emissions and cumulative GDP of all provincial industrial subsectors
from 2005 to 2017, Figure 2 shows the distribution of environmental responsibility as well as economic
potential of the control group and the treatment group; it can be seen that the treatment group is
superior to the control group in both environmental responsibility and economic potential. Based on
the previous PSM-DID model results, this paper introduces the dummy variables of environmental
responsibility difference and economic potential difference to construct the DDD model, in order to
study the impact of the environmental and economic effects of the developmental heterogeneity of
industrial subsectors.
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Figure 2. Distribution diagram of environmental responsibility-economic potential.

3.4.1. Impact of Environmental Responsibility Difference on Policy Effects

Based on Equations (3) and (4) in Section 2.2.2, the DDD model was used to analyze the impacts
of environmental responsibility difference in industrial subsectors on the environmental and economic
effects of the pilot ETS, with carbon emissions and GDP as the explained variables of the environmental
and economic effects, and the subsectors’ dummy, time dummy, dummy variable of environmental
responsibility, and interaction term as the explanatory variables. Table 5 shows the analysis results of
the environmental liability difference for the covered subsectors on the policy effects. Among them,
the m1 and m2 models are the analysis results of the environmental effect, which are the same as
discussed in Section 3.2; the m1 model does not add any control variables, whereas the m2 model adds
six control variables from the perspectives of economic development, technological optimization, and
innovation-driven development. The m3 and m4 models are the analysis results of the economic effect
of policy; the m3 model does not add any control variables, whereas the m4 model adds three control
variables as above.

Table 5. Impact of environmental responsibility difference on policy effects.

m1 m2 m3 m4

Z 0.268(0.207) 0.693 **(0.233) −0.256 **(0.200) −0.249 ***(0.119)
Z*if_c −0.534 **(0.272) −0.601 ***(0.256) −0.240 **(0.233) −0.232 **(0.138)
lngdp 0.726 ***(0.013)

gr 0.015 ***(0.002)
lp −0.006 ***(0.001)
ee −0.020 ***(0.001)
rs −0.053 ***(0.012)
ri −0.010 *(0.016)

lnk 0.674 ***(0.018)
l 0.033 ***(0.003)

lne 0.120 ***(0.009)
N 3438 3438 3438 3438

adj.R-sq 0.359 0.717 0.110 0.811

Note: Standard errors in brackets. * p < 0.05, ** p < 0.01, *** p < 0.001.

As seen in Table 5, the m1 model shows that under the condition of no control variables, the
interaction term Z is not significant and the triple interaction term Z*if_c is significant. The resolvable
coefficient R2 of model 2 increases from 0.359 to 0.717 by adding control variables, the coefficients
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of the core explanatory variables Z and Z*if_c do not change fundamentally, but the significance of
Z and Z*if_c in the m2 model are significant at least at the 5% level, which demonstrates that the
environmental responsibility difference among subsectors will affect the environmental effect of the
pilot ETS. When comparing the results of the m3 and m4 models, the coefficients and significance of
the explanatory variables Z and Z*if_c do not change fundamentally after adding the control variables
but the resolvable coefficient R2 increases from 0.110 to 0.811, which indicates that the difference in
environmental responsibility among the subsectors will affect the economic effect of the pilot ETS. The
regression coefficient of model 2 and model 4 are discussed below.

In model 2, the coefficient of the triple interaction term Z*if_c shows that the pilot ETS has a
stronger inhibition effect on carbon emissions for subsectors with greater environmental responsibilities.
In other words, the pilot ETS produces a 60.1% carbon emission inhibition effect on subsectors with
greater environmental responsibilities compared to those with fewer environmental responsibilities.
By analyzing the control variables, we find that GDP and gearing ratios of the economic development
factors have significant positive impacts on carbon emissions; if GDP increases by 1%, carbon emissions
increase by 0.726%, and if the gearing ratio increases by one unit, carbon emissions increase by
0.015 units. Factors of technical optimization such as labor productivity and energy efficiency and
innovation-driven factors such as R&D ratio and R&D intensity have significant negative impacts
on carbon emissions. Among them, if labor productivity and energy efficiency are increased by one
unit each, carbon emissions are reduced by 0.006 and 0.020 units, respectively, whereas if the R&D
ratio and R&D intensity are increased by one unit each, carbon emissions are reduced by 0.053 and
0.010 units, respectively.

In model 4, the triple interaction term coefficient Z*if_c shows that the pilot ETS exerts stronger
GDP inhibition on subsectors with greater environmental responsibilities. In other words, the pilot ETS
produces a 23.2% GDP inhibition effect on the subsectors with greater environmental responsibilities
compared with the subsectors with fewer environmental responsibilities. By analyzing the control
variables, we find that assets, labor, and energy consumption all have significant positive impacts
on GDP. That is, if assets and energy consumption increase by 1%, GDP will increase by 0.674% and
0.120%, respectively, whereas if labor increases by one unit, GDP will increase by 0.033 units. The
significant impacts of the pilot ETS on output, labor, and energy consumption of the covered subsectors
are the main reasons for the differences in economic effect.

3.4.2. Impact of Economic Potential Difference on Policy Effects

Based on Equations (5) and (6) in Section 2.2.2, the DDD model is used to analyze the impacts of
the economic potential difference of industrial subsectors on the environmental and economic effects
of the pilot ETS, with carbon emissions and GDP as the explained variable of the environmental and
economic effects, and the subsectors’ dummy, time dummy, dummy variable of economic potential,
and interaction term as the explanatory variables. Table 6 shows the analysis results of the economic
potential difference for the covered subsectors on the policy effects. Among them, the m1 and m2
models are the analysis results of the environmental effect, while m3 and m4 models are the analysis
results of the economic effect. The control variables are set as in Section 3.4.1. As seen in Table 6,
the results of the m1 to m4 models show that the coefficients of the double interaction term Z and
the triple interaction term Z* if_c are both not significant regardless of whether control variables are
added, which demonstrates that the economic potential difference among subsectors does not exert a
significant impact on the environmental and economic effects of the pilot ETS. The reasons may be that
China’s ETS has been established for a short time and the relevant mechanism of covered subsectors in
the initial stage is not stable, but vulnerable to other policies.
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Table 6. Impact of economic potential difference on policy effects.

m1 m2 m3 m4

Z −0.243(0.438) −0.238(0.173) −0.042(0.386) −0.022(0.089)
Z*if_g −0.027(0.482) −0.089(0.217) −0.164(0.406) −0.015(0.115)
lngdp 0.765 ***(0.014)

gr 0.015 ***(0.002)
lp −0.008 ***(0.001)
ee −0.024 ***(0.001)
rs −0.064 ***(0.012)
ri −0.012 *(0.017)

lnk 0.645 ***(0.020)
l 0.034 ***(0.003)

lne 0.106 ***(0.008)
N 3438 3438 3438 3438

adj.R-sq 0.239 0.674 0.186 0.810

Note: Standard errors in brackets. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.5. Implications and Suggestions on the Empirical Results

Recognized as a powerful tool for reducing global greenhouse gas emissions, the ETS has made a
great contribution to the achievement of INDC’s voluntary emission reduction targets by all countries
of the world and the promotion of low-carbon economic development. Could the pilot ETS achieve the
ideal “Porter hypothesis” through resource allocation, technology optimization, and innovation-driven
development? The results of Section 3.2.1 in this research show that the pilot ETS in China could indeed
reduce the carbon emissions of industrial subsectors included in the pilot ETS under the condition
of adding key control variables. The ETS is vulnerable to other policy interventions in its early
days, but the overall environmental benefit could be achieved. Among them, economic development
factors have significant positive impacts on carbon emissions while technological optimization and
innovation drivers have significant negative impacts on carbon emissions; these results are similar
to previous research conclusions [44], but different from those of other researchers [14,20,23]. The
conclusion of Section 3.2.2 in this paper shows that the pilot ETS has a negative impact on GDP while
reducing carbon emissions and fails to achieve the win-win situation of environmental and economic
benefit. There may be two main reasons for the differences from previous literature findings. The first
reason is the different research perspective. Since this study considers seven industrial subsectors
specifically covered in the pilot area as the treatment group, instead of analyzing the whole sector,
the “overflow effect” on the uncovered subsectors due to the changes of overall industry trends in
China is excluded [30]. The second reason is the data differences. We obtained extensive panel data of
the provincial industrial subsectors from 2005 to 2017 and included eight control variables; among
them, 3438 available observations were obtained for each control variable, along with the setting of a
subsector fixed term and time fixed term, which further controlled the characteristics of the industrial
subsectors. Combining the results of Sections 3.2.1 and 3.2.2, we found that the Chinese pilot ETS does
not promote “decoupling” of carbon emissions and GDP and fail to achieve the “porter hypothesis”.
As a result, the main reason for the reductions in carbon emissions of the included industrial subsectors
is probably the production decline. Additionally, we found that the labor and energy consumption
of the relevant subsectors in the pilot regions declined significantly since the ETS was implemented,
which was also a cause of the economic decline. The conclusions of this research are consistent with
the few published papers, which discuss the impacts of the pilot ETS on industrial subsectors while
considering that the pilot ETS reduced the GDP to some extent. Therefore, the Chinese ETS needs to
strengthen the construction of key factors in the future, such as technology and innovation, to achieve
the development of a low-carbon economy [30,31].

The above analysis indicates that the pilot ETS in China has produced a negative economic effect
while significantly reducing the carbon emissions of the covered subsectors. Therefore, the question
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arises as to whether development differences among different subsectors affect the ultimate effects of
the policy. Through the distribution diagram of environmental responsibility-economic potential, the
results of Section 3.4 show that environmental responsibility differences among different subsectors
can significantly affect the environmental and economic effects of the pilot ETS. Thus, developmental
differences in subsectors could affect the ultimate effects of the pilot ETS, which is consistent with the
conclusions of studies on the developmental heterogeneity of the enterprise layer [26,27]. Further
research findings have indicated that the industrial subsectors included in the pilot ETS rank higher,
overall, than the control group in both environmental responsibility and economic potential. Empirical
results show that the pilot ETS has a stronger carbon emission inhibition effect and GDP inhibition effect
on the subsectors with greater environmental responsibilities when dummy variables of environmental
responsibility difference are added. Therefore, the ETS plays a more significant role in the development
of subsectors and enterprises in regions with higher endowment levels. The reason is that these factors
are at high levels in terms of basic factor inputs and environmental governance investments, so that
when the ETS promotes carbon reduction at the same time, it may affect the production and business
activities of the covered high-emission subsectors and thus have a partial negative impact on GDP [45].

Porter argued that companies can improve competitiveness through reasonable environmental
regulations to achieve a win-win situation as regards the economy and the environment [25]. But they
are still confronted with many practical difficulties. For example, for companies with low productivity,
they do not have strong motivations and capabilities to compete with much larger technology-oriented
companies, because the environmental costs are unimaginably high [46]. Specifically, much of the
investment for environmental protection cannot be effective in the short term, and thus, as time costs
may be unacceptable in these small, underperforming companies. Moreover, these companies do not
know the appropriate reforms to maximize economic performance and minimize the environmental
pollution simultaneously. Facing increasingly complex and complicated environmental difficulties,
not even the strong regulations can help them to catch these two rabbits [47]. Porter put forward the
“green-based win-win situation” [32], but from the perspective of heterogenetic industries, not all of
them can achieve this win-win solution [30]. The ETS aims to reduce global greenhouse gas emissions,
but it should be based on the “decoupling” of economic and environmental performance as the saddle
point. The key point is to formulate customized emission reduction strategies for different industries
based on their resource-intensiveness and technology level in order to achieve the reduction effect
under the constraints of minimum environmental costs. This is the practical problem that needs to be
considered when dealing with the ETS and other environmental policies in the future.

Although, to some extent, this study makes up for the deficiencies of the existing literature, there
are also some shortcomings. First of all, although the panel data in this paper is based on subsectors
specifically covered by the pilot ETS, the data volume needs to be further extended to improve the
accuracy of empirical results. However, this does not affect the basic conclusion of the study. Secondly,
in order to expand the analysis framework, we could also have examined the emission reduction
policies of relevant international countries and regions, through a comparative analysis, to establish a
complete and systematic evaluation system. This should be a future research direction.

4. Conclusions

The negative externality of greenhouse gases may hinder the sustainable development of the
economy and society. In this study, instead of grouping all sectors together, seven industrial subsectors,
which are covered by the pilot ETS in the initial pilot areas in China, were taken as the treatment group.
Based on data availability, representative variables were selected from the perspectives of economic
development, technological optimization, and the innovation-driven development of provincial panel
data from 2005 to 2017. A comprehensive analysis of the environmental and economic effects of
industrial subsectors covered by the pilot ETS was conducted by using the PSM-DID model. Empirical
results show three important findings, which are the three main contributions of the research. First, in
the early stage of the pilot ETS in China, the carbon emissions of the included industrial subsectors
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were significantly reduced, by 14.5%, by adding key control variables to exclude the interference from
other policies while the GDP fell by 4.8%; the policy effects remained robust during the experimental
period, and hence the pilot ETS did not achieve the development of a low-carbon economy. The main
reason for the carbon emission reduction was probably the decline of production in the included
industrial subsectors. Therefore, the government should make more harmonized adjustments between
the economic and environmental policies, resulting in environmentally friendly efforts. Second,
the factors of GDP and gearing ratio of economic development had significant positive impacts on
carbon emissions. Among them, if GDP increased by 1%, carbon emissions increased by 0.878%, and
if the gearing ratio increased by one unit, carbon emissions increased by 0.017 units. Technology
optimization factors such as labor productivity and energy efficiency and innovation drivers such
as R&D ratio and R&D intensity have significant negative impacts on carbon emissions. Among
them, if labor productivity and energy efficiency increased by one unit, carbon emissions would
decrease by 0.005 units and 0.026 units, respectively, while if the R&D ratio and R&D intensity
increased by one unit, carbon emissions would decrease by 0.078 units and 0.010 units, respectively.
Economic effect indicators, such as assets, labor and energy consumption all had significant positive
impacts on GDP. That is, if assets and energy consumption increased by 1%, GDP would increase
by 0.731% and 0.107%, respectively, while if labor increased by one unit, GDP would increase by
0.019 units. We found that the pilot ETS in China does achieve environmental benefits through
improved technology and innovation, but the decreases in labor and energy consumption during the
experimental period may result in economic decline, implying that the regulatory policies require
customized fine tuning among the subsectors of industries, especially in labor-intensive industries.
Third, it is noteworthy that the pilot ETS had the stronger inhibitory impacts on carbon emissions
and GDP in the subsectors with greater environmental responsibilities. In other words, the pilot
ETS produced a 60.1% carbon emission inhibition effect and 23.2% GDP inhibition effect on the
subsectors with greater environmental responsibilities when compared with the subsectors with fewer
environmental responsibilities. Moreover, differences in economic potential had no significant impact
on policy effects. This means that the pilot ETS may hinder the production and business activities
of the covered high-emission subsectors while promoting carbon emission reduction, and thus exert
a negative impact on GDP. Many papers on Chinese environmental policies supported the Porter
hypothesis, but in our paper, the regulation policies always entailed some other unavoidable costs,
and thus the Chinese government should promote a general, nationwide emission trading system,
customized according to the individual characteristics of industries. For example, labor-intensive
industries should not aim at ambitious targets, given their excessive potential damage.

Based on the above research conclusions, we propose the following targeted policy
recommendations: (1) Establishing a reasonable distribution system and expanding the coverage of
the ETS. The implementation of the ETS has significantly reduced carbon emissions, and it is necessary
to extend the policy coverage to additional regions and sectors in order to determine a reasonable
total allocation in accordance with different distribution principles, which would achieve large-scale
energy conservation and the emission reduction targets. (2) Intensifying technological innovation
and research investment. Since technological optimization and innovation-driven development are
key drivers for developing a low-carbon economy, policy makers should formulate relevant incentive
policies and increase R&D investment to fully stimulate the compensation effect, which would achieve
the environmental benefits and economic benefits of a win-win situation in the future. (3) Developing
differentiated emission reduction strategies. Considering the differences of historical environmental
responsibilities and economic potential of different emitters, the Chinese government should prudently
formulate differentiated emission reduction measures based on the resource endowments of different
sectors in different regions, which would achieve a low-carbon economy across the country.
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Appendix A

Table A1. Industrial subsectors.

Subsectors Name

Sub1 Mining and Washing of Coal
Sub2 Mining and Processing of Ferrous Metal Ores
Sub3 Mining and Processing of Non-Ferrous Metal Ores
Sub4 Mining and Processing of Nonmetal Ores
Sub5 Processing of Food from Agricultural Products
Sub6 Manufacture of Foods
Sub7 Manufacture of Beverages
Sub8 Manufacture of Tobacco
Sub9 Manufacture of Textile

Sub10 Manufacture of Textile Wearing Apparel, Footware, and Caps
Sub11 Manufacture of Leather, Fur, Feather, and Related Products
Sub12 Processing of Timber, Manufacture of Wood, Bamboo, Rattan, Palm, and Straw Products
Sub13 Manufacture of Furniture
Sub14 Manufacture of Paper and Paper Products
Sub15 Printing, Reproduction of Recording Media
Sub16 Manufacture of Articles for Culture, Education, and Sports Activities
Sub17 Processing of Petroleum, Coking, and Processing of Nuclear Fuel
Sub18 Manufacture of Raw Chemical Materials and Chemical Products
Sub19 Manufacture of Medicines
Sub20 Manufacture of Chemical Fibers
Sub21 Manufacture of Rubber and Plastics
Sub22 Manufacture of Non-metallic Mineral Products
Sub23 Smelting and Pressing of Ferrous Metals
Sub24 Smelting and Pressing of Non-ferrous Metals
Sub25 Manufacture of Metal Products
Sub26 Manufacture of General Purpose Machinery
Sub27 Manufacture of Special Purpose Machinery
Sub28 Manufacture of Automotive
Sub29 Manufacture of Railway, shipbuilding, aerospace, and other transportation equipment
Sub30 Manufacture of Electrical Machinery and Equipment
Sub31 Manufacture of Communication Equipment, Computers, and Other Electronic Equipment
Sub32 Manufacture of Measuring Instruments and Machinery for Cultural Activities and Office Work
Sub33 Manufacture of Artwork and Other Manufacturing
Sub34 Processing of Waste resources and waste materials recycling
Sub35 Production and Distribution of Electric Power and Heat Power
Sub36 Production and Distribution of Gas
Sub37 Production and Distribution of Water

Note: The seven pilot subsectors are S14, S17, S18, S22, S23, S24 and S35.

http://abf.inha.ac.kr/
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Appendix B

Table A2. Property score matching (PSM) estimation.

Variable
m1 m2 m3

|bias| p > |t| |bias| p > |t| |bias| p > |t|

lngdp U 0 0 0
M 94.7 0.592 92.3 0.428 92.8 0.469

gr U 0 0 0
M 91.5 0.618 79.3 0.246 92.1 0.643

lp U 0 0 0
M 98.1 0.872 93.6 0.594 96.0 0.737

ee U 0 0 0
M 99.9 0.996 97.8 0.82 94.9 0.604

rs U 0 0 0
M 88.5 0.57 80.5 0.322 79.4 0.315

ri U 0.006 0.006 0.006
M 73.4 0.607 76.1 0.645 53.4 0.362

lnk U 0 0 0
M 92.2 0.395 92.1 0.385 93.1 0.45

l U 0.061 0.061 0.061
M 93.9 0.911 96.0 0.942 96.1 0.943

lne U 0 0 0
M 92.5 0.326 96.7 0.653 93.3 0.378

Note: Models m1–m3 represent caliper radius matching, nearest neighbor match in caliper, and kernel
matching, respectively.
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