
sustainability

Article

The Impact of Urban Transportation Infrastructure on
Air Quality

Yujing Guo 1, Qian Zhang 1,* , Kin Keung Lai 1,2, Yingqin Zhang 1, Shubin Wang 3 and
Wanli Zhang 4

1 International Business School, Shaanxi Normal University, Xi’an 710119, China; davidguo99@163.com (Y.G.);
mskklai@cityu.edu.hk (K.K.L.); zyq@snnu.edu.cn (Y.Z.)

2 College of Economics, Shenzhen University, Shenzhen 518060, China
3 School of Economics and Management, Xi’an University of Posts & Telecommunications, Xi’an 710061,

China; wangshubin1228@163.com
4 School of Finance and Economics of Xi’an Jiaotong University, Xi’an 710061, China; zhangwanli623@163.com
* Correspondence: zhangqiansolo@126.com

Received: 26 May 2020; Accepted: 10 July 2020; Published: 13 July 2020
����������
�������

Abstract: While previous study has confirmed significant correlation between infrastructure
construction and air quality, little is known about the nature of the relationship. In this paper,
we intend to fill this gap by using the Panel Smooth Transition Regression (PSTR) model to discuss the
nonlinear relationship between transportation infrastructure construction and air quality. The panel
data includes 280 cities in China for the period 2000-2017. We find that the transportation infrastructure
investment is positively correlated to the air quality when the GDP per capita is below RMB 7151 or
the number of motor vehicle population per capita is below 37 (vehicles per 10,000 persons) where
the model is in the lower regime, and that the transportation infrastructure investment is negatively
correlated to the air quality when the GDP per capita is greater than RMB 7151 or the number of
motor vehicle population per capita is larger than 37 (vehicles per 10,000 persons) where the model
is in the upper regime. The empirical results of the three sub-samples, including eastern, western
and central regions, are similar to that of the national level. Furthermore, increasing transportation
infrastructure investment is conducive to improving air quality. Urban bus services, green area,
population density, wind speed and rainfall are also conducive to reducing air pollution, but the role
of environmental regulation is not significant. After adding the instrumental variable (urban built-up
area), the conclusions are further supported. Finally, relevant policy recommendations for reducing
air pollution are proposed based on the empirical results.

Keywords: transportation infrastructure; urban road area; air pollution; PSTR model

1. Introduction

Data from the World Bank show that the proportion of the world’s urban population rose from
46.69% in 2000 to 55.27% in 2018, an increase of 8.58% In the rapid development of urbanization,
the rapid population concentration and the population increase have resulted in an increase in the
demand for commuting travel and logistics transportation. Therefore, pollution caused by motor
vehicle exhaust has become one of the main sources of urban air pollution [1]. In 2019, the 2018 World
Air Quality Report published on Air Visual showed that 89% of cities in China have exceeded the
global air quality standard. The relatively backward construction of public transport infrastructure
will lead to traffic congestion and other urban maladies, further aggravating the air pollution caused by
traffic circulation. The Wind database indicates that the average annual growth rate of motor vehicle
numbers was 10.96% from 2000 to 2017, while the road area growth rate during the same period was
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only 8.04% in China, as shown in Figure 1. The growth rate of vehicle consumption is higher than the
growth rate of road construction. The vehicle growth causes slow speed and congestion, which will
result in the fuel combusting insufficiently, and the pollutants from the exhaust gas are 2–3 times higher
than that during normal driving [2]. Traffic congestion exacerbates urban air pollution, therefore,
improving the traffic environment is an effective way to improve urban air quality [3].
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Figure 1. Number of motor vehicles and road area.

The study found that transportation infrastructure has either a positive or negative effect on air
quality. Some scholars suggest that increasing transportation infrastructure investment is conducive to
improving air quality. The government takes effective measures to increase road investments, which
can increase unblocked road traffic, avoid congestion and improve air quality [4–6]. Some scholars
believe that the increase in subways [7], bus rapid transit [8], intercity railways [9], light rail [10]
and other public transport means we can replace the high pollution from private cars, reducing
PM2.5, SO2, NO2, CO and NO emissions. However, Vickrey found increasing urban transportation
investments make more convenient travel [11]. The convenience stimulates consumers to buy more
cars, releasing more SO2 emission [12,13]. Other scholars believe that the increase in transportation
infrastructure investment makes industrial transportation more convenient and frequent, thereby
bringing more negative effects such as industrial emissions and pollution [14–17]. Although the
increase in transportation infrastructure is designed to achieve smooth traffic and reduce exhaust
pollution, it requires large consumption of infrastructure investment capital [18]. The large capital
consumption may impair environmental protection projects and environmental supervision, thereby
resulting in deterioration of air quality in the long run. Ahmad believes that the increase in urban
transportation investment is not a feasible plan to reduce emissions, because upgrading existing road
facilities will take a lot of time and will lead to more traffic congestion [19]. The conclusion on the
relationship between transportation infrastructure and air pollution is still controversial.

Most of the current studies adopt a linear perspective and ignore the nonlinear influence of
transportation infrastructure construction on air quality. According to Duggal, ignoring nonlinearity
will cause biased and inconsistent estimates of the results [20]. There are three reasons for the nonlinear
relationship between transportation infrastructure construction and air pollution. First, it brings about
changes in people’s common values of environment. Max Weber, in 1922, stated, “The use of public
transport arises more from a system of values with which the person identifies than from the quality
of the transport offered.” Carlos suggested that a higher index of postmodern values implies greater
environmental awareness, which would lead to a greater use of sustainable transport [21]. People’s
environmental values are different in different periods, and people’s influence on the environment is
different. The higher the value index of postmodernism is, the stronger the environmental awareness
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is [21]. The postmodern society, with more developed environmental awareness and attitude, will
choose, to a greater extent, sustainable transportation with strongly or quite strongly supports of
paying a higher price for environmental protection. These consumers may be more inclined to choose
low-pollution vehicles such as new energy vehicles or bicycles. Therefore, their choice of transportation
mode will change significantly over time, with nonlinear characteristics [22]. Second, the stage of
economic development is changed. According to the Environmental Kuznets Curve (EKC), it has a
nonlinear effect between economic development and air pollution, and infrastructure construction
also has a nonlinear effect on economic growth [23], with transport infrastructure having significant
promoting effects on economic growth [24]. Therefore, the traffic infrastructure construction is closely
related to economic development. Therefore, it is not comprehensive to view the relationship between
transportation infrastructure and air quality only from a linear perspective. This paper assumes that
there may be a nonlinear relationship between the two. The background of economic development is
different. Since various countries are at different stages of development, the impact of transportation
infrastructure on environmental pollution will be different. In the early stages of development, the
public paid more attention to the economic benefits brought by transportation development, which
brings about an increase in income. At this moment, people pay more attention to income and
welfare. However, in the later stages of development, along with economic development, traffic
congestion has resulted in some social and public problems such as environment and health problems.
Compared with income and welfare, the public pays more attention to environmental welfare at
this time. At different stages of development, people have different environmental awareness and
tolerance for air pollution. Third, the environmental remediation capability is changed. The purpose
of economic development is to improve people’s living standard, but whether the natural environment
can support economic development needs to be considered. In the short run, the natural environment
has limits on repair capability, and the environment can quickly repair itself when the pollution caused
by the transportation infrastructure construction is below this equilibrium point. When the pollution
is above this equilibrium point after a long-term accumulation, the recovery rate will become slow.
The transportation infrastructure has destroyed the self-repair capability of the environment, and then
the air quality will deteriorate for a long time [25]. After economic development (for example, per
capita income or the number of motor vehicles) exceeds a certain equilibrium point, people will choose
more environmentally-friendly transportation infrastructure or a transportation mode to achieve
better natural environment ecology. In conclusion, there may be a nonlinear relationship between
transportation infrastructure construction and air pollution.

The main purpose of this paper is to study empirically the nonlinear relationship between
transportation infrastructure construction and air quality using data from 280 prefecture-level cities in
China from 2000 to 2017, finally advising China’s future transport policies and environmental dilemmas.
This paper has the following three contributions. First, the Panel Smooth Transition Regression (PSTR)
model was used to study the nonlinear effect of transportation infrastructure on air quality. This paper
finds traffic infrastructure may have different effects on air pollution at different periods and regions.
Additionally, there may be a nonlinear relationship between the two. At a low level of economic
development, the impact of transportation infrastructure on air quality is different from that at a high
level. Inspired by Sofien (2019) [26], this paper found that Panel Smooth Transition Regression (PSTR)
could not only measure the threshold value of a variable, but also observe the size of the coefficient
change over time [27]. In other words, it can calculate the specific value of the influence coefficient of
transportation infrastructure on air quality in different periods. Second, the samples are divided into
three sub-samples: eastern, central and western. China has a vast territory with distinct urban features.
For example, there are significant differences in per capita income, number of vehicles, size of urban
space, population density and meteorological environment, which all affect air quality [28]. To be
specific, the overall economic development of the eastern region is more developed. The population
density is higher as well as temperature and rainfall. The overall economic development of western
China is relatively slow, with low population density, relatively low temperature and low rainfall.
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The central region is in the middle. The eastern region contains 106 cities, the central region contains
92 cities, and the western region contains 82 cities, as shown in Figure 2. The robustness of the
results can be further verified by three sub-samples. The eastern regions include: Beijing, Tianjin,
Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Guangdong, Shandong and Hainan. The central
regions include: Henan, Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, Hunan, Hubei and
Guangxi. The western regions include: Sichuan, Guizhou, Yunnan, Xizang, Shaanxi, Gansu, Qinghai,
Ningxia and Xinjiang. Third, the urban level can fully reflect the development status within China.
The sample of this paper includes all the provinces and 280 prefecture-level cities from all provinces in
China. Due to the diversity of cities and scales, the results of this paper are more targeted. In addition,
urban built-up area is selected as the instrumental variable to overcome the endogeneity of the model
to a certain extent.
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Figure 2. The annual average of distinct urban features in different regions in 2017 (a) PM2.5 index;
(b) Urban road area per capita (square meter).

The remainder of the paper is organized as follows. Section 2 establishes the empirical model;
Section 3 shows the data source and variable selection process; Section 4 shows the data stationary test,
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nonlinearity test of panel model, determination of PSTR model conversion function and the number of
position parameters, model estimation and result analysis; Section 5 describes the model endogeneity
test, and Section 6 discusses conclusions and suggestions.

2. Methodology

In recent years, the superiority of nonlinear models in economic research has led many scholars to
think that nonlinear models can more effectively describe the laws of economic changes. The nonlinear
research on panel data mainly includes Threshold Regression (TR), Markov Regime Switching (MRS)
and Smooth Transition Regression (STR) models, where the first two models assume that the conversion
mechanism between variables is discrete, and this does not conform to the actual economic development
laws. Based on the Panel Threshold Regression (PTR) model and STR, the scholars proposed the Panel
Smooth Transition Regression (hereinafter referred to as PSTR) model which is mainly characterized by
avoiding the mutability of the conversion mechanism [27]. This model describes the unique conversion
gradualness of a variable in the panel data by means of a conversion function that transforms in the
range from 0 to 1, which is more reasonable for an explanation of economic development.

The specific formula used in the PSTR model is:

yit = µi + β′0xit + β′1xitg(qit;γ, c) + uit (1)

i = 1, . . . , N, t = 1, . . .T

where, i represents the number of cross-sections, t represents the length of time, xit is a k-dimensional
explanatory variable, yit is the explained variable, µi and µit represent the individual fixed effect
residuals and estimated residuals respectively. g(qit;γ, c) is a conversion variable with a value range
from 0 to 1, which changes with the threshold variable; the regression coefficient is also dynamic,
but between β0 and β0 + β1. Drawing on the research of Teräsvirta (1994) [28,29], this paper uses the
logistic function as the conversion function. The specific function is shown in formula (2):

g(qit;γ, c) =

1 + exp

−γ m∏
j = 1

(qit − c j)



−1

, γ > 0, c1 ≤ c2 ≤ . . . ≤ cm (2)

In formula (2), γ is the conversion rate and the slope parameter of the conversion function, which
determines the speed and smoothness of the conversion mechanism, qit is a threshold variable, and
c = (c1, c2, . . . , cm) represents an m-dimensional vector of position parameters. γ > 0, c1 ≤ c2 ≤ . . . ≤ cm

is the limiting condition of the model. In actual economic research, the common parameters to be
estimated can be met only by considering m = 1 or m = 2. When m = 1, the model contains
only one position parameter, and the conversion function increases monotonically with the change of
qit. When the conversion function tends to 0, the model is in the lower regime; when the conversion
function tends to 1, the model is in the upper regime. When qit = c j, the conversion function takes a
value of 0.5, and the model uses the position parameter as the symcenter to perform the mechanism
conversion. At this time, the regression coefficient continuously changes between β0 and β0 + β1.
When m = 2, the conversion function takes the minimum value at qit = c j and equals 1 when qit
takes the minimum and maximum values, respectively. A multi-regime PSTR model will be obtained
if the number of PSTR conversion functions is greater than 1:

yit = µi + β′0xit +
r∑

j = 1

β′jxitg j(q
( j)
it ;γ j, c j) + uit (3)

where the form of the conversion function g j(q
( j)
it ;γ j, c j) is the same as that of the logistic function

in formula (2), and the model becomes an STR model of r + 1 regime. The multi-regime conversion
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model as shown in formula (3) often appears as an alternative hypothesis to test whether the model is
still nonlinear.

Since the number of conversion functions has not yet been determined, the fixed effect PSTR
model equation is initially set as follows herein:

ln PM2.5 = µit +
∑

βit × xit+β
′

itg(ln PGDP;γ1, c1) × xit + µit (4)

ln PM2.5 = µit +
∑

βit × xit+β
′

itg(ln Car;γ1, c1) × xit + µit (5)

Formula (4) represents the model with GDP per capita (lnPGDP) as the conversion variable, and
formula (5) represents the model with motor vehicle population per capita (lnCar) as the conversion
variable. lnPM2.5 represents the explained variable, xit represents the explanatory variable, βit is the
estimated parameter of the linear part of the model, β′it is the estimated parameter of the nonlinear
part of the model, qit in Equation (2) is specifically the GDP per capita in Equation (4) and the motor
vehicle in Equation (5), respectively. The remaining parameters have the same meaning as in formula
(1). The final regression coefficient is between βit and βit + β′it.

3. Variable Selection and Data Source

3.1. Explained Variable

At present, the data indicators for studying air pollution in China are divided into PM2.5, API and
AQI. However, API is only published until 2013, and involves only dozens of cities; AQI has been
released since the end of 2013, and its length of time is relatively short. Therefore, this paper selects the
PM2.5 of air pollution in Chinese cities released by the Atmospheric Composition Analysis Groupof
Dalhousie University, which involves a total of 280 prefecture-level cities. Compared to the first two,
the data has an advantage in terms of time and samples of cit.

3.2. Explanatory Variable

Transportation infrastructure is generally reflected by the amount of urban road investment or
road area. However, too much data on the amount of urban road investment is unavailable and part
of the funds in urban road investment are used to upgrade roads or repair road damage. Only the
increase in urban road area can really reduce traffic congestion and improve air quality, and the road
area can also be used as a representative of the output of transportation infrastructure. Therefore, this
paper selects the urban road area (lnRoad) as the core explanatory variable [9].

3.3. Conversion Variable

(1) Urban GDP per capita (lnPGDP). GDP per capita can directly reflect the degree of regional
economic development, and the economic development level directly determines the fiscal
revenue of local governments as well as affecting the investment of environmental protection
funds [30]. The classic EKC curve also indicates that there is an “inverted U” relationship between
economic growth and environmental indicators, therefore, this paper selects GDP per capita as
the conversion variable between transportation infrastructure and air pollution.

(2) Urban motor vehicle population (lnCar). It is difficult to obtain urban traffic flow data, as the
motor vehicle population can represent the degree of traffic congestion only to a certain extent.
The living environment of residents has the self-repair capability, and will be damaged when
the accumulated exhaust gas emitted by motor vehicles exceeds a certain amount, resulting in
long-term deterioration of air quality [25]. In addition, the different numbers of motor vehicles
represent different stages of development in the region. The greater number of motor vehicles
indicates the higher level of economic development in the region [31]. Therefore, there may
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be a nonlinear relationship between motor vehicle population and environmental pollution.
The motor vehicle population is selected as another conversion variable herein.

3.4. Control Variable

Based on the foregoing analysis and previous studies [7,9,18], this paper controls a group of
urban characteristic variables in the empirical model to minimize the error due to missing variables.
Specifically, the selection of urban characteristic control variables is explained below.

(1) Urban population density (lnPD). Generally, air pollution is ascribed to human activities, and
population aggregation will also affect air quality [32]. In this paper, the ratio of urban population
to the area of regional administrative district is selected as the proxy variable of urban population
density to control the impact of urban population agglomeration on air pollution.

(2) Urban bus service (lnBus). Public transportation is regarded as an important way of green travel.
The more developed public transportation is, the less frequently that private cars and taxis are
used, thereby reducing exhaust emissions [33]. Herein, the number of buses per 10,000 persons in
the city is used as a representative of urban public transportation.

(3) Urban greening level (lnGreen). Green space absorbs carbon dioxide, which is conducive to
purifying the air. Nonetheless, excessive investment in urban green space will occupy fiscal
expenditures in environmental protection. The higher the value index of postmodernism is,
the stronger the environmental awareness is, therefore, the more obvious the impact on air
quality [21]. Hence, this paper introduces green space area per capita as a representative of urban
greening level [34].

(4) Environmental regulation (lnER). The government solves environmental problems by
promulgating or implementing environmental policies, and environmental policies are also
an important means to achieve green development and an environmentally-friendly society [16].
As a result, this paper uses the urban sewage treatment rate to control the intensity of the
environmental regulations of the sample cities.

(5) Urban natural climate factors. The natural climate conditions of a city will also affect its air
quality [35]. The research found that the correlation between wind speed and PM2.5 is significantly
negative, as when the wind speed is low, the concentration of PM2.5 does not change much.
However, when the wind speed increases continuously, the concentration of PM2.5 will decrease.
The rainfall also has the obvious scour effect on natural air purification. Temperature had a
positive correlation with PM2.5 [36]. Thus, in this paper, urban precipitation (lnRain), urban wind
speed (lnWind) and average temperature (lnTemp) are used to control the impact of different
natural climate factors on air quality.

3.5. Instrumental Variable

Furthermore, this paper selects the built-up area (lnArea) as instrumental variables for testing
endogeneity in discussion on missing variables. Air governance and urban construction are two
key contents of local administration. It is difficult to maintain independence and exogeneity in the
formulation of the two policies, as there may be a certain linkage; that is, air pollution has an impact on
formulation of urban road policies. Such impact will cause the endogenous problem of reverse causality,
leading to error in the parameter’s estimation results. In order to make the research results more
reliable, this paper will use appropriate instrumental variables to control endogeneity. Appropriate
instrumental variables must be related to endogenous variables and must remain exogenous to some
extent; that is, such variables must be related to the road policies and unrelated to the missing
variables. For different sample cities, the built-up area largely determines the shape and length of road
construction, and the urban transportation infrastructure will also be affected by the built-up area [9].
As an inherent variable of geographic information, the built-up area will not change in a short period
of time. Previous studies [37] have also selected this variable to describe the natural factors of cities.
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Herein, the balanced panel data of 280 sample cities in the China City Statistical Yearbook from 2000
to 2017 are used for empirical research, and the average values of the successive two years are used to
replace the missing data in individual years, with a total sample size of 5040. The PM2.5 data is from
the Atmospheric Composition Analysis Group of Dalhousie University, and has been updated from
2000 to 2017. Therefore, PM2.5 takes the values in the years from 2000 to 2017. The urban road area is
from the Wind database, and the natural factors such as urban annual precipitation, wind speed and
average temperature are provided by the China Meteorological Data Sharing Service System. The rest
of the data comes from the China City Statistical Yearbook and CEIC. All variables take the logarithms,
and the data taking the logarithm are smoother to eliminate heteroscedasticity. The specific variable
descriptions and data sources are shown in Table 1, and the descriptive statistical results are shown in
Table 2.

Table 1. Variable meaning and statistical description.

Variable
Name Index Variable

Description Obs Mean Std. Dev. Min Max Data Resource

Independent
Variable lnPM2.5 PM2.5 index 5040 3.64 0.49 1.13 4.68

Atmospheric
Composition

Analysis Group

Dependent
Variable lnRoad Road area

per capita 5040 2.06 0.69 −1.97 4.69 Wind

Conversion
Variable

lnPGDP GDP per
capita 5040 9.87 0.97 5.02 12.32

China City
Statistical Yearbook

and CEIClnCar
Car

ownership
per capita

5040 5.98 1.13 2.10 9.70

Control
Variable

lnBus
Buses per

10,000
people

5040 1.66 0.82 −1.35 4.75
China City

Statistical Yearbook
and CEIC

lnPD Population
density 5040 6.56 0.95 3.64 9.09

China City
Statistical Yearbook

and CEIC

lnGreen Green area
per capita 5040 1.91 1.12 −2.79 5.35

China City
Statistical Yearbook

and CEIC

lnER Environmental
regulation 5040 4.42 0.27 1.22 4.61

China City
Statistical Yearbook

and CEIC

lnRain Average rain
capacity 5040 987.78 570.53 42.40 3476

China
Meteorological

Science Data
Sharing Network

lnWind Average
wind speed 5040 2.13 0.81 0.20 6.90

China
Meteorological

Science Data
Sharing Network

lnTemp Average
temperature 5040 14.71 5.26 −5.00 25.40

China
Meteorological

Science Data
Sharing Network

lnArea Construction
land area 5040 4.22 0.87 1.53 7.28 China City

Statistical Yearbook
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Table 2. Unit root test.

Variables LLC IPS

lnPM2.5
−28.59 ***

(0.00)
−2.89 ***

(0.00)

lnRoad −21.11 ***
(0.00)

−2.14 ***
(0.00)

lnPGDP −12.76 ***
(0.03)

−1.58 ***
(0.01)

lnCar −16.41 ***
(0.00)

−1.87 ***
(0.00)

lnBus −14.61 ***
(0.02)

−2.74 ***
(0.00)

lnPD −10.05 ***
(0.01)

−4.75 ***
(0.00)

lnGreen −17.65 ***
(0.00)

−2.09 ***
(0.00)

lnER −27.70 ***
(0.00)

−2.57 ***
(0.00)

lnRain −34.17 ***
(0.00)

−3.09 ***
(0.00)

lnWind −15.80 ***
(0.00)

−1.66 **
(0.06)

lnTemp −22.81 ***
(0.00)

−2.18 ***
(0.00)

lnArea −7.59 **
(0.06)

−1.75 ***
(0.00)

Note: *** and ** indicate significance at the levels of 1% and
5% respectively; the significance level for parameter estimates
are in parentheses.

4. Empirical Results

4.1. Variable Stationary Test

Before constructing the model, we first need to perform a stationary test on each variable that takes
a natural logarithm. After the Levin-Lin-Chu (LLC) test and the Im-Pesaran-Shin (IPS) test, all variables
are stationary sequences, and the results are shown in Table 2. The null hypothesis of the stability test
is that each interface sequence of panel data has the same unit root, and the alternative hypothesis is
that each interface sequence has no unit root. It can be seen from the statistics and p-value results of
the unit root test listed in Table 2, that the interface level values of various variables have no unit root.
In addition, the results of Pedroni and Kao tests show that there is a cointegration relationship between
explained variables and explanatory variables, that is, there is a long-term equilibrium relationship,
and a panel model can be constructed.

4.2. Linearity and Nonlinearity Test

Before estimating the model parameters, we first need to perform a nonlinear test of the
cross-sectional heterogeneity for the structural equation of air pollution. The null hypothesis H0 of
the test is that the panel data is a linear model that does not contain heterogeneity; the alternative
hypothesis H1 is the PSTR model containing at least one conversion function (r ≥ 1). If the linear
hypothesis of the model is rejected, then the number of conversion functions must be determined
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to ensure that the constructed PSTR model contains all nonlinear factors. This paper uses the LM
(Equation (6)) and F-verion LM (Equation (7)) statistics used by Shao for testing [35].

LM = TN(SSR0 − SSR1)/SSR0 ∼ χ
2(mk) (6)

LMF = [(SSR0 − SSR1)/mk]/[SSR0/TN −N −m(K + 1)] ∼ F(mk, TN −N −m(K + 1)) (7)

where, SSR0 and SSR1 are the residual sum of squares estimated in the null hypothesis and alternative
hypothesis models respectively, and the specific test results are shown in Table 3.

Table 3. Nonlinear test and determination of conversion function purpose.

Model
H0:r = 0; H1:r = 1 H0:r = 1; H1:r = 2

LM LMF LRT LM LMF LRT

lnPGDP

Nation 674.81
(0.00)

30.67
(0.00)

727.76
(0.00)

261.66
(0.02)

32.40
(0.01)

269.12
(0.03)

Eastern 439.32
(0.00)

22.46
(0.00)

503.56
(0.00)

42.07
(0.05)

4.99
(0.07)

42.56
(0.03)

Central 226.24
(0.00)

10.20
(0.00)

244.38
(0.00)

31.82
(0.00)

3.76
(0.08)

32.15
(0.01)

Western 154.80
(0.00)

6.70
(0.00)

164.09
(0.00)

31.86
(0.01)

1.87
(0.02)

32.23
(0.00)

lnRoad

Nation 647.20
(0.00)

29.21
(0.00)

695.65
(0.00)

220.58
(0.06)

27.07
(0.09)

225.85
(0.00)

Eastern 428.68
(0.00)

21.75
(0.00)

489.54
(0.00)

72.64
(0.03)

8.78
(0.02)

74.15
(0.05)

Central 187.32
(0.00)

8.21
(0.00)

199.52
(0.00)

30.37
(0.06)

3.59
(0.04)

30.67
(0.00)

Western 144.04
(0.00)

6.18
(0.00)

152.04
(0.00)

18.66
(0.04)

2.18
(0.03)

18.78
(0.00)

This paper takes PM2.5 as the explained variable and road area per capita as the explanatory
variable. The GDP per capita and the car ownership per capita are used in turn as the conversion
variables to perform the nonlinearity test of the panel data, and the test results are shown in Table 3.
The second column H0: r = 0 vs. H1: r = 1 in Table 3 aims to test whether the model has nonlinearity. By
observing the LM and LMF statistic values and p-values, the results show that the models constructed
by the two conversion variables have nonlinear characteristics. The variable that rejects the linearity
most strongly should be selected as a conversion variable. The hypothesis in the third column, H0:
r = 1 vs. H1: r = 2, is to test the number of model position parameters under the premise that there are
nonlinear characteristics. In Table 3, lnPGDP and lnCar have large corresponding statistics of LM and
LMf, and the number of corresponding conversion functions r = 1, so the model is determined to be a
two-regime model containing a conversion function; in addition, the AIC and BIC values when m = 1
are less than the test values when m = 2 for all models. Hence, the constructed model has a position
parameter. The PSTR model allows the regression coefficients to change smoothly when moving from
one “extreme” regime or state to another. In this paper, the influence of transportation infrastructure
construction on air quality is divided into two stages, in which the coefficient will change greatly.

4.3. Explanation of GDP per Capita as a Conversion Variable

The PSTR model uses nonlinear least squares (NLS) to estimate the parameters. Before estimating
the parameters, it is necessary to determine the initial values of the conversion rate and the position
parameters first. Herein, the grid search method is used to determine its initial value [38]. In order to
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ensure the accuracy of the model estimation and the running time of the program at the same time, the
number of iterations is initially set to 20,000, and the model parameter results are estimated, as shown
in Tables 4 and 5.

Table 4. Parameter estimation results of GDP per capita model.

Variables Nation Eastern Central Western

lnRoad 0.06 ***
(2.87)

0.14 ***
(4.25)

0.25 ***
(5.50)

0.01 *
(1.89)

lnBus −0.03 *
(−1.65)

−0.04 *
(−1.69)

0.13 **
(2.38)

0.01
(0.22)

lnPD −0.06 ***
(-3.91)

−0.07 ***
(−3.04)

−0.28 ***
(−3.80)

0.06 *
(1.72)

lnGreen −0.07 ***
(−6.08)

−0.01 ***
(−4.06)

0.01
(0.16)

−0.02
(−1.25)

lnER 0.013
(0.49)

−0.19 ***
(−3.22)

−0.13 **
(−2.44)

0.06
(1.35)

lnRain −0.058 ***
(−2.82)

0.12 ***
(3.37)

0.25 ***
(5.41)

−0.10 ***
(−3.99)

lnWind −0.13 ***
(−4.56)

−0.09 **
(−1.99)

0.06
(0.57)

−0.03
(−0.79)

lnTemp 0.48 ***
(4.48)

0.33 ***
(2.93)

0.34 ***
(3.07)

−0.15
(−0.99)

lnRoad´ −0.05 **
(−2.04)

−0.17 ***
(−3.91)

−0.18 ***
(−3.72)

0.01
(0.40)

lnBus´ 0.02 *
(1.86)

0.03
(0.84)

−0.16 ***
(−2.84)

−0.02
(−0.94)

lnPD´ 0.03 **
(2.36)

0.10 ***
(3.78)

−0.22 ***
(-3.05)

−0.02 ***
(−1.02)

lnGreen´ 0.09 ***
(7.03)

0.04 ***
(1.86)

0.05 *
(1.68)

0.01
(0.54)

lnER´ 0.01
(0.15)

0.44 ***
(6.17)

0.33 ***
(5.25)

−0.07 *
(−1.63)

lnRain´ 0.05 **
(2.32)

−0.23 ***
(−5.00)

−0.30 ***
(−6.54)

0.07 ***
(3.30)

lnWind´ 0.13 ***
(4.01)

0.14 **
(2.44)

−0.19 *
(−1.89)

−0.03
(−0.71)

lnTemp´ −0.13 **
(−2.18)

−0.19 **
(−1.99)

−0.25 **
(−2.29)

0.05
(0.87)

γ2 2.74 1.29 37.50 18.85
c2 8.88 9.39 8.59 6.05

Note: ***, **, and * indicate significance at the levels of 1%, 5%, and 10%
respectively; the t-values for parameter estimates are in parentheses.
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Table 5. Parameter estimation results of model of motor vehicle population per capita.

Variables Nation Eastern Central Western

lnRoad 0.30 ***
(7.22)

0.10 ***
(4.84)

0.15 ***
(3.82)

0.09 *
(1.68)

lnBus −0.05 *
(−1.79)

−0.02 **
(−1.90)

−0.01 *
(−1.80)

−0.02
(−0.61)

lnPD −0.19 ***
(−6.58)

−0.05 ***
(−2.84)

−0.16 ***
(−5.00)

0.08 *
(1.65)

lnGreen −0.11 ***
(−4.50)

0.04 ***
(3.89)

0.07 ***
(2.57)

−0.07 *
(−1.76)

lnER −0.06
(−0.82)

−0.06
(−1.53)

−0.15 ***
(−2.52)

0.28 ***
(3.47)

lnRain −0.13 ***
(−2.80)

0.05 ***
(2.67)

0.16 ***
(4.08)

−0.20 ***
(−4.54)

lnWind −0.29 ***
(−4.87)

−0.01
(−0.54)

−0.18 **
(−2.97)

−0.03
(−0.37)

lnTemp 0.89 ***
(5.30)

0.22 **
(2.42)

0.46 ***
(4.04)

0.03
(0.20)

lnRoad’ −0.31 ***
(−6.56)

−0.09 ***
(−3.92)

−0.18 **
(−1.68)

−0.07
(−1.19)

lnBus´ −0.06
(−1.38)

−0.02
(−1.34)

−0.04
(−0.28)

0.03
(0.61)

lnPD´ 0.19 ***
(5.78)

0.05 ***
(3.97)

0.34 ***
(3.10)

−0.02
(−0.45)

lnGreen´ 0.13 ***
(4.63)

−0.02 *
(−1.75)

−0.22 **
(−2.16) 0.05(1.37)

lnER´ 0.13(1.21) 0.26 ***
(7.58)

1.11 ***
(4.24)

−0.28 ***
(−3.36)

lnRain´ 0.13 ***
(2.52)

−0.14 ***
(−6.20)

−0.57 ***
(−3.43)

0.17 ***
(4.03)

lnWind´ −0.33 ***
(−4.67)

−0.04 *
(−1.66)

−0.67 ***
(−2.69)

−0.05
(−0.71)

lnTemp´ −0.65 ***
(−4.02)

−0.14 ***
(−3.11)

−1.37 ***
(−3.45)

0.12
(1.17)

γ2 0.86 5.31 4.89 3.35
c2 3.62 5.73 4.55 4.12

Note: ***, **, and * indicate significance at the levels of 1%, 5%, and 10% respectively; the t-values for parameter
estimates are in parentheses.

National samples: In the first column of Table 4, national city samples include a two-regime model
of conversion variable in the model where the GDP per capita is a conversion variable. The estimated
position parameter c of the model is 8.88, which is in the change range of the conversion variable.
The conversion rate is 2.74. Only when the conversion slope r approaches infinity, the two-regime
model with m = 1 will become an indicator function, that is, (q > c) = 1. Otherwise it is 0. In other words,
the PSTR model has not degenerated into Panel Transition Regression (PTR) model, so we believe
that it is still necessary to explain the process of coefficient change with the idea of smooth transition.
When the GDP per capita is greater than RMB exp (8.875) = 7151, the model gradually moves closer to
the upper regime state with the increase of the conversion variable. When the GDP per capita is lower
than RMB 7151, the model gradually falls back to the lower regime state as the conversion variable
decreases. In the observed sequence of 5040 GDPs per capita, only 838 values are less than the position
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parameter, as shown by A1 in Figure 3. The curve indicates that the value of the conversion variable
corresponds to the value of the conversion function, and the values following the position parameter
are more intensive and significantly higher than the left parts of the position parameter. Therefore,
most of the observations are above the position parameter, indicating that the model where the GDP
per capita is the conversion variable is mainly in the upper regime range. In the lower regime state,
the coefficient of road area per capita to air pollution in national city samples approaches 0.06; that
is, when the road area per capita increases by 1%, the PM2.5 index will increase by 0.06%. However,
under the upper regime state, the coefficient of road area per capita to air pollution approaches −0.05;
that is, when the road area per capita increases by 1%, the PM2.5 index will decrease by 0.05%. In other
words, the air pollution and economic development of the sample cities shows a positive correlation in
the lower regime. Only when the GDP per capita is higher than a certain inflection point does the air
pollution and economic development of the sample cities show a significant negative correlation in the
upper regime, which also indirectly proved the EKC hypothesis. In addition, the coefficient of road
area per capita to air pollution is positive in national city samples under the lower regime state; at
this point, the corresponding GDP per capita is lower than RMB 7151. Under the upper regime state,
such a coefficient is negative and the corresponding GDP per capita is higher than RMB 7151. It shows
that people enjoy the convenience of life brought about by increased transportation infrastructure
and also pay more attention to the welfare effect under the lower regime state, while they hate the
environmental pollution caused by the traffic circulation and pay more attention to the environmental
effect under the upper regime state. This is consistent with the results obtained by Yang (2018) [10].
The author found that urban transport investment will increase SO2 emissions in the short term, but
will reduce SO2 emissions in the long term.Sustainability 2020, 12, x FOR PEER REVIEW 13 of 24 
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Figure 3. Conversion function of GDP per capita model.

Regional samples: In the second column of Table 4, the position parameter is 9.39 and the
conversion slope is 1.29 for the eastern city samples. In other words, when the GDP per capita is
greater than RMB exp (9.39) = 11,908, the model gradually moves closer to the upper regime state with
the increase of the conversion variable. If the GDP per capita is lower than RMB 11,908, the model
gradually moves closer to the lower regime state. The coefficient of road area per capita to urban air
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pollution approaches 0.14 when the GDP per capita is in the lower regime state, while the estimated
coefficient of road area per capita approaches −0.03 from positive to negative in the upper regime state.
This shows that the correlation between road area per capita and air pollution is approaching −0.13
from 0.14, and the increase in road area has played a role in suppressing air pollution as the GDP per
capita increases. Compared to other city samples, their conversion slope is the lowest. As can be seen
from A2 in Figure 3, the slope of the curve is relatively gentle. In addition, in the 1908 eastern sample
cities, only 371 values are lower than the position parameter, accounting for 19.45%. This indicates that
a negative correlation is shown between the two, to a great extent.

In the third column of Table 4, the position parameter is 8.59 and the conversion slope is 37.50 for
the central city samples. In other words, when the GDP per capita is greater than RMB exp (8.59) = 5394,
the model will change from the lower regime state to the upper regime state. When the GDP per capita
is lower than RMB 5394, the model will move closer to the lower regime state. The slope in the central
region is the largest. As can be seen from A3 in Figure 3, the conversion trend is more intense. In
the lower regime state, the coefficient of road area per capita to air pollution approaches 0.25, while
the estimated coefficient approaches 0.07 (all are positive) in the upper regime state. In the upper
regime state, the parameters are negative. Of the sample cities, 1536 are above the position parameter,
accounting for 92.76% of the total sample. This indicates that a negative correlation is shown between
the road area per capita and air pollution to a great extent in the central region.

In the fourth column of Table 4, the position parameter is 6.05 and the conversion slope is 18.85
for the western city samples. When the GDP per capita is greater than RMB exp (6.05) = 425, the model
changes from the lower regime state to the upper regime state. As can be seen from A4 in Figure 3,
the conversion slope in the western region is also larger. The coefficient of road area per capita to air
pollution approaches 0.01 in the lower regime state, but approaches 0.02 in the upper regime state.
In other words, the coefficient is always positive whether the model is in the lower or upper regime.
However, the coefficient is not significant.

From the above analysis, the following can be found. First, for national, eastern and central
sample cities, the coefficients of road area per capita to air pollution are significantly positive in the
lower regime state and significantly negative in the upper regime state. Moreover, the sample cities in
the upper regime state account for a large proportion, indicating that the increase in road investment is
positively correlated to air pollution when the averages of GDP per capita of the whole nation, eastern
region and central region are lower than RMB 29,135, RMB 37,609 and RMB 24,912, and negatively
correlated to air pollution when such averages are higher than the above values. For western cities,
the coefficients are significantly positive in the lower regime state, and negative but not significant
in the upper regime state. Second, in terms of the degree of economic development, the degree of
development and social welfare decreases sequentially in eastern, central and western regions, as do
the conversion values of GDP per capita shown in Table 4, which can explain, to a certain extent, that
people will pay more attention to the environmental effects of living conditions after the economy has
developed to a certain stage. As people’s environmental values change, more and more attention is
paid to the environment. Third, the conversion slope is gentle in the eastern region and steep in the
central and western regions. The greater the conversion rate, the steeper the change of the conversion
function value. This shows that the trend of suppressing air pollution will become more and more
significant in the future as the GDP per capita further increases. Fourth, the reason why the coefficient
of the western region is positive may be that this region is still in a stage for welfare effect, when people
wish to improve the living standard by transportation infrastructure investments in view of the current
development of the western region.

In terms of control variables, first, the coefficient of urban bus services in national city samples
is −0.03 in the lower regime state and 0.02 in the upper regime state, indicating that the inhibitory
effect of urban bus services on air pollution is weakening with the development of urbanization.
However, the estimated coefficient of urban bus services is approaching −0.01, indicating that the
improvement of urban bus services can significantly inhibit air pollution. The inhibitory effect of
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urban bus services on air pollution may be achieved by substitution effect of non-public transportation.
In the future, it is necessary to further improve urban bus services, especially subways, intercity
railways and other rail transit. Second, the population density changes from −0.06 in the lower regime
state to 0.03 in the upper regime state, and the estimated coefficient is close to −0.03. The negative
coefficient indicates that the increase in population density may force heavy pollution sources in the
city to shift to the city’s boundary and remote areas, thereby improving the city’s internal air quality.
Third, the estimated coefficient of green area is −0.07 in the lower regime state and 0.09 in the upper
regime state, indicating that green area is conducive to reducing pollution in the early stage of urban
development. However, in the middle and late stages, environmental pollution is much faster than
green space purification. The estimated coefficient approaches 0.02. Fourth, in terms of natural factors,
the estimated coefficient of average annual rainfall approaches −0.01, and the estimated coefficient of
annual average wind speed in cities approaches −0.01, indicating that the average annual wind speed
in cities will significantly affect the air quality of the sample cities. The faster wind speed and more
rainfall are further conducive to the dissipation of atmospheric pollutants. The estimated coefficient of
annual average temperature approaches 0.35, indicating that the temperature increase is not conducive
to the dissipation of pollutants. The coefficients of environmental regulation are positive and not
insignificant whether the model is in the lower or upper regime, indicating that the inhibitory effect
of environmental regulations on air pollution has not been reflected. This paper aims to explore the
structural impact of transportation infrastructure on air pollution. The remaining control variables are
not key points and will not be detailed herein.

4.4. Explanation of Motor Vehicle Population per Capita as a Conversion Variable

National city samples: In the first column of Table 5, national city samples include a two-regime
model of conversion variable in the model where the motor vehicle population per capita is a conversion
variable. The estimated position parameter of the model is 3.62, and the conversion slope is 0.86.
That is, as the conversion variable increases, the model moves closer to the upper regime state when
the motor vehicle population per capita is greater than exp (3.62) = 37 (vehicles/10,000 persons), and
moves closer to the lower regime state when the motor vehicle population per capita is lower than 37.
Relatively, the conversion rate is gentle, as shown by A1 in Figure 4. The coefficient of road area per
capita also tends to −0.02 in the upper regime state from 0.30 in the lower regime state, indicating that
every 1% increase in road area will reduce the degree of air pollution by 0.02% in the upper regime
state. That the coefficient changes from positive to negative indicates that the inhibitory effect on air
pollution will become more and more significant as the road area increases, even when the number of
motor vehicles increases, which is proved by that the parameter 0.31 is greater than 0.30 in the upper
regime state.
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Figure 4. Conversion function of model of motor vehicle population per capita.

Regional samples: In the second column of Table 5, the position parameter is 5.73 and the
conversion slope is 5.31 for the eastern city samples, and its conversion rate is the highest in the four
models, as shown by A2 in Figure 4. In other words, the model moves closer to the upper regime state
when the motor vehicle population per capita is greater than exp (5.31) = 309 (vehicles/10,000 persons),
and moves closer to the lower regime state when the motor vehicle population per capita is lower than
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309. The coefficient approaches 0.10 in the lower regime state and −0.01 in the upper regime state,
indicating that the inhibitory effect on air pollution is significant.

In the third column of Table 5, the position parameter is 4.55 and the slope is 4.89 for the central
region, as shown by A3 in Figure 4. That is, the model shifts to the upper regime state when the motor
vehicle population per capita is greater than exp (4.89) = 94 (vehicles/10,000 persons), and moves closer
to the lower regime state when the motor vehicle population per capita is lower than 94. The coefficient
of road area per capita to air pollution tends to be 0.15 when the motor vehicle population per capita is
in the lower regime and −0.03 when the motor vehicle population per capita is in the upper regime.
That the coefficient changes from positive to negative also indicates that it has an inhibitory effect on
air pollution. Parameter -0.18 in the upper regime is greater than the parameter in the lower regime,
which also shows that the inhibitory effect will become more and more powerful.

In the fourth column of Table 5, the position parameter is 4.12 and the slope is 3.35 for the western
city samples, as shown by A4 in Figure 4. That is, the model shifts to the upper regime state when the
motor vehicle population per capita is greater than exp (3.35) = 29 (vehicles/10,000 persons), and moves
closer to the lower regime state when the motor vehicle population per capita is lower than 28.62.
The coefficient change from positive to negative indicates that the road area per capita is negatively
correlated to air pollution. The control variables are basically in line with expectations. Only some of
the variables in the western region are not significant enough. The control variables have the same
meanings as those given in Table 4. They are not key points of this paper and will not be detailed herein.

As shown in Table 5, the coefficients are positive and significant in the lower regime state, and
negative and significant in the upper regime state for national, eastern, central and western sample
cities, indicating that the road investment is positively correlated to air pollution when the motor
vehicle population per capita is below 37, 309, 94 and 29, and negatively correlated to air pollution when
the motor vehicle population per capita is above 37, 309, 94 and 29. The motor vehicle population can
reflect the wealth level of a region, which also shows that people pay more attention to the convenience
of life brought by transportation investment and enjoy the welfare effects brought by life in the
early stage of economic development, but hate the environmental pollution caused by transportation
investment and pay more attention to environmental effect at a certain stage of economic development.

By comparing Table 4 with Table 5, it can be found that it does not matter if the GDP per capita or
motor vehicle population per capita is used as the conversion variable, the relationship between road
area per capita and air pollution is positive in the lower regime state, and negative in the upper regime
state, and the coefficient changes from positive to negative. In other words, it does not matter if taking
the GDP per capita or the motor vehicle population per capita is used as the conversion variable, as
with the development of economy and the increase of wealth, the increase of road area per capita has a
stronger and stronger inhibitory effect on air pollution. This result is similar to that found by Sun [39],
that transportation infrastructure construction can significantly alleviate pollution in the long term, but
not in the short term. Secondly, through the comparison between Figures 3 and 4, it can be found that
the conversion slope of each region is different; the ranking order of the conversion slope is the central
region, western region, eastern region and the whole nation in the model with GDP per capita as the
conversion variable from large to small, while the eastern region, central region, western region and
the whole nation in the model with motor vehicle population as the conversion variable. Although
there are differences, on the whole, the slope of the eastern region is much higher than that of the
central and western regions, indicating that with the passage of time, the environmental governance
effect of the eastern region is much higher than that of the central and western regions.

5. Robustness Test

Considering the regression results of the benchmark model are likely to be endogenous, this paper
adds the built-up area (lnArea) as instrumental variables. The rationality of instrumental variables has
been explained in the variable description of the previous article [37,38], and the test results are shown
in Tables 6 and 7.
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Table 6. Endogenous test results of model with GDP per capita as a conversion variable.

Variables Nation Eastern Central Western

lnArea 0.51 ***
(2.99)

−0.31 **
(−2.06)

0.42 **
(3.10)

0.26 **
(2.43)

lnRoad 0.11 *
(1.81)

0.16 ***
(3.06)

0.22 **
(2.31)

−0.11
(−0.11)

lnBus 0.01
(1.07)

−0.02 *
(−2.02)

0.21
(1.20)

0.01
(0.60)

lnPD −0.19 **
(−2.35)

−0.15 **
(−2.57)

−0.52 ***
(−4.80)

0.11
(0.58)

lnGreen 0.03 *
(1.90)

0.04
(0.99)

−0.13
(−0.81)

−0.11
(−1.90)

lnER −0.23 *
(−1.88)

−0.21 ***
(−5.12)

−0.10 **
(−2.10)

0.12
(0.89)

lnRain −0.03
(−1.31)

−0.17 ***
(−4.36)

0.23 ***
(4.01)

−0.30
(−1.61)

lnWind −0.18 ***
(−3.99)

−0.11 **
(−2.43)

0.03
(0.45)

0.01
(0.70)

lnTemp 0.39 ***
(5.01)

0.40 *
(1.99)

0.31 **
(2.51)

0.43 **
(2.45)

lnArea´ −1.89 ***
(−5.21)

−0.34 ***
(−5.39)

−1.40 ***
(−2.40)

−0.35 *
(−2.86)

lnRoad´ −0.20 **
(−2.01)

−0.14 *
(−1.89)

−0.31 ***
(−2.82)

0.08
(0.41)

lnBus´ −0.32
(−1.08)

−0.10 *
(−1.89)

−0.75
(−1.61)

−0.31
(−1.38)

lnPD´ 0.12 **
(1.89)

0.10 **
(2.33)

0.82 ***
(2.86)

0.45 **
(2.51)

lnGreen´ 0.32 **
(2.51)

−0.03
(−1.16)

0.41
(1.21)

0.21
(1.31)

lnER´ 0.29 ***
(5.21)

0.35 ***
(6.20)

0.30 ***
(4.06)

−0.02
(−0.89)

lnRain´ −0.31 ***
(−3.51)

−0.32 ***
(−6.62)

−0.10 ***
(−5.40)

0.12 *
(1.89)

lnWind´ 0.36 ***
(5.61)

0.19 **
(2.40)

−0.26
(−1.10)

0.11
(0.21)

lnTemp´ −0.16
(−1.04)

−0.09
(−0.09)

−0.11
(−0.67)

0.21 *
(1.86)

γ2 2.81 1.79 2.33 4.25
c2 10.39 9.99 5.19 8.99

Note: ***, **, and * indicate significance at the levels of 1%, 5%, and 10%
respectively; the t-values for parameter estimates are in parentheses.
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Table 7. Endogenous test results of model with motor vehicle population per capita as a
conversion variable.

Variables Nation Eastern Central Western

lnArea 0.36 **
(2.31)

−0.31 **
(−2.05)

0.81 ***
(6.60)

0.21 *
(1.88)

lnRoad 0.04 ***
(5.91)

0.06 **
(2.32)

0.26 ***
(6.30)

0.25 **
(2.41)

lnBus 0.01 **
(2.35)

0.01 *
(1.79)

0.01
(0.89)

0.11
(1.56)

lnPD −0.05 **
(−2.33)

−0.03 *
(−1.89)

−0.07 *
(−1.88)

0.25
(0.35)

lnGreen −0.01
(−0.51)

0.21 **
(2.39)

−0.06
(−1.12)

−0.11 **
(−2.36)

lnER −0.04 **
(−2.45)

−0.33 ***
(−4.12)

0.01
(1.36)

−0.12
(−1.01)

lnRain −0.11
(−0.58)

0.07 ***
(3.51)

−0.19
(−1.43)

−0.02
(−1.03)

lnWind −0.07 ***
(−4.40)

−0.11 *
(−1.87)

−0.10 ***
(−3.26)

−0.03
(−0.77)

lnTemp 0.36 ***
(6.19)

0.11
(0.99)

0.36 ***
(3.40)

0.41
(1.01)

lnArea´ −0.06 **
(−2.04)

−0.81 ***
(−3.21)

−0.51 **
(−2.45)

−0.29 ***
(−3.32)

lnRoad´ −0.19 ***
(−4.00)

−0.20
(−1.45)

−0.21 **
(−2.31)

−0.29 **
(−1.90)

lnBus´ −0.30
(−1.52)

−0.01 *
(−1.77)

−0.09 **
(−2.33)

−0.16
(−1.51)

lnPD´ 0.03 ***
(3.38)

0.01 *
(1.91)

0.09 ***
(3.79)

0.41 **
(2.51)

lnGreen´ 0.03 ***
(2.91)

0.01
(0.55)

0.06 **
(2.35)

0.12 ***
(3.26)

lnER´ 0.21 **
(2.36)

0.30 *
(1.86)

0.20 **
(2.35)

0.81
(1.33)

lnRain´ −0.11
(−0.29)

−0.23 ***
(−6.85)

−0.12 **
(−1.89)

0.31
(1.07)

lnWind´ −0.22 ***
(−5.50)

−0.14 *
(−1.51)

0.26 **
(2.21)

0.20 *
(1.89)

lnTemp´ −0.09 **
(−1.99)

−0.36
(−0.89)

−0.31 ***
(−5.88)

0.17
(0.55)

γ2 3.02 4.48 2.77 1.26
c2 6.76 5.86 6.56 6.30

Note: ***, **, and * indicate significance at the levels of 1%, 5%, and 10%
respectively; the t-values for parameter estimates are in parentheses.

The results of endogenous test with GDP per capita as the conversion variable are shown in
Table 6, which respectively shows the regression results of the national, eastern, central and western
city samples. The results show that, except for the western region, the coefficient of urban road area
to air pollution is still significantly positive in the lower regime, and is still significantly negative in
the upper regime, which verifies the improvement effect of urban traffic infrastructure on air quality;
that is to say, increasing urban road area will significantly inhibit urban pollution. The coefficients of
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other control variables are similar to those in Table 4, indicating that the main conclusions of this paper
are robust.

The results of endogenous test with motor vehicle population per capita as the conversion variable
are shown in Table 7, which respectively shows the regression results of the national, eastern, central
and western city samples. The results show that the coefficient of urban road area to air pollution is still
significantly positive in the lower regime, and is still significantly negative in the upper regime, which
verifies the improvement effect of urban traffic infrastructure on air quality; that is to say, increasing
urban road area will significantly inhibit urban pollution. The coefficients of other control variables are
similar to those in Table 5, indicating that the main conclusions of this paper are robust.

6. Conclusion and Policy Implications

6.1. Conclusion

In China, since the deterioration of air quality has seriously harmed the health of residents and
the improvement of social welfare, the government has also raised environmental governance to
an unprecedented level. Although vehicle emission has become a major contributor of pollution to
urban environment [39], it is more important to increase investment in road traffic infrastructure in
the context that alternative fuels and new energy technologies are still not widely used. Based on 280
prefecture-level cities in China from 2000 to 2017, this paper studies the impact of urban transportation
infrastructure on air quality. Considering that this impact is nonlinear, it is based on PSTR model, GDP
per capita and motor vehicle population per capita respectively, as conversion variables for empirical
analysis. In addition, considering possible endogeneity between traffic infrastructure and air quality,
and in order to further verify the robustness of the model, this paper adds the one-period lag of air
quality and the built-up area as instrumental variables to the model respectively. The main conclusions
of this paper are as follows.

First, the results of the model with GDP per capita as the conversion variable show that when
GDP per capita is less than 7151, the impact of transportation infrastructure investment on air quality
is positive, which indicates that in this stage of development, people pay more attention to the
convenience of life brought by transportation infrastructure investment and enjoy the welfare of
economic development; and that in the development state of GDP per capita greater than 7151, the
impact of transportation infrastructure investment on air quality is negative, which indicates that
at this stage of development, people pay more attention to the surrounding living environment
and have higher requirements for environmental improvement. According to the characteristics of
economic development, the overall sample of Chinese cities is divided into three sub-samples: the
eastern region, the central region and the western region. The sub-samples are similar to the whole
sample in the empirical results. The eastern cities, the central cities and the western cities all show the
characteristics of positive in the low development stage and negative in the high development stage,
but the conversion values of each region are different, which are 11,908, 5394 and 22,917 in the eastern
region, the central region and the western region respectively. Second, the results of the model with
motor vehicle population per capita as the conversion variable show a similar rule; that is, it is positive
in the low development stage, and negative in the high development stage. The conversion values of
the whole nation, the eastern region, the central region and the western region are 37, 309, 94 and 28
respectively. The results of the two models show that increasing road area will be in favor of reducing
air pollution in the future. Third, urban public transport services, green area and population density are
all conducive to reducing air pollution, and the natural environment of the regions, such as wind speed
and rainfall, will also reduce the emission of pollutants. However, the role of environmental regulation
is not significant, which may be due to the tendency of local governments to protect local economic
development at the expense of environment in the process of implementing regional environmental
regulation. Fourth, after adding two instrumental variables of air quality lag item and built-up area,
the conclusion of negative correlation between road area and air quality is further strengthened.
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6.2. Policy Implications

The above empirical results have brought us some policy implications, and different regions
should put forward development strategies that suit them “according to local conditions”. The specific
recommendations are as follows: First, as an economically developed region in China, the eastern
region should further accelerate the improvement and upgrading of urban transportation infrastructure.
Relative to the increasing number of motor vehicles and their emissions, the expansion and
reconstruction of road facilities, the optimal layout of transportation networks, and traffic management
are all very important. Measures to build new road facilities, widen the main roads of the old cities,
as well as optimize and improve the operational efficiency of traffic roads are currently required by
most cities. Second, the economic development of the central and western regions is relatively slow.
Considering that its construction requires large capital and time costs, it is difficult to take effect in
the short term. It may be considered to increase the transportation capacity of existing facilities and
increase transportation efficiency while expanding capacity as well as improve the transportation
efficiency of the transportation infrastructure by increasing the passenger load and loading rate. Third,
while increasing traffic capacity, rationally optimizing road facilities and road planning, vigorously
developing intelligent transportation systems, rationally arranging pedestrians, non-motor vehicles,
and motor lanes, as well as strengthening public transportation management law enforcement and
traffic law publicity can effectively improve road capacity.

The focus of this study is on the impact of transportation infrastructure on air quality, without
considering air pollution from other sources. For example, some cities will have thermal power plants,
which is also one of the sources of air pollution. How to distinguish air pollution caused by traffic from
other sources of pollution is the next research direction. In addition, whether the empirical conclusions
obtained in this paper are general requires empirical testing worldwide.
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