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Abstract: Urban rail transit has received much attention in the last two decades, and a significant
number of cities have established urban rail transit networks (URTNs). Although URTNs have brought
enormous convenience to the daily life of citizens, system failures still frequently occur, therefore
the vulnerability of URTNs must be a concern. In this paper, we propose a novel measurement
called the node strength parameter to assess the importance of nodes and present a redundant
recovery scheme to imitate the system recovery of URTNs subjected to failures. Employing three
malicious attacks and taking the Nanjing subway network as the case study, we investigated the
network vulnerability under scenarios of different simulated attacks. The results illustrate that
passenger in-flow shows the negligible impact on the vulnerability of the node, while out-flow plays
a considerable role in the largest strength node-based attack. Further, we find that vulnerability will
decrease as passenger out-flow increases, and the vulnerability characteristics are the same with
the increase in the construction cost of URTNs. Considering different attack scenarios, the results
indicate that the highest betweenness node-based attack will cause the most damage to the system,
and increasing the construction cost can improve the robustness of URTNs.
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1. Introduction

In 1863, the UK opened the first subway line in the world, in London; since then, many metropolises
have constructed their own urban rail transit systems. In the 21st century, more and more people have
immigrated to cities, which have expanded rapidly, hence urban rail transit has been given increasing
attention in recent decades. To relieve traffic congestion, improve living conditions and decrease urban
pollution, many cities have constructed their own URTNs. Taking China as an example, more than
40 cities have built URTNs in the last thirty years. Urban rail transit is an extraordinarily complicated
system, and minor incidents may lead to unacceptable results, such as injuries, deaths, or property loss.
It is known that accidents involving URTNs around the world may cause serious results; therefore,
more attention should be given to this topic, as well as more effort made in studies to decrease the
intensity and frequency of accidents.

Many studies have discussed the vulnerability and robustness of URTNs, and many useful results
have been obtained in the last two decades, which can be divided into two categories. In the first
category, researchers mainly focus on the vulnerability and robustness of the topological structures of
URTNs. Derrible and Kennedy [1] took 33 subway networks as examples to analyze the complexity
and robustness of URTNs, and presented a method to improve their robustness. Zhang et al. [2] applied
complex network theory and methods to analyze networked characteristics and considered Shanghai
subway network as an example to investigate the vulnerability of URTNs subjected to failures. Sun and
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Guan [3] assessed the vulnerability of the Shanghai subway network by coupling station degree and
betweenness as the station intensity; Sun et al. [4] also studied the vulnerability of the Beijing metro
network based on the multi-static weighted method. Sun et al. [5] analyzed the vulnerability of the
Shanghai urban rail network, while Yang et al. [6] used complex network theory to assess the robustness
of the Beijing subway network. Zhang and Wang [7] investigated the transportation functionality
vulnerability of URTNs based on moving block technology and took the Nanjing subway network as
an example to illustrate the feasibility and effectiveness of the presented model. De-Los-Santos et al. [8]
evaluated the passenger robustness of rail transit networks from two aspects, i.e., without-bridging and
with-bridging interruptions; Lu [9] modeled the resilience of URTNs based on operational incidents,
while Wang et al. [10] considered the Shanghai subway network as an example to investigate robustness
using a multiple perspective method. Zhang et al. [11] proposed a framework to assess resilience
based on the performance loss of triangle stations and quantified the vulnerability of the Shanghai
subway network subjected to random and intentional attacks. Sun et al. [12] employed the tap-in
and tap-out data on passenger distribution to estimate the influences of three common disruptions of
URTNs. Shang et al. [13] integrated Lagrangian and Eulerian observations to estimate the passenger
flow state according to a space-time-state, hyper-network-based assignment approach.

In the second perspective, many contributions studied the associated systems when evaluating
network vulnerability and robustness indirectly. Sun et al. [14] proposed an integrated Bayesian
approach to assign passenger flow in URTNs; Wei and Chen [15] used empirical mode decomposition
and neural network methods to forecast the short-term passenger flow of URTNs. The above two
studies employed mathematical theory and methods to analyze and predict passenger flow to improve
the robustness of URTNs. Yang et al. [16] took the Beijing subway network as an example to measure
route diversity; Saidi et al. [17] analyzed the long-term planning for ring-radial rail systems, and Raveau
et al. [18] compared the passenger behavior for route choice in URTNs from five aspects. These three
studies investigated route-planning to boost robustness.

Certainly, there are many related studies which analyze the delays, disruptions, and line utilization
of rail transit systems. Luxton et al. [19] used software packages to conduct risk assessment analysis
on different sections of the railway station, and formulated mitigation measures to eliminate these
weaknesses in the system to prevent terrorist attacks. Potti et al. [20] used SIMUL8 computer software
to establish a railway system simulation model, and analyzed the scope when moving an urban freight
on rail by evaluating the utilization levels of the Cross-City railway line in the UK. Wales et al. [21]
addressed these issues by first developing an event-based simulation using Simul8 software to
analyze the current system’s performance and its response to delays. Marinov et al. [22] studied
the organization, plan, and management of train movements, and described the analytical methods,
simulation techniques and specific computer packages for analyzing and evaluating the behavior
of rail systems and networks. The aforementioned studies indicate that rail transit networks have
been given increasing attention from many perspectives in the last two decades, which shows their
importance in the daily life of citizens.

Although many methodologies have been applied to study the vulnerability of URTNs subjected
to various failure types, most studies have only considered topology and few studies have focused
on redundancy. Therefore, this paper will adopt a real passenger flow and redundant system to
analyze the vulnerability of URTNs. The rest of the paper is organized as follows: Section 2 analyzes
topological characteristics and takes the Nanjing subway network as an example to discuss network
characteristics. Section 3 presents a new assessment model of network vulnerability using a redundant
system, and the node strength is redefined based on passenger flow. Section 4 employs three types of
malicious attacks to assess network vulnerability and the Nanjing subway network is considered as an
example to illustrate the feasibility and effectiveness of the proposed model. Finally, conclusions are
drawn in Section 5.
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2. Structural Characteristics of URTNs

In this section, we analyzed topological features of URTNs and topological networks can be
abstracted from URTNs. In a URTN, the station and rail are represented by the node and edge
of a complex network, respectively, and the edge can reflect an interaction between two directly
connected nodes. In general, a subway network can be represented by an graph G = {V, E} ,
where V = {vi|i = 1, 2, · · · , N} is the set of nodes and E =

{
ei j

∣∣∣ei j =
(
vi, v j

)}
is the set of edges, N is the

number of nodes, ei j = 1 if the node vi is directly connected with node v j, and ei j= 0 if node vi is not
directly connected with node v j.

This section takes the Nanjing subway network as an example case to analyze the topological
characteristics of URTNs. The first line of Nanjing subway opened on May 15, 2005, and there are seven
operation lines (including 1, 2, 3, 4, 10, S1, S8), 129 stations, and 133 rails in Nanjing subway network,
shown in Figure 1. It can also be found that the largest degree station (or node) is Nanjingnan station,
with degree 5, while there are eight stations with degree 4, one station with degree 3, one hundred and
seven stations with degree 2 and twelve stations with degree 1.
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Figure 1. The operation route of Nanjing subway network. 
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2.1. Network Property on Station

In this subsection, two network parameters are employed to analyze network properties.
Node degree indicates the number of edges connected to the node, and the degree of the i-th
node vi is defined as follows

ki =
∑
j∈N

ei j (1)

where the degree ki indicates the number of nodes directly connected to the node vi, hence the degree
of station reflects the local connectivity of URTNs.
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Node betweenness is described by the number of shortest paths between all pairs of nodes passing
this node, and reflects the importance of the node over the network, and the node betweenness [6,9,23]
of the i-th node vi is denoted by

Bi(vi) =
∑
j,m

L jm(vi)

L jm
(2)

where L jm is the number of shortest paths between v j and vm, L jm(vi) is the number of shortest paths
from v j to vm through the node vi in V. The betweenness is often used to describe the transport ability
of the station of URTNs, and therefore nodes with a high betweennesses play vital roles in the transport
ability of URTNs.

2.2. Node Strength on Station

In the current approaches, the cross-section passenger flow is regarded as passenger flow of a
station, however, the cross-section passenger flow cannot give a detailed representation of the real
passenger flow of the node. In this subsection, the passenger flow of a station is described by the
passenger in-flow and out-flow, and given as follows

Fi(vi) = Fin(vi) + Fout(vi) (3)

where Fi(vi) represents the passenger flow of node vi, Fin(vi) and Fout(vi) denote the in-flow and
out-flow of node vi, respectively.

There are few studies discussing the node strength which is represented by the original passenger
flow [4], and as the actual node strength is larger than the original passenger flow, it can reflect the
robustness of URTNs subjected to congestions. Therefore, the node strength of node vi is described by
the following formula

Si(vi) =
1
ni

ni∑
j=1

(
αFi j

in + βFi j
out

)
(4)

where ni is the number of nodes directly connected to the node i, Fi j
in denotes the passenger in-flow

from the node v j to node vi, Fi j
out denotes the out-flow from the node vi to node v j, and α, β ∈ [1, 2]

are tunable parameters and used to measure the node strength of URTNs, when α = β = 1, the node
strength is the original passenger flow of the station and Table 1 shows that the largest strength node is
Zhujianglu station.

Table 1. Top five stations based on network parameters of Nanjing subway.

Degree (ki) Betweenness (Bi) Strength (Si)

No. ki Station Name No. Bi Station Name No. Si Station Name

1 5 Nanjingna 1 6993 Daxinggong 1 10650 Zhujianglu
2 4 Taifenglu 2 6508 Jimingsi 2 10350 Xinjiekou
3 4 Nanjingzhan 3 6004 Nanjingnan 3 9800 Fu qiao
4 4 Jinmalu 4 5994 Nanjingzhan 4 9625 Daxinggong
5 4 Xinjiekou 5 5406 Xiaoshi 5 9600 Changfujie

In this paper, the parameters α and β reflect the changes in the passenger in-flow and out-flow.
Meanwhile, passenger in-flow and out flow will increase with the increase in citizens, and the node
strength must be given a large redundancy for future safety from congestions or disturbances.
Although this study is theoretical, it will present some constructive suggestions for new URTNs. Figure 2
presents the node strength of Zhujianglu station with different parameters α, β ∈ [1, 2]; when α = β = 1,
the node strength denotes the original passenger flow. Figure 2 gives a visualization of the node
strength and shows that the node strength becomes larger and larger with the increase in tunable
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parameters α, β, and the increase rates of node strength are different to each other, which indicates that
there is not a linear increase in node strength with the increase in tunable parameters.
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Table 2 gives the top five stations about node strength with different parameters α and β, and it
shows that the largest strength nodes are Zhuajinglu station and Xinjiekou station under all scenarios.
It is known that node strength reflects the transport ability of the station; therefore, these top five stations
must be given prior concerns and protections to improve the robustness of Nanjing subway network.

Table 2. Top five stations based on strength with tunable parameters.

β

Station & Order α

1.1 1.3 1.5 1.7 1.9

1.2

1 Zhujianglu Zhujianglu Zhujianglu Xinjiekou Xinjiekou
2 Xinjiekou Xinjiekou Xinjiekou Zhujianglu Zhujianglu
3 Fuqiao Fuqiao Changfujie Changfujie Changfujie
4 Daxinggong Changfujie Fuqiao Fuqiao Fuzimiao
5 Fuzimiao Daxinggong Daxinggong Daxinggong Fuqiao

1.4

1 Zhujianglu Zhujianglu Zhujianglu Xinjiekou Zhujianglu
2 Xinjiekou Xinjiekou Xinjiekou Zhujianglu Xinjiekou
3 Fuqiao Fuqiao Fuqiao Changfujie Fuqiao
4 Daxinggong Daxinggong Daxinggong Fuqiao Changfujie
5 Fuzimiao Changfujie Changfujie Daxinggong Daxinggong

1.6

1 Zhujianglu Zhujianglu Zhujianglu Zhujianglu Zhujianglu
2 Xinjiekou Xinjiekou Xinjiekou Xinjiekou Xinjiekou
3 Fuqiao Fuqiao Fuqiao Changfujie Changfujie
4 Daxinggong Daxinggong Daxinggong Fuqiao Fuqiao
5 Changfujie Changfujie Changfujie Daxinggong Daxinggong

1.8

1 Zhujianglu Zhujianglu Zhujianglu Zhujianglu Zhujianglu
2 Fuqiao Xinjiekou Xinjiekou Xinjiekou Xinjiekou
3 Xinjiekou Fuqiao Fuqiao Fuqiao Fuqiao
4 Daxinggong Daxinggong Daxinggong Daxinggong Daxinggong
5 Changfujie Changfujie Changfujie Changfujie Changfujie

2.0

1 Zhujianglu Zhujianglu Zhujianglu Zhujianglu Zhujianglu
2 Fuqiao Fuqiao Xinjiekou Xinjiekou Xinjiekou
3 Xinjiekou Xinjiekou Fuqiao Fuqiao Fuqiao
4 Daxinggong Daxinggong Daxinggong Daxinggong Daxinggong
5 Changfujie Changfujie Fuzimiao Fuzimiao Fuzimiao
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3. Failure Model with Redundant Recovery

It is well known that the subway network is very fragile when suffering malicious attacks,
which illustrates that failures will cause many damages to subway network, and serious failure
sometimes may lead to injuries or even deaths. Therefore, the subway should pay more attention to
improving this situation. In this section, a new methodology is proposed to assess the vulnerability of
URTNs based on emergency management, and the node capacity, failure propagation, and redundant
recovery are analyzed to construct the failure model of URTNs subjected to malicious attacks.

3.1. Node Capacity of Station

Node capacity, referring to the maximum flow tolerance of a station in UTRNs, can often reflect
the collection and dispersion ability. In the existing study, the node capacity was discussed by the
degree and betweenness, and the coupled relationship between degree and betweenness. In this study,
the coupling relationship between degree and betweenness is used to discuss the vulnerability of
rail transit. In this paper, the node capacity of station is described by the real passenger flow and
can reflect the actual station state [4]. The node capacity on station of subway network is defined as
follows [4,10,24]

Ci(vi) = (1 + γ)Fi(vi) (5)

where γ denotes the tolerance parameter, which can describe the construction cost of the station,
ranging from [0, 1], and Fi(vi) is the original passenger flow of the station vi. Meanwhile, the node
capacity equals the original passenger flow when γ = 0, hence the node capacity will increase with the
increase in the tolerance parameter γ. Equation (5) has been widely accepted in studies focusing on the
vulnerability and robustness of complex networks.

3.2. Failure Mechanism

In this subsection, the failure mechanism of network is analyzed to address cascading dynamics
of failures. In other words, when a node suffers from failures or attacks, there will always be a
redistributing process of passenger flow, and the visualization graph of redistribution is illustrated in
Figure 3, which is a direct graph and similar to the graph discussed in [22]. For instance, when the i-th
node vi fails, the related in-flow edges will be disconnected from this node according to the model of
passenger flow, which means that no more passengers could arrive at the i-th node, but passengers on
out-flow edges still could depart to neighbor nodes, such as the j-th node. Therefore, it can be directly
observed that the neighbor node will suffer increasing flow pressure, and then this pressure will be
transferred to the second neighbor nodes.
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In this paper, the extra pressure ∆F j→m from node v j to vm due to the failure of vi could be defined
in the form of passenger flow as follows

∆F j→m =

F j→m/
n j∑

k=1

F j→k

Fi→ j (6)

where the notation→ denotes the redistributing direction from the departure node to the destination
node, and Fi→ j is the passenger flow from node vi to v j, n j is the current number of neighbor nodes of the
node v j after the failure of node vi. When the total flow exceeds its tolerance, namely Fm + ∆F j→m > Cm,
cascading failures will be triggered. Otherwise, it will be safe.

3.3. Recovery Mechanism

As many studies demonstrations, the node under failures could not get healed by itself, and it
needs external materials to recover and function again. However, this also shows that, given enough
time, nodes could recover from congestion disturbances by passenger self-organization. When the
node passenger flow exceeds the node capacity, a self-recovery function depicted by passenger flow
with a time variable Fi(t), is required to describe the self-healing process. Through this function, it is
clearly illustrated how the extra or overloaded passenger flow will be redistributed. Therefore, when
Fi(t) > Ci, the function could be defined as follows

Γi(t) =
{

Fi(t)/ξi,
τi + [Fi(t) − τi · ξi]/δi,

Fi(t)/ξi ≥ τi
Fi(t)/ξi < τi

(7)

where Γi(t) represents the self-recovery function, and τi denotes the self-healing factor. δi represents
flow rate without failures, ξi denotes the passenger flow rate under cascading failures. Fi(t) describes
the current passenger flow at the time t.

4. Vulnerability Assessments of URTNs

In this section, the vulnerability of URTNs is assessed under cascading failures. Three malicious
attacks are employed to discuss characteristic changes in the maximum effective group (MEG) of
URTNs, and MEG is described as follows

MEG(t) = N(t)/N (8)

where N(t) is the number of nodes in MEG after cascading failures, and N is the total number of nodes.

4.1. Vulnerability Analysis under the Largest Strength Node-Based Attack

This subsection discusses the vulnerability of URTNs subjected to the largest strength node-based
attack (LSA), and LSA is the attack of the node with the largest strength. Meanwhile, the Nanjing
subway network is taken as an example to analyze characteristic changes in MEG based on different
parameters. Figures 4 and 5 present characteristic changes in MEG when γ = 0.1 and γ = 0.2,
respectively, for the Nanjing subway network. From these two figures, it can be found that for the same
tolerance parameter γ and the same tunable parameter β, the Nanjing subway network displays a great
vulnerability and shows the same vulnerability as when subjected to LSA for a different parameter α,
which indicates that different parameter α will have little effect on the characteristic changes in URTNs.
Meanwhile, it could be observed that the robustness of Nanjing subway network when γ = 0.2 is
better than when γ = 0.1.
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Figures 6 and 7 describe characteristic changes in MEG when γ = 0.1 and γ = 0.2 with different α
of Nanjing subway network subjected to LSA respectively, and they also indicate that URTNs are very
vulnerability when suffering malicious attacks. Figure 6 illustrates that the vulnerability characteristics
of URTNs possess the same changing trends when γ = 0.1, and it shows that MEG increases as the
tunable parameter β increases with a fixed α, which demonstrates that URTNs become more robust
during the redundant recovery. Figure 7 addresses the vulnerability characteristics of URTNs for
γ = 0.2; it shows that URTNs are very vulnerable under the LSA, and the MEG exhibits the same
vulnerability for a fixed tunable parameter α and different tunable parameter β. Taking both Figures 6
and 7 into consideration, it can be found that the vulnerability of URTNs becomes more similar as the
tolerance parameter γ increases.
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4.2. Comparison Analysis on Vulnerability under Different Attacks

In this subsection, the largest degree node-based attack (LDA), the highest betweenness node-based
attack (HBA) and the largest strength node-based attack (LSA) are employed to analyze the cascading
failures of URTNs with redundant recovery based on the proposed methodology, LDA is the attack
to the node with the largest degree, and HBA is the attack to the node with the highest betweenness.
Moreover, the Nanjing subway network is used as the example to investigate the vulnerability of
URTNs subjected to three malicious attacks with a different tolerance parameter γ and the same tunable
parameters α = β = 1.

Figure 8 presents characteristic changes in MEG with a different tolerance parameter γ and
different attacks, and it shows that three malicious attacks will lead to the same damages to Nanjing
subway network for γ = 0.1. Meanwhile, it can be found that HBA will cause the most damage to
the Nanjing subway network for γ = 0.2, 0.3, 0.4, which means that HBA is the most effective method
to destroy UTRNs, hence the nodes with a higher betweennesses must be given more protections.
Moreover, it can be discovered that the network becomes more robust as the tolerance parameter γ
increases. Furthermore, Figure 8 illustrates that the Nanjing subway network exhibits some certain
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robustness subjected to LSA, and the MEG will not change when γ = 0.4 and MEG ≈ 1. Therefore, it is
demonstrated in Figure 8 that the topology is a critical aspect to improve the robustness of URTNs, and
nodes with larger degrees and a higher betweennesses are more important than nodes with merely a
larger strength.
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Figure 9 presents characteristic changes in the vulnerability of URTNs subjected to HBA,
while Figures 10 and 11 exhibit characteristic changes in the vulnerability of URTNs subjected
to LDA and HBA, respectively. It is observed that URTNs become more robust as the tolerance
parameter γ increases, which indicates that the large construction cost could improve the robustness of
the network. Meanwhile, Figures 9 and 10 indicate that there are no cascading failures when γ ≥ 0.5,
and Figure 11 shows that there are no cascading failures when γ ≥ 0.4; both results show that HBA
and LDA may cause more serious damages than LSA. Therefore, nodes with larger degrees and higher
betweennesses must be given more protections in the future.
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This section analyzes the vulnerability of URTNs, and we found that URTNs are very vulnerable
subjected to three malicious attacks. The results show that the passenger in-flow has a small influence
on the vulnerability, while the passenger out-flow has a large influence on the vulnerability under
the proposed model. Therefore, the critical nodes of URTNs must be given advanced protections and
the emergency management for passenger out-flow must be planned in the early design program.
Moreover, the results indicate that the highest betweenness node-based attack is the most effective
destroy URTNs, which also tell us that the node with the highest betweenness must be given the most
protection in UTRNs. Furthermore, results also show that the robustness will increase with the increase
in the node capacity of URTNs, which illustrates that increasing the node capacity will improve the
robustness of URTNs; that is to say, increasing the construction cost will improve the robustness of
the URTNs. In actual URTNs, the robustness can be improved by increasing the construction costs,
which can expand the node capacity and improve the emergent ability of urban rail transit systems.

5. Conclusions

In this paper, a novel node strength indicator is proposed to measure the importance of nodes by
the passenger flow of URTNs, and a redundant recovery scheme is applied to simulate the recovery
system of URTNs subjected to failures. Meanwhile, malicious attacks, including HBA, HBA and LSA,
are employed to model the three most severe failures of nodes, and the Nanjing subway network is
taken as the example to prove the feasibility and effectiveness of the proposed model. The results
indicate that the in-flow exhibits an ignorable impact on the vulnerability, and the out-flow plays an
essential role in the vulnerability of URTNs. Moreover, conclusions could also be drawn that nodes
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with larger degrees and higher betweennesses are more important than those with larger strength,
which means these important nodes should be given more protection in the future.
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