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Abstract: As the largest emitter of CO2, China has also serious air pollution issues. Is it possible to catch
these two rabbits under heterogenetic conditions of urbanization? To answer this, this study examines
atmospheric environmental performance (SO2, NOx, and PMs) of 30 major cities in China using
streaming data from 2011 to 2017. A non-radial SBM-DEA approach is adopted with a meta-frontier
model to evaluate regional heterogeneity in atmospheric environmental management. Our results
suggest that pollution prevention and regulation policies encouraged synergic development of
most cities in the economy and atmospheric environment. On average, atmospheric environmental
efficiency of the cities improved from 0.556 to 0.691. However, significantly unbalanced development
exists in the regions, requiring customized policies. Eastern cities achieved continuing improvement
owing to stringent air pollutant emission policies. Central cities showed a strong improvement
but lacked momentum after they achieved certain targets. Western cities lagged behind in the
studying period due to both technology gap as well as weak regulation. Furthermore, we identify
heterogeneous paths for inefficient cities to enhance their performance using benchmark information.
Economically developed eastern cities, such as Beijing, Fuzhou, are facing an over-supply issue.
Reshaping their economic structure may be necessary to attain better environmental performance.
Central cities face diversified issues. The emphasis of different cities may vary from stringent emission
policies to proactive supply-side transition to achieve strong atmospheric management performance.
For under-developed cities, preferential policies for investment and tax incentives may be needed to
improve their production scale for higher efficiency.

Keywords: atmospheric environmental efficiency; regional heterogeneity; slack-based measurement
(SBM); meta-frontier technology gap; benchmark

1. Introduction

China has witnessed the largest global flow of rural–urban migration ever recorded. The urbanization
rate increased from 17.6% in 1978 to 59.58% in 2018, through an average annual growth rate of 1.02% [1].
However, the rapid growth of urbanization has severely exacerbated air pollution (mainly SO2, NOx, and
particulate matters (PMs)) and caused strongly negative public health effects [2,3]. For example, the 2013
haze event, mainly driven by industrial soot emissions, seriously hit north China and affected more than
800 million people [4,5]. Successful air pollution mitigation can effectively alleviate diseases of local
people, such as asthma [6]. Thus, addressing air pollution issues is becoming equivalently important to
tackling CO2-related climate change nowadays.

To successfully overcome this increasingly severe air pollution, China introduced the ‘Pollution
Prevention and Control Action Plan’ policy in September 2013, targeting SO2, NOx, and PMs that have
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been driving the country’s air pollution crisis [7]. The plan ambitiously sets the objective to reduce air
pollutant emissions by 10% at all the prefecture-level cities as of 2017, with a pledged investment of
1.75 trillion RMB. As major cities of China, such as Beijing, Shanghai, and Guangzhou, introduced
an array of air pollution mitigation measures in response to the policy plan, it is perceivable that the
total fiscal input in mitigating the air pollution would be even higher. Noting that China is still the
biggest developing country, economic development is and will continually be the most important task.
Debates have already raised over ‘pros’ and ‘cons’ of such a significant amount of investment in the
atmospheric environmental governance. In this context, measuring the atmospheric environmental
performance of those mega cities constitutes a meaningful scientific challenge. Regretfully, most studies
have so far merely focused on CO2-related governance [8,9], losing sight of air pollution-related
environmental management. Few have studied air pollution governance, but they mostly focused
exclusively on air pollutant emissions [10,11], which may cause an unbalanced view on economic
growth and environmental management.

As China is facing unprecedented challenges from economic downward pressure as well as
environmental pressure, more appropriate fine-tuning of these two dimensions constructs the very
foundation of long-term sustainability of China. Therefore, it becomes increasingly urgent to conduct
a comprehensive evaluation of performance-oriented atmospheric governance. Noting that research
on air pollution management in China is still limited [12], to holistically understand air pollution
management performance, this study inclusively considers economic development and air pollution
prevention by constructing atmospheric environmental efficiency (AEE).

There is a range of methods for environmental efficiency measurement, e.g., the single ratio
method [13], life-cycle assessment [14,15], stochastic frontier analysis [16,17], the ecological footprint
method [18], and data envelopment analysis (DEA) [19–21]. Among the methods, DEA has an
advantage of measuring economic environment efficiency and air pollution simultaneously, and thus
has been widely used in multi-dimensional sustainability measurement [8,22–25]. Traditional DEA
models [26,27] are, however, limited in that they do not consider the slacks output variables, which is a
potential gap to increase desirable output while maintaining input. Thus, the models are incapable
of ranking performances of the decision-making units (DMUs) precisely with efficiencies equal to
1. There exist two approaches to overcome this limit: Non-radial directional distance function and
slacks-based measure (SBM)-DEA [20]. The non-radial directional distance function may bring flexible
in set weight factors for different variables. However, the flexibility also causes the subjectivity issue
on the selection of weight factors. In contrast, SBM directly handles “input excess” and “output
inefficiency”, projecting each entity to the “farthest” point on the efficient frontier and minimizing the
objective function by finding the maximum slacks, which gives more objectively accurate, and thus
reliable estimation.

To this end, an array of studies have adopted the SBM-DEA model to address sustainability
measurement issues [21,28–31]. Whereas very few researches have measured air pollution-related
efficiency, despite its significance to human health. Nonetheless, those previous studies have demonstrated
the feasibility of major cities to mitigate air pollutant emissions [12]. However, prospective paths and
regional heterogeneities are still unclear, especially at the city level, as the air pollution prevention plan
directly sets emission standards at this level.

Therefore, this paper contributes to the literature in the following ways: First, the paper inclusively
measures environmental performance of 30 key cities in China, which are not the largest 30 cities, but
the capitals of 30 provinces except Tibet province, taking into consideration of all the three types of air
pollutants (SO2, NOx, and PMs) in accordance to the air pollutants prevention plan. The study period
ranges from 2011 to 2017, including the period before and end of the policy, which gives a comprehensive
view of how those cities evolved in atmospheric pollution management. Second, understanding regional
heterogeneity in air pollution management is critical to field-oriented governance. We divide the 30 cities
into four groups according to their geospatial location, and investigate their regional heterogeneities
using meta-frontier technology. Region-specified policy suggestions will be given. Moreover, China is
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still suffering an extremely high concentration of PMs, SO2, and NOx, which is causing a substantial
number of air pollution-related deaths [3]. Under the second phase promotion policies for ’defending the
blue sky’, improving atmospheric performance management becomes increasingly urgent for the nation.
To suggest the customized, field-oriented solution, we will further explore optimal paths for the cities to
enhance the atmospheric environmental performance using benchmark information.

The rest of this paper is organized as follows. Section 2 explains the methodology framework and
the data, Section 3 reports the empirical results, and Section 4 concludes with policy implications.

2. Methods and Data

2.1. Atmospheric Environmental Efficiency

DEA is a commonly used method for constructing environmental performance indicators, as
it provides a total-factor efficiency index [32]. In order to introduce the undesirable SBM, the term
“environmental production technology” should be defined. Assume that there are j = 1, . . . , N
decision-making units (DMUs). In this study, these DMUs are China’s provincial capital cities. Suppose
that each DMU uses an input vector x ∈ Rm to produce jointly a desirable output vector y ∈ Rs and an
undesirable output vector b ∈ Rb. Environmental production technology is expressed as:

T = {(x, y, b):x can produce (y, b)}

where T is assumed to satisfy the standard axioms of production theory [32]. Inactivity is always
possible, finite amounts of input can produce only finite amounts of output, and input and desirable
outputs are often assumed to be freely disposable.

Then, we define an SBM-DEA model as follows. The original SBM-DEA was developed by Tone [33],
which considered a single input and a desirable output. To account for air pollutants emissions,
undesirable outputs should be included in the original SBM model. Following Cooper et al. [34], the SBM
model with undesirable output could be specified. T for N DMUs exhibiting constant return to scale can
be expressed as follows:

T = {(x, y, b) :
N∑

n=1

λmnxmn ≥ xm, m = 1, . . . ., M

N∑
n=1

λr1nyr1n ≥ yr1n, r1 = 1, . . . , s1

N∑
n=1

λr2nbr2n = br2 , r2 = 1, . . . , s2

λn ≥ 0, n = 1, . . . , N

Based on this technology frontier, we can introduce slack-based measurement of atmospheric
environmental efficiency. According to Álvarez et al. [35], we can acquire the optimal solution by
solving DEA-type model:

ρn = min
1

1 + 1
s1+s2

(∑s1
r1=1

sy
r1n

yr1n
+

∑s2
r2=1

sb
r2n

br2n

) (1)

s.t.
N∑

n=1

λmnxmn = xmn − s−m, m = 1, . . . ., M
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N∑
n=1

λr1nyr1n = yr1n + sy
r1

, r1 = 1, . . . , s1

N∑
n=1

λr2nbr2n = br2n − sb
r2

, r2 = 1, . . . , s2

s−m ≥ 0; sy
r1
≥ 0; sb

r2
≥ 0; λn ≥ 0, n = 1, . . . , N

n = 1, . . . , N index of DMUs;
m = 1, . . . ., M index of inputs;
r1 = 1, . . . , s1 index of desirable outputs;
r2 = 1, . . . , s2 index of desirable outputs;
s−m slack variables (potential reduction) of inputs;
sy

r1
slack variables (potential expansion) of desirable outputs;

sb
r2

slack variables (potential reduction) of undesirable outputs; and∑N
n=1 λn the sum of weights vector for PPS (The production possibility set) construction

linear programming.
The optimal solution corresponds to ρn= 1, with λn = 1 and λk = 0 (k = 1, . . . , N and k , n).

2.2. Meta-Frontier Technology and Its Decomposition

Furthermore, we integrated the concept of meta-frontier with SBM-DEA model to investigate group
heterogeneity across various regions. Suppose DMUs can be classified into H groups, due to differences in
resources, technologies, and other geological or environmental constraints. The group-frontier technology
of group h is defined as:

Th =
{
(x, y, b) : x can produce (y, b)

}
, h = 1, 2, . . . , H

Assume that Th is specified as a nonparametric production technology. The AEE of group h can
be calculated based on the SBM-DEA model. Then, the meta-frontier technologies can be expressed
as Tm = {T1 ∪ T2 ∪ · · · ∪ TH}. Assume Nh observations for group h. Then, the SBM model with
meta-frontier can be formulated as follows:

ρn = min
1

1 + 1
s1+s2

(∑s1
r1=1

sy
r1n

yr1n
+

∑s2
r2=1

sb
r2n

br2n

) (2)

s.t.
H∑

h=1

Nh∑
nh=1

λh
nxh

mn = xh
mn − s−m, m = 1, . . . ., M

H∑
h=1

Nh∑
nh=1

λh
nyh

r1n = yr1n + sy
r1

, r1 = 1, . . . , s1

H∑
h=1

Nh∑
nh=1

λh
nyh

r2n = br2n − sb
r2

, r2 = 1, . . . , s2

s−m ≥ 0; sy
r1
≥ 0; sb

r2
≥ 0; λh

n ≥ 0, nh = 1, . . . , Nh

Based on the equation, the meta-frontier atmospheric environmental efficiency can be calculated.
Production efficiency under meta-frontier technologies can be decomposed into within-group

efficiency and the meta-technology gap (MTG) [36]. The MTG measures the proximity of a group-frontier
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technology to the meta-frontier. The higher the MTG is, the closer the group-frontier technology is to the
efficient meta-frontier. Following [37], we obtain MTG from meta-frontier AEE and grouped-frontier AEE:

MTG =
meta− f rontier AEE

grouped− f rontier AEE

2.3. Data Collection

To measure environmental performance, we collected input and output data of 30 provincial
capital cities of China for 2011–2017. The cities were divided into four groups: Eastern, central,
western, and northeastern cities, according to their geospatial locations [36,38]. Labor (L), capital (K),
and energy consumption (E) were selected as input variables, based on previous studies [19]. Gross
regional production (GRP) at a constant price was selected as a desirable output. SO2, NOx, and soot
(major precursor of PMs) emissions were selected as the undesirable outputs. GRP, labor, capital,
and energy consumption were collected from the city statistical yearbook. The capital is expressed
by the fixed asset investment based on previous studies [39]. Data for SO2, NOx and soot emissions
were extracted from the national environmental statistical yearbook. The data consist of 30 provincial
capital cities in China. For balanced panel data, Lasa (the provincial capital city of Tibet with GRP
of only 147.8 billion RMB) was excluded because of the scarcity of energy consumption data [24].
Table 1 provides descriptive statistics for the input and output variables for the sample cities.

Table 1. Descriptive statistics of inputs and outputs, 2011–2017.

Variables Unit Mean St Dev Minimum Maximum

Labor 104 persons 200.3 196.0 31.3 986.9
Capital 108 RMB 4375.5 2901.3 404.6 17,537.0
Energy 104 Tons of SCE 3107.6 2697.6 17.6 11,859.0

GRP 108 RMB 7043.6 5867.8 713.3 28,617.0
SO2 Tons 91,408.7 88,165.9 512.0 586,925.0
NOx Tons 77,611.6 64,585.3 103.0 336,028.0
PM Tons 56,313.8 43,416.4 113.0 230,995.0

3. Empirical Results and Discussion

3.1. Atmospheric Environmental Efficiency

First, we calculated global AEEs based on the SBM-DEA model. Table 2 gives AEE of each city.
Figure 1 presents the trend of AEEs of the four groups from 2011 to 2017. Averaged AEE of all the
cities showed significant improvement from 0.556 to 0.691. Nonetheless, the result indicated there
existed a substantial potential (~31.9%) for those major cities to further improve their performance.
The period of 2011–2014 showed negative change in efficiency. Major improvement of the AEE was
witnessed during the period of 2014–2017, in line with Porter hypothesis [40], which suggested that
stricter environmental regulations increase environmental efficiency and encourage innovation for
cleaner technology and industrial processes.

From 2011 to 2017, the four groups of cities showed the following characteristic changes in AEEs.
First, western cities showed the lowest AEEs across the period. The group’s averaged AEE showed
a slight increase from 0.519 to 0.607. Urumqi, the capital of Xinjiang province, showed a negligible
increase of AEE from 0.5407 to 0.5501, suggesting the local government should put more emphasis on its
AEE management. Nonetheless, Hohhot, as a neighboring city of Beijing designated for special care on
the air condition in Beijing, experienced a remarkable improvement from 0.5737 to unity. Especially, the
city increased its efficiency by 32.3% in 2016–2017, which may be mainly because of the special financial
support (¥ 3.6 million) from the government to mitigate air pollutants-related pollution compared
with 2016 (¥ 1.66 million), which was used to install air pollution control devices to address PM
pollution [41,42]. Noting that the incremental investment was a specific appropriation from the central
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government, it may not result in a sustainable stimulation mechanism of technology improvement.
Herein, the local government should find more endogenous paths to sustain its AEE growth.

Table 2. Global environmental efficiencies of the 30 provincial capital cities.

City 2011 2012 2013 2014 2015 2016 2017 Average

Eastern

Beijing 0.5884 0.5922 0.6023 0.6138 0.6454 0.7097 0.9399 0.6702
Fuzhou 0.5305 0.5387 0.5221 0.5408 0.5519 0.5779 0.5845 0.5495

Guangzhou 0.6452 0.6653 0.6437 0.6437 0.7124 0.8740 1 0.7406
Haikou 1 0.7868 1 0.8848 1 0.8361 1 0.9297

Hangzhou 0.5786 0.5851 0.5872 0.5867 0.5983 0.6437 0.7941 0.6248
Jinan 0.5180 0.5291 0.5297 0.5408 0.5542 0.5781 0.6119 0.5517

Nanjing 0.5443 0.5541 0.5289 0.5357 0.5531 0.5943 0.6419 0.5646
Shanghai 0.6038 0.6072 0.6134 0.6058 0.6295 0.6904 1 0.6786

Shijiazhuang 0.5397 0.5409 0.5447 0.5438 0.5508 0.5588 0.5894 0.5526
Tianjin 0.5431 0.5492 0.5576 0.5631 0.5806 0.6150 0.6349 0.5776

Central

Changsha 0.6232 0.6546 0.6622 0.6765 0.7209 1 1 0.7625
Hefei 0.5238 0.5220 0.5150 0.5213 0.5360 0.6376 0.6434 0.5570

Nanchang 0.5175 0.5302 0.5526 0.5481 0.5656 0.6023 0.6254 0.5631
Taiyuan 0.5133 0.4976 0.4857 0.4829 0.4862 0.5011 0.5797 0.5066
Wuhan 0.5390 0.5489 0.5656 0.5531 0.5629 0.6132 0.6341 0.5738

Zhengzhou 0.5331 0.5403 0.5367 0.5406 0.5478 0.5902 0.6234 0.5589

Western

Chengdu 0.5918 0.5961 0.6059 0.6071 0.6243 0.6455 0.6663 0.6196
Chongqing 0.5123 0.4850 0.4861 0.4869 0.4998 0.5571 0.5771 0.5149

Guiyang 0.4568 0.4532 0.4806 0.4949 0.5055 0.5219 0.5245 0.4911
Hohhot 0.5737 0.5770 0.5676 0.5702 0.6097 0.6769 1 0.6536

Kunming 0.4580 0.4752 0.4786 0.5046 0.5062 0.5282 0.5360 0.4981
Lanzhou 0.4880 0.4886 0.4832 0.4898 0.5009 0.5223 0.5280 0.5001
Nanning 0.5504 0.5374 0.5488 0.5484 0.5555 0.5812 0.6002 0.5603
Urumqi 0.5407 0.5158 0.5110 0.5190 0.5315 0.5422 0.5501 0.5300

Xi’an 0.5614 0.5588 0.5558 0.5571 0.5815 0.6132 0.6122 0.5771
Xining 0.4737 0.4771 0.4821 0.4960 0.5096 0.5292 0.5383 0.5009

Yinchuan 0.4992 0.5022 0.5046 0.4210 0.4310 0.5323 0.5455 0.4908

Northeastern
Changchun 0.5326 0.5436 0.5291 0.5346 0.5413 0.5742 0.6044 0.5514

Harbin 0.5311 0.5376 0.5417 0.5465 0.5519 0.5528 0.5568 0.5455
Shenyang 0.5678 0.5727 0.5780 0.5834 0.6070 0.7362 1 0.6636
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Besides, with respect to the central cities, averaged AEE increased from 0.542 to 0.684, with an
exploding increase from 0.570 to 0.657 for the period of 2015–2016, in line with the early compliance of
the cities to the regulation of the ‘Pollution Prevention and Control Action Plan’ policy [10]. Changsha
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showed the best performance by reaching the efficient frontier in 2016, while Taiyuan showed the
least growth. However, their efficiency growth slowed down in the period of 2016–2017. This implied
that the efficiency improvement of those cities was mainly driven by the regulations of the central
government. Once they met the policy targets set by the central government, their motivation to regulate
atmospheric pollutions immediately weakened. Therefore, to sustain the efficiency enhancement of
those cities, the central government may tighten atmospheric performance management to those cities.
On the other hand, the local governments of these cities should rise their self-consciousness in air
pollution prevention and cultivate endogenous momentum for a sustainable improvement of the AEE.

Finally, eastern and northeastern cities showed steady growth after the introduction of the
prevention plan in 2013 (see Figure 1). Eastern cities kept a leading position in the AEE. Especially,
Beijing, Shanghai, and Guangzhou, as the three biggest cities, saw remarkable efficiency improvement
from 0.5884, 0.6452, 0.6038 to 0.9399, 1, 1, respectively, implying successful implementation of air
prevention measures in those cities. One critical reason is that the air regulation strategies were
prioritized in the eastern region compared with other regions [10]. More stringent emission standards
have been implemented in the region, which pushed the region to conduct more efforts to mitigate
air pollutants. The strong AEE improvement of the eastern region demonstrated that China has
tremendous potential in the synergetic development of economy and environment. Stringent policies
can boost both economic and environmental development, instead of harming economic targets.
For northeastern cities, their growth mainly occurred in the period of 2015–2017. The surge in AEE
followed after the specific air pollution prevention measures by local governments [43], indicating the
unreplaceable role of local governments in rolling out concrete actions in improving their AEE.

3.2. Technology Heterogeneities between Regions

We further explored the MTGs between regions using meta-frontier technology. An MTG indicates
the technology gap between each heterogenic group frontier and meta-frontier. The more the MTG
closes to 1, the smaller the technology gap is. Table 3 displays MTGs of individual cities, and Figure 2
displays the MTG in each region. The eastern area kept its leading position in the MTG index, indicating
that it has the smallest technology gap relative to the meta frontier, in line with a previous finding that
the east region led the sustainable growth [36]. In 2011, the MTG of the east reached 99.4%, indicating
that there was neglecting the technology gap between the group frontier of the east and the meta
frontier. The environmental technologies of eastern cities can represent the most advanced technology
in China. However, MTG index of the east trended to lower down starting from 2014, implying the
technology gap between the eastern region and the meta-frontier has enlarged since then. However,
noting that the eastern region showed significant AEE improvement, this downward MTG curve
may imply that other regions have paved different paths toward higher AEE. That is, other regions
may experience different technology pathways compared with the eastern region. In this sense, the
results indicated that the eastern region should learn from the other regions’ experience to further
improve its AEE. Besides, we can see that Shanghai showed a sudden drop in MTG from 1 to 0.6904,
ascribing to its procrastination in environmental regulation compared with other cities. The total air
pollutant emission of Shanghai mounted to 231.5 kt in 2016, comparing to 100.7 kt emission from
Beijing. Nonetheless, the city was able to give fast response to the lagging behind and improved its
technology significantly in 2017, its total air pollutant emission dropped to 93.9 kt.

As shown in Figure 2, the average MTGs of central, western, and northeast regions in 2017
were 0.868, 0.695, and 0.814, respectively. The central cities had substantial improvement in their
AEE technology. The technology gap of the central cities to the eastern cities shrank from 0.181
in 2011 to 0.055 in 2017. One of the biggest reasons was their catch-up performance in economic
output. For instance, Changsha has shown an annual real GDP growth of ~10.7% in the study period.
For comparison, the growth of Beijing was only ~7.25%. At the same time, the central cities were also
experiencing strict environmental policies comparable to the eastern cities, indicating the effectiveness
of the Porter hypothesis in the central region. Whereas the technology gap between the western cities
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and the most advanced eastern cities even has been growing. Their MTGs continued decreasing,
indicating lagging behind of their technology statuses in the atmospheric management. This was in
line with previous findings by Yu and Choi [36], suggesting the west region may has not passed the
peak point of the environmental Kuznets curve. The west should put more efforts by diverse incentives
in their atmospheric related technologies for better environmental management.

Table 3. Meta-frontier technology gaps of the 30 provincial capital cities.

City 2011 2012 2013 2014 2015 2016 2017 Average

Eastern

Beijing 1 1 1 1 1 1 1 1
Fuzhou 0.9858 0.9827 0.9676 0.9592 0.9584 0.9614 0.9598 0.9678

Guangzhou 1 1 1 1 1 1 1 1
Haikou 1 0.7868 1 1 1 0.9935 1 0.9686

Hangzhou 0.9999 0.9985 0.9984 0.9958 0.9984 0.8897 0.7941 0.9535
Jinan 1 1 0.9972 0.9929 0.9891 0.9934 0.9981 0.9958

Nanjing 0.9891 0.9893 0.9804 0.9816 0.9883 0.9986 1 0.9896
Shanghai 1 1 1 1 1 0.6904 1 0.9558

Shijiazhuang 0.9786 0.9744 0.9698 0.9669 0.9652 0.9662 0.8509 0.9531
Tianjin 0.9909 0.9895 0.9889 0.9842 0.9875 0.9298 0.6349 0.9294

Central

Changsha 0.6232 0.6546 0.6622 0.8677 0.9801 1 1 0.8268
Hefei 0.9242 0.9230 0.9112 0.9316 0.9535 0.9411 0.9450 0.9328

Nanchang 0.8691 0.8875 0.9202 0.9322 0.9410 0.9593 0.9633 0.9247
Taiyuan 0.8327 0.8240 0.8293 0.8269 0.8409 0.8421 0.5797 0.7965
Wuhan 0.7982 0.8574 0.9223 0.9391 0.9498 0.6132 0.7655 0.8351

Zhengzhou 0.8350 0.8575 0.9097 0.9274 0.9438 0.9609 0.9574 0.9131

Western

Chengdu 0.7116 0.5961 0.7401 0.6071 0.6243 0.6455 0.6663 0.6559
Chongqing 0.8409 0.8281 0.8323 0.8373 0.8419 0.6809 0.5771 0.7769

Guiyang 0.8048 0.7724 0.8201 0.8320 0.8308 0.8111 0.8000 0.8102
Hohhot 0.5737 0.5770 0.7257 0.7753 0.6097 0.6769 1 0.7055

Kunming 0.7865 0.7961 0.7990 0.7791 0.7734 0.7371 0.7281 0.7713
Lanzhou 0.8066 0.8269 0.8130 0.8245 0.8237 0.7697 0.5280 0.7703
Nanning 0.8626 0.8354 0.8392 0.8401 0.8087 0.6907 0.6002 0.7824
Urumqi 0.5407 0.7783 0.7786 0.7984 0.7248 0.5802 0.6094 0.6872

Xi’an 0.8985 0.8692 0.8681 0.8388 0.7946 0.6132 0.6122 0.7849
Xining 0.8080 0.8230 0.8385 0.8484 0.8534 0.8029 0.7755 0.8214

Yinchuan 0.8479 0.8542 0.8539 0.7465 0.7556 0.7989 0.7536 0.8015

Northeastern
Changchun 0.8668 0.8374 0.8265 0.8319 0.8334 0.6999 0.6044 0.7858

Harbin 0.8964 0.8849 0.8824 0.8909 0.8751 0.8606 0.8368 0.8753
Shenyang 0.8360 0.8252 0.8380 0.8397 0.8323 0.8484 1 0.8599
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3.3. Benchmark for Inefficient Cities

Now, as mentioned above, most cities, especially in the western region, should make more
efforts to catch the significant potentials to enhance AEE. How can these cities get the right direction
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or optimal paths to transform their local economy? SBM-DEA provides benchmark information
for inefficient DMUs. These DMUs can learn from those efficient DMUs in terms of management
experience, industrial structure, and policy mix to improve their AEEs [29]. For an inefficient DMU to
enhance its efficiency, its input target should achieve the value following the equation:

n∑
i

λi × benchmark i = inefficient DMU′s target (3)

where benchmark i corresponds to the input–output structure of an efficient DMU I, λ corresponds to
the weight value of the efficient DMU, and an inefficient DMU’s target is the projection of the efficient
DMU on the frontier.

To determine the set of benchmarks for an inefficient DMU (assuming it is DMU i), one should solve
the DEA model as shown in Equation (1). Then, one can get a vector of λwith a dimension of n × 1,
where n is the number of DMUs. In the vector, the λfor inefficient DMUs are always zero, while for
efficient DMUs, the λare in the range of [0, +∞). If the λcorresponding to an efficient DMU is not zero,
then the DMU is the benchmark for the inefficient DMU. This means that the DMU with non-zero λ is
the target of i. i could learn from the non-zero λDMU and change its input–output structure so that i
could become efficient. Correspondingly, if a DMU appears as a benchmark for several inefficient DMUs,
the benchmark DMU may have an economic structure that is not only efficient but also reproducible.
If an efficient DMU does not appear as a benchmark for other inefficient DMUs, this indicates their
economic pattern may drastically differ from that of other cities.

Besides, we can get more information from the magnitude of the λ values. The larger the λ is,
the more similar the input–output structure of the inefficient DMU i is to the benchmark DMUs [29].

The λ values also imply the return-to-scale status of each city. There are three possible types of
return-to-scale: Constant-return-to-scale (CRS), meaning output increases by the same proportional
input change as all, inputs increased-return-to-scale (IRS), meaning output increases by more than the
proportional change of inputs, and decreased-return-to-scale (DRS), meaning output increases by less
than the proportional change of inputs. If Σλ = 1, the DMU exhibits CRS, meaning that the AEE of a
city is at unity. They have efficient input–output structures. When Σλ > 1, a DMU exhibits the DMU is
at the state of IRS, indicates that the increasing production scale can increase the DMU’s efficiency
score. When Σλ < 1, the DMU exhibits DRS, implying that further increase the production scale of a
city will decrease its AEE.

We calculated the benchmark performance of the cities in 2017 to inform the orientation of a city
to improve. In deciding reference set cities, we considered benchmarking within group-frontier instead
of meta-frontier, as meta-frontier benchmarking may be unrealistic with the existing technology gap
between regions. That is to say, inefficient cities are more likely to learn from the neighboring cities within
the same group. For instance, Tianjin is more likely to learn AEE management experience from Beijing
instead of Changsha, as Tianjin and Beijing have a more similar supply and consumption structure.

From Table 4, Guangzhou stood out as the benchmark of most eastern cities, while Changsha was
the benchmark for most central cities, indicating the economic structure of Guangzhou and Changsha
were more reproducible. Chengdu and Chongqing were the two prevail benchmarks for western cities.
Although Xi’an was an efficient DMU, its economic pattern may drastically differ from that of other
cities, such that they were unable to be benchmarks. For northeast cities, only Harbin was inefficient
under grouped-frontier, and the results showed that it should learn more (λ = 0.7901) from Changchun.
Thus, the results may indicate that the city has a similar industrial structure to Changchun.

In terms of return-to-scale, results suggested that in the east region, developed cities such as Beijing,
Fuzhou, and Nanjing, was facing an over-supply issue, as shown in Table 4. Increasing urbanization
in these cities was causing over-concentration of resources, which has led to significant inefficiency.
Thus, the governments should address the issue by solutions like reshaping their industrial structure,
energy consumption structure, and etc., to reduce the oversupplied resources. In this case, those cities
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should learn from benchmarks on how to reduce their air pollution emissions efficiently. For example,
with a similar economic structure, Guangzhou has substantially lower air pollutant emissions compared
with Beijing. According to the Pearl River Delta Clean Air Plan [44], Guangzhou has laid emphasis on air
pollution mitigation in both industrial and residential sectors. The city has built several highly efficient
municipal solid waste incineration plants, which was used to mitigate air pollutants emissions from
household consumption. Beijing may learn from the policy designs to promote cleaner development.
While Jinan, with an IRS condition, should increase its production scale while keeping its relatively low
air pollutant emissions.

Table 4. Grouped frontier benchmarks for different cities in 2017.

City Benchmark (Lambda Value) Return-to-Scale

Eastern

Beijing Guangzhou 2017 (1.1154); Haikou 2017 (1.2486) DRS

Fuzhou Guangzhou 2017 (0.2064); Haikou 2017 (1.4046);
Hangzhou 2017 (0.0612) DRS

Guangzhou Guangzhou 2017 (1.0000) CRS
Haikou Haikou 2017 (1.0000) CRS

Hangzhou Hangzhou 2017 (1.0000) CRS
Jinan Guangzhou 2017 (0.3742); Haikou 2017 (0.1539) IRS

Nanjing Guangzhou 2017 (0.4545); Haikou 2017 (1.0524) DRS
Shanghai Shanghai 2017 (1.0000) CRS

Shijiazhuang Guangzhou 2017 (0.0148); Tianjin 2017 (0.3219) IRS
Tianjin Tianjin 2017 (1.0000) CRS

Central

Changsha Changsha 2017 (1.0000) CRS
Hefei Changsha 2017 (0.6459) IRS

Nanchang Changsha 2017 (0.6759) IRS
Taiyuan Taiyuan 2017 (1.0000) CRS

Wuhan Changsha 2012 (0.2622); Changsha 2016 (0.7265);
Wuhan 2016 (0.2780) DRS

Zhengzhou Changsha 2017 (1.0007) DRS

Western

Chengdu Chengdu 2017 (1.0000) CRS
Chongqing Chongqing 2017 (1.0000) CRS

Guiyang Chengdu 2017 (0.1077); Nanning 2017 (0.4570) IRS
Hohhot Hohhot 2017 (1.0000) CRS

Kunming Chengdu 2014 (0.2024); Chengdu 2017 (0.0360);
Nanning 2017 (0.5896) IRS

Lanzhou Lanzhou 2017 (1.0000) CRS
Nanning Nanning 2017 (1.0000) CRS

Urumqi Chengdu 2014 (0.1984); Chongqing 2017 (0.0079);
Hohhot 2015 (0.1350); Hohhot 2017 (0.2345) IRS

Xi’an Xi’an 2017 (1.0000) CRS
Xining Chongqing 2017(0.0581); Nanning 2017(0.1102) IRS

Yinchuan Chongqing 2017 (0.0853); Hohhot 2017(0.0195) IRS

Northeastern
Changchun Changchun 2017 (1.0000) CRS

Harbin Changchun 2017 (0.7901); Shenyang 2017 (0.2092) IRS
Shenyang Shenyang 2017 (1.0000) CRS

For the central region, Changsha was the most prevailing benchmark. Hefei and Nanchang were
in IRS state, and Wuhan was in DRS state. On the one hand, Changsha has proactively pursued
high-value manufacturing and developed the service sector, e.g., developing the Changsha Economic
and Technological Development Zone, leading to high-quality economic growth. The cities in IRS
state may learn from its developing path and make proper adjustments to their economic structure.
On the other hand, Changsha has been listed by the Ministry of Ecology and Environment as one of
the 47 key regions subject to special limitations for air pollutants. The policy effectively boosted the
increase of AEE, indicating stringent policies encouraged efficiency. Therefore, for central cities in the
DRS condition, if a higher AEE were to be pursued, the central government of China could further
tighten air pollutant emission policies for cities in the central region.
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Chengdu and Chongqing were the two prevailing benchmarks for the western cities. The two cities
are the core of Cheng (Chengdu)–Yu (Chongqing) economic zone approved by the central government in
2011, thus, received much policy support. Therefore, it is evidenced that economic policy support can
effectively improve AEEs of western cities. Most of the cities in the western region were on the group
frontier. Inefficient cities were all in an IRS condition. Increasing production scales is likely to encourage
higher AEE. Thus, to learn effectively from Chengdu and Chongqing, more preferential policies and tax
incentives may be needed in these cities.

4. Conclusions and Implications

China is now in its second phase for ‘defending the blue sky’. Field- and performance-oriented
strategies become more and more important in order to efficiently reduce air pollutant emissions.
Due to the serious heterogeneous character of the regions, much more differentiated policies become
critical to enhance air pollutant management performance for each region. This study adopted an
undesirable SBM-DEA approach to analyze the evolution and regional heterogeneity of the atmospheric
environmental performance of China’s major cities from 2011 to 2017, providing a holistic view of
the achievement of air pollution prevention action and proposing paths for prospective atmospheric
management in these cities. We summarized major conclusions and implications as follows.

First, the air prevention plan has substantially improved the atmospheric environmental
performance of China’s major cities and bolstered high-quality economic development. Nonetheless,
there exists huge potential (up to 31.9% under current technology status) for China to improve its
atmospheric environment.

Second, there is significantly unbalanced regional development in terms of AEE. Eastern cities
keep a leading role in environmental management. Their success in AEE improvement demonstrated
that there a substantial space for other regions to implement more rigorous air pollution management
policies. Central and northeastern cities showed a strong catch-up effect in the period of the plan,
while western cities lagged behind in the atmospheric management.

Third, large technology gaps between regions exist. The eastern region showed a downward trend
due to technology development of other regions. The technology gap between the eastern region and
the central region has narrowed since the implementation of the plan, but the gap between the eastern
region and the western region has grown, implying the western cities lagged behind in the atmospheric
environmental management. Correspondingly, the central government of China should shift its focus
to those under-developed western areas and invest more to boost their technology progress in the
prospective second-stage environmental protection.

Forth, from the perspective of returns-to-scale, economically developed cities, like Beijing, Wuhan,
Fuzhou, Nanjing, showed DRS states, implying they should reduce their economic resources or
reshape their input structure to achieve higher AEE. While those cities with low-level of economic
development, like Shijiazhuang, Guiyang, Kunming, showed IRS states, indicating they should increase
their economic scale by higher investment to achieve higher AEE.

The present work may be subject to some limitations. First, DEA studies are highly sensitive to the
selection of input–output indicators [45]. This work used SO2, NOx, and PMs as surrogate indicators of
air pollutants, while actual air pollution involves a broader range of pollutants. Thus, the methodological
choice may lead to unknown uncertainties in final outcomes. Second, DEA, in its nature, is a deterministic
method, which does not consider sampling errors and, therefore, involves biases in the calculation. To this
end, we may use the bootstrapping DEA method [28,46] in future works for better presenting efficiency
measurement results.

Finally, future studies can extend this work in the following points. First, air pollutant mitigation
actions were mostly conducted in the transport sector and the energy supply sector. A sector-based
analysis may be helpful in distinguishing performance heterogeneity of different regions at higher
resolution. Second, although the central government of China has invested tremendous resources in air
pollution prevention, the performance of air quality improvement is still critically low, implying much
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higher potential to lead the global economy by greener economic development. To this end, it would
be interesting to measure the shadow price of different industries in different cities to give practical
suggestions to local governments for air pollution mitigation.
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