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Abstract: Predictions of suitable habitat areas within a specific region can provide important
information to assist in the management of invasive plants. Here, we predict the current and
future potential distribution of Solidago altissima (tall goldenrod) in South Korea using climatic and
topographic variables and anthropogenic activities. We adopt four single models (the generalized
linear model, generalized additive model, random forest, and an artificial neural network) and a
weighted ensemble model for the projection based on 515 field survey points. The results showed that
suitable areas for S. altissima were mainly concentrated in the southwest regions of South Korea, where
temperatures are higher than in other regions, especially in the winter season. Solar radiation and
Topographic Wetness Index (TWI) were also positively associated with the occurrence of S. altissima.
Anthropogenic effects and distances from rivers were found to be relatively less important variables.
Based on six selected explanatory variables, suitable habitat areas for S. altissima have expanded
remarkably with climate changes. This range expansion is likely to be stronger northward in west
coastal areas. For the SSP585 scenario, our model predicted that suitable habitat areas increased
from 16,255 km2 (16.2% of South Korea) to 44,551 km2 (44.4%) approximately over the past thirty
years. Our results show that S. altissima is highly likely to expand into non-forest areas such as
roadsides, waterfront areas, and abandoned urban areas. We propose that, based on our projection
maps, S. altissima should be removed from its current margin areas first rather than from old central
population areas.
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1. Introduction

The spread of invasive plant species into native vegetation has reduced biodiversity and altered
landscape structures and ecosystem functions while also having harmful effects on the social economy
and human well-being [1–3]. The establishment and expansion of invasive species depends on their
biological traits, environmental conditions, and competition with native species [4]. Because successful
invasive plants have a broad environmental tolerance range, superior competitiveness, and dispersion
ability compared to other species, invasive plants often extend to new habitats rapidly, and the rate of
their spread does not decline in most cases [5,6].

Solidago altissima, a goldenrod species, is among the exceptionally successful invaders in Europe,
Australia, New Zealand, Japan, and South Korea [7–9]. Owing to its high abundance and rapid
extension into habitats of native vegetation, several countries designated this species as a harmful
invasive species and have made efforts to control its population [10]. The native range of S. altissima
covers large parts of North America, from Florida in the USA to Ontario in Canada [11]. After this
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species was introduced into Europe in the 17th or 18th century, it expanded to most of the European
continent, from Scandinavia to northern Italy [12]. In the case of South Korea, populations of S. altissima
have frequently been found in southwest areas since 1970 [10].

Maps of current and future suitable habitat areas can provide important information pertaining
to the management of invasive plants such as their establishment and growth, climatic limitations,
and potential distribution ranges. Specifically, more funding and effort can be allocated to climatically
suitable areas to control the spread of these species [13]. Several researchers have emphasized that
invasive species should be removed at their current marginal areas first, in accordance with the
potential distribution maps [14,15]. Additionally, rising temperatures and changing rainfall patterns
stemming from climate change will likely affect the distribution of invasive plants [16]. Projection
maps can show the spread direction and speed of such plants under climate change scenarios.

The aim of this study is to answer several questions related to the distribution of S. altissima: Which
environmental factors are significantly related to the occurrence of S. altissima? Where are suitable
habitats for this invasive species in South Korea based on current climate conditions? How much will
suitable habitat areas change under climate change?

2. Materials and Methods

2.1. Study Area

The study area was limited to the southern part of the Korean Peninsula (South Korea) that
extends from 33◦0′ to 38◦9′ N and 124◦5′ to 132◦0′ E. Almost 70% of the surface area of South Korea
(total = 100,340 km2) is mountainous, with mountain ranges mainly situated in the east (Figure 1).
South Korea has a high level of vascular plant species richness (4552 taxa) due to heterogeneity in
its topography and climate [17]. The main climate types in South Korea are monsoon-influenced
hot-summer humid continental climate in the northern inland areas and a humid subtropical climate in
the southern coastal area according to the Köppen climate classification. The mean annual temperature
is 12.5 ◦C, and the mean annual precipitation is approximately 1300 mm over the last 30 years [18].
The Korean Peninsula has low levels of winter and spring precipitation, and two-thirds of the annual
precipitation occurs in the summer (i.e., the monsoon season). Habitat types were classified into eight
categories (i.e., forest, forest edge, grassland, roadside, residential area, farmland, waterfront area,
coast) with the presence of S. altissima.
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Figure 1. Map of field survey plots and elevation range of South Korea. The red and green dots indicate
a total of 515 data points (red dots show the presence of Solidago altissima (n = 135) and green dots show
areas without S. altissima (n = 380)).
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2.2. Study Species

Solidago altissima L. (late goldenrod) was introduced into South Korea as a nectar and ornamental
plant before 1970 [19]. Since then, this species has expanded rapidly into the southern part of the
Korean Peninsula. The Ministry of the Environment of the Republic of Korea designated this species
as a harmful invasive alien species in 2008 due to its substantial environmental impact [19]. S. altissima
from North America is also considered to be an exceptionally successful invader in countries such as
Europe, Japan, China, Australia, and New Zealand. S. altissima can rapidly become dominant and
remain for long durations in nutrient-rich and stable, moist soil conditions [8]. Furthermore, because
this species builds up dense stands with a large below-ground biomass, it has superior competitive
ability compared to native plants [2]. This plant can reproduce in its first year, and individual shoots
produce more than 20,000 seeds [20]. Whereas seeds can allow long-distance dispersal due to their
small size, colonial extension of an established population mainly occurs via rhizomes [8].

2.3. Model Variables

Distribution data for S. altissima were mainly obtained from a national survey of non-native species
in Korea conducted from 2015 to 2019. We collected 135 presence data points and selected randomly
380 absence data points throughout South Korea. We took into account a total 27 environmental
factors for our model (Table S1): temperature (bio1–bio11), precipitation (bio12–bio19), solar radiation,
topography variables (i.e., elevation, aspects, slopes, Topographic Position Index (TPI), Topographic
Wetness Index (TWI), and distances from rivers), and the global human foot-printing (HFP) dataset from
the SocioEconomic Data and Applications Center (SEDAC, http://sedac.ciesin.columbia.edu/) were also
included in our modeling [21]. We extracted elevation, aspect, slope, TPI, and TWI data from the Digital
Elevation Model (DEM, 1 km × 1 km resolution). Potential incoming solar radiation and TWI data were
implemented with the SAGA-GIS modules (www.sagsgis.org) in QGIS [22]. The aspect was divided
into the following four categories: 1 = 315◦–45◦, 2 = 45◦–90◦ or 270◦–315◦, 3 = 90◦–135◦ or 225◦–270◦,
and 4 = 135◦–225◦. Positive TPI values represent locations that are higher than the average of their
surroundings. Negative TPI values represent locations that are lower than their surroundings. TWI
values were calculated to estimate the amount of moisture in the soil. It is defined as ln(a/tanβ), where
a is the local upslope area, and tanβ is the local slope [23]. Current (1970–2000) and future (2021–2040
and 2041–2060) climate datasets of the Coupled Model Intercomparison Project Phase 6 (CMIP6) were
downloaded from WorldClim version 2.1 [24]. We selected two Shared Socio-economic Pathways
(SSP245, SSP585) based on the Global Circulation Model (GCM) managed at the Beijing Climate
Center (BCC-CSM2-MR). All raster explanatory variables used identical spatial extent, resolutions
(1 km × 1 km), and geographic coordinate systems (WGS84, EPGS 4326), with the help of the bilinear
method in R. To avoid collinearity, which can lead to incorrect estimations, we moved non-independent
variables relative to others based on the pairwise Pearson correlation coefficient (r pairwise ≥ 0.7)
(Figure S1). Next, multicollinearity was tested with the variance inflation factor (VIF ≥ 3) [25]. Finally,
we selected nine explanatory variables considering the eco-physiological characteristics of S. altissima
(i.e., annual mean air temperature (bio1), temperature annual range (bio7), annual precipitation (bio12),
precipitation during the driest quarter (bio17), solar radiation, TWI, TPI, HFP, and distances from rivers.

2.4. Species Distribution Modeling

To model the suitability of S. altissima in South Korea, we included four single-model algorithms
available in the Biomod2 library: the generalized linear model (GLM), the generalized additive model
(GAM), random forest (RF), and an artificial neural network (ANN). The models were processed
according to the default settings of Biomod2 [26]. Although these modeling methods are commonly used
and show high performance capabilities in cases of species distribution modeling, we applied ensemble
approaches to decease the predictive bias of the single models by combining their projections [27].
We used an AUC-weighted combining method, which is known to predict species distributions fairly
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well [28–30]. Initially, the AUC values of the single models were calculated for the single-model
projections. Subsequently, the output layers of the single-model projections were combined in an
ensemble forecast layer [31]. The ensemble approach was implemented with the raster calculator in
QGIS. We hypothesized that S. altissima cannot spread into the forest areas, according to previous
study [8]. Forest areas were overlaid on potential distribution maps and removed from the result maps.
Forest areas were calculated based on the land cover map of the Ministry of the Environment [32].

The extracted data points (n = 515) were randomly divided into the model training dataset and
the model evaluation dataset at a ratio of 7:3. During the data splitting process, the ratio between the
number of presences and absences in the training and evaluation processes was kept constant [33].

Single-model and ensemble-model accuracy levels were determined by the AUC values of the
receiver operating characteristic (ROC) curves, kappa statistics, the sensitivity level (omission error),
and by specificity (commission error) [34,35]. To convert continuous model predictions to a binary
classification, we used a threshold value that maximized the sum of the sensitivity and specificity
outcomes [36]. We considered AUC values below 0.7 as poor, those in the range of 0.7–0.9 as moderate,
and those above 0.9 as good [37]. Kappa ranged from −1 to +1, where +1 indicates a perfect match
between the observation and the prediction, and a value below 0 indicates an outcome no better than a
random classification [38]. We used the following ranges to interpret Kappa statistics: values of <0.4
were poor, 0.4–0.8 useful, and >0.8 good [39]. The AUC values and Kappa statistics were calculated
with the PresenceAbsence package for R 3.6.3 [40].

We applied GAMs to estimate the relationships between the occurrences of S. altissima and the
selected explanatory variables in R (version 3.6.3; R Development Core Team, 2020). A binomial
distribution was specified with a logit link function. The explanatory variables were modeled as cubic
splines, with six degrees of freedom for smoothing splines [41].

3. Results

3.1. Variable Importance

We evaluated the explanatory variables’ importance and calculated the ranges of each variable
with respect to the probability of the occurrence of the species. The response curves of GAM showed
that the probability of S. altissima presence increased as bio1, bio12, TWI, and solar radiation increased,
and it decreased as bio7 increased (Figure 2). The response curves for bio7 revealed a sharp decrease
in the predicted presence of the species above an annual temperature range of 35 ◦C. The presence
probabilities of S. altissima for annual precipitation (bio12) increased with values of up to 1600 mm
and then did not increase. Based on the mean decrease accuracy and deviance explained in GAM,
the annual mean air temperature (bio1), temperature annual range (bio7), and precipitation of the
driest quarter (bio17) were decisive factors determining the distribution of S. altissima. In contrast, TPI,
HFP, and distances from rivers did not significantly affect the occurrence of this plant compared to
other variables.

All models showed good performance based on the AUC value (>0.70) and kappa (>0.40).
Compared with other models, the random forest model yielded the highest performance, while GLM
had the lowest predictive power (Table 1).

Table 1. Model validation statistics and threshold (range: 0–100) for suitable habitats of S. altissima.

Models Sensitivity Specificity AUC Kappa Threshold

Single model

GLM 0.70 0.77 0.80 0.42 56
GAM 0.89 0.81 0.90 0.61 57

RF 0.92 0.95 0.98 0.85 33
ANN 0.83 0.81 0.87 0.56 62

Ensemble Model 0.85 0.87 0.95 0.67 49

Abbreviation: AUC = area under curve, GLM = generalized linear model, GAM = generalized additive model,
RF = random forest, ANN = artificial neural network, EM = ensemble model.
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Figure 2. Mean decrease accuracy of explanatory variables as assigned by random forest (A). 

Generalized additive model (GAM) response curves depicting the relationship between the 
Figure 2. Mean decrease accuracy of explanatory variables as assigned by random forest (A). Generalized
additive model (GAM) response curves depicting the relationship between the probabilities of the
presence of S. altissima on a logit scale and nine explanatory variables (B). The shaded bands indicate
the 95% confidence interval. The degree of smoothing is indicated by the Y-axis brackets. Deviance
explained (%) values and the significance of the explanatory variable (p-value) are depicted by the
X-axis brackets.

3.2. Current Habitat Suitability

When we estimated the current suitable habitat of S. altissima based on the threshold values
(maximum sensitivity plus specificity), the suitable habitats, except for the forest area, were found to
account for approximately 9.3–13.0% of the surface area of South Korea according to the five models
(Figure 3). Maps showed that the suitable areas for S. altissima were mainly concentrated in the
southwest region of South Korea. For the weighted ensemble model, we estimated that suitable habitat
areas were characterized by elevations of 0–715 m in comparison with unsuitable areas at 0-1839 m,
with an annual mean air temperature of 10–16 ◦C in comparison with unsuitable areas at 4.7–16.1 ◦C,
and with an annual mean precipitation of 1076–1919 mm in comparison with unsuitable areas at
1048–2209 mm.
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Figure 3. Maps of the current suitable habitat (red zone) for S. altissima (A): generalized linear model
(the range of the red zone except for the forest area was 13.0% of South Korea), (B): generalized additive
model (9.3%), (C): random forest (9.6%), (D): artificial neural network (11.8%), (E): weighted ensemble
model (11.1%)).



Sustainability 2020, 12, 6710 6 of 12

3.3. Future Habitat Suitability under Climate Change Scenarios

The suitable habitats changes for S. altissima were predicted by the weighted ensemble model.
The results showed that the areas of suitable habitat (habitat suitability index > 50) increased gradually
for the periods of 2021–2040 and 2041–2060 under the climate change scenarios (Figure 4). The suitable
habitat areas were concentrated in the west and south coastal regions clearly and extended toward the
northern areas with climate change.
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Figure 4. Maps of the suitable habitat changes for S. altissima under two climate changes scenarios
(SSP245 and SSP585) for the periods of 2021–2040 and 2041–2016 taken from the global model at a
resolution of 1 km ((A): SSP245, 2021–2040, (B): SSP585, 2021–2040, (C): SSP245, 2041–2060, (D): SSP585,
2041–2060).

Using the four grades of habitat suitability classification, we found the suitable habitat areas
which excluded the forest areas (habitat suitability index > 50) increased from 17,107 km2 (17% of total
South Korea) to 23,417 km2 (23.3%) for the periods of 2021–2040 and 2041–2060 under scenario SSP245
(Figure 5). For the SSP585 scenario, our model predicted that the suitable habitat area overall increased
from 21,972 km2 (21.9% of total South Korea) to 31,193 km2 (31.1%) over approximately twenty years.
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Figure 5. Change of suitable habitat ratios for S. altissima under two climate change scenarios. Forest
areas were excluded from total suitable habitat map.

4. Discussion

This study estimated the associations between the distributions of S. altissima and environmental
variables. GAM response curves showed that the occurrence of S. altissima was positively associated
with the annual mean air temperature (from 6 to 14 ◦C) A previous study also estimated that S. altissima
is very likely to expand southward rather than northward in Europe [13]. In the case of the Korean
Peninsula, Bio1 derived from the WorldClim dataset showed a strong correlation (−0.68) with elevation
(Figure S1), which indicated that S. altissima is mainly distributed in non-forested areas located at
low elevations; the altitude range of the present plots of S. altissima were from 0 to 437 m a.s.l.
(Table S1). Precipitation in the driest quarter (bio 17) and the annual temperature range (bio 7)
were also significantly associated with the distribution of this species in South Korea, indicating that
S. altissima prefers areas with high winter precipitation levels and mild winter temperatures (Figure S2).
The Korean Peninsula has little precipitation in winter and early spring. Additionally, the inland areas
have a higher annual temperature range than the southern coastal area [18]. Despite the fact that
S. altissima has large native ranges in northern America (from southern Florida in the US to Canada
along the east coast) [42], dry and cold winter weather may function as a stress factor and prevent the
establishment of this plant.

Solar radiation and TWI were positively associated with the occurrence of S. altissima (Figure S2).
Earlier work reported that S. altissima is a light-demanding species, and it cannot reproduce under
shaded conditions [8]. For this reason, this plant cannot invade dense forested areas. Furthermore, the
forests of South Korea consist of three types of secondary succession forests: pine forests, pine-oak
forests, and oak mixed forests [43]. We can speculate that the allelopathy substance of pine litter and the
shading of oak tree canopies may make it impossible for S. altissima to expand into forests. This species
is generally found in prairies, along roadsides, at riverbanks, and along forest edges in the US and
Europe [42], similar to the distribution patterns in South Korea. Moreover, Weber (2000) reported
that S. altissima prefers moist soil [8], and this species shows major variations in biomass depending
on the soil nutrients [44]. Generally, the soil of estuaries has more nutrients and shows higher TWI
scores compared to the soils of other regions. A field survey also showed that the population size
and density were higher in estuary regions than in upstream areas in the YoungSan river of South
Korea [45]. In Germany, S. altissima became dominant sooner in nutrient-rich clay-containing soil
than in nutrient-poor sandy soil [46]. It is well known that among goldenrod species, S. gigantea and
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S. altissima are now the most serious invaders across Europe following their introduction in the 17th or
18th century [8,47,48]. In terms of the soil moisture regime, S. gigantea is frequently found on moist soil
with relatively stable moisture levels over time, while S. altissima tends to be found densely growing on
intermediate-moisture and well-drained soils [47]. We can speculate that S. altissima can invade rapidly
into waterfront areas due to appropriate environmental conditions such as rich nutrients, stable soil
moisture, and sufficient solar radiation.

Our results show that distances from rivers and anthropogenic effects were relatively less important
variables compared to other variables. When we classified the habitat types of the presence areas of
S. altissima in South Korea (n = 135), roadsides (54%) had the greatest proportion, followed by waterfront
areas (33%). Residential areas and forest edges accounted for only 11% and 2%, respectively. While
the distribution of S. altissima was positively associated with TWI on the landscape scale, this species
is more frequently found at roadsides rather than waterfront areas on a local scale. As mentioned
above, S. altissima prefers intermediate moisture soil and can tolerate a wide range of soil-moisture
conditions compared to other goldenrod species [47]. For this reason, this species can expand along
roadsides as well as waterfront areas [13]. Our results showed that these anthropogenic effects (human
foot-printing) were not a critical factor with regard to dispersal. The seeds of S. altissima are adapted for
long-distance dispersal by wind, and planting is prohibited by law because this species was designed
as a harmful invasive alien species by the Ministry of the Environment.

Based on the six selected explanatory variables, we predicted current and future suitable habitat
areas under climate change scenarios. Our models showed excellent accuracy levels. In other words,
the range of the current suitable habitat area is fairly similar to the observed range in South Korea for this
species, which can be attributed to its relatively limited geographical range, the strong associations with
climate factors, and the minor effects of anthropogenic factors on the dispersal of this species [49,50].
In terms of climate, S. altissima may be prevalent in areas with higher annual temperatures, mild winter
temperatures, and higher precipitation levels during the driest season. Indeed, suitable habitats are
concentrated in the southwest parts of the Korean Peninsula, and field survey results have shown that
the population sizes of S. altissima are larger in southern areas than in northern areas [45].

Suitable habitat areas for S. altissima have expanded remarkably along with climate change. Range
expansion is likely to be stronger northward in western coastal areas. Temperature and precipitation at
the study sites (n = 515) increased steadily under the climate change scenarios here, showing an annual
mean air temperature increase of 2.6 ◦C and an annual precipitation increase of 93 mm according
to the SSP 585 climate change scenario over the next 30 years [24]. These results reveal that rising
temperatures and increasing precipitation levels can exert a positive effect on the expansion of this
species. Weber (2001) estimated that S. altissima has the largest potential range in its latitudinal extent
among the three goldenrod species introduced into Europe [13].

Although our modeling results can provide a broad basis for invasive species management on a
national scale, projections of current and future distributions need to be interpreted with caution due
to several limitations here. We did not account for biotic interactions or soil physicochemical properties
on a local scale. For example, the shading of tree species and competition with other herbaceous species
can be critical limitations with regard to how this species can expand. At the early stage of invasion,
nutrient-rich soil and moderate soil water content levels can facilitate the establishment and rapid
expansion of this species. Future models should incorporate a wide variety of factors that interact with
species-specific physiological characteristics [51].

5. Conclusions

Our results have demonstrated that S. altissima is highly capable of expanding into non-forested
areas such as roadsides, waterfront areas, and abandoned urban areas. The growth of S. altissima can
be controlled by a combination of mowing and soil rotation [13]. Subsequently, the sowing of tall grass
species can suppress the regeneration of this invasive species and prevent the soil from being washed
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away. Next, based on our projection maps, invasive plant managers should prioritize eradicating
S. altissima in margin areas of its current range rather than in areas of dense populations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/17/6710/s1,
Table S1: Comparison of mean and range of environmental variables between the presence and absence spots of
S. altissima in South Korea, Figure S1: Pearson correlation coefficient matrix comparing 27 environmental variables,
Figure S2: Maps of six environmental variable patterns in South Korea.
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