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Abstract: The inadequate discharge of effluents from different sources without prior treatment
can impact the characteristics of soil and water, which reflect serious environmental problems.
Advanced oxidative processes (AOP) appear as a viable alternative for environmental remediation,
including wastewater treatment. Herein, α-MoO3 and α-Fe2O3 semiconductors were synthesized
at low temperature by a Pechini-based method and then applied in photocatalysis. The catalytic
efficiency was performed under visible light toward the degradation of an organic persistent pollutant
(Rhodamine B dye, RhB), commonly present in industries wastewater. The results indicated that the
synthesized α-MoO3 or α-Fe2O3 photocatalysts presented a pronounced activity and promoted an
efficient RhB degradation after 15 min of reaction. α-MoO3 had a degradation efficiency of 93% and
98%, while α-Fe2O3 showed 67% and 100% RhB degradation without and with the addition of H2O2,
respectively. These results suggest that the synthesized oxides have high oxi-reductive capacity,
which can be used for a fast and effective photodegradation of RhB and other organic persistent
pollutants to minimize environmental impacts.

Keywords: molybdenum trioxide; iron oxide; heterogeneous photocatalysis; rhodamine B; wastewater
treatment; photo-Fenton process

1. Introduction

The contamination of water resources is considered as one of the major problems in developed
countries and other in development. The significant amount of organic pollutants detected in water
bodies (rivers, lakes and drinking water treatment plants) commonly originate from different industrial
sectors (textile, food, paper, petrochemical and pharmaceutical industries). Among them, the textile
industry is one of the segments that produce the most water bodies’ pollution due to the large amounts
of water and synthetic dye consumption, which generates a large volume of effluents rich in organic
matter, besides being heavily tinted by dyes that are not attached to the fiber of the tissues during the
process [1–4].

In order to mitigate the disposal of contaminated effluents from industries and to minimize the
environmental impacts caused by organic persistent pollutants in water, different water treatment
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methods have been developed. Among them, biological treatments that need long periods for
effluents to reach standards’ requirements, filtration processes using membranes [5], electrochemical
techniques [4], adsorption processes [6] and advanced oxidative processes (AOP) [7] can be mentioned.
Particularly, heterogeneous photocatalysis, which is an advanced oxidative process, has been gaining a
lot of attention in decontamination processes for being faster and more effective when compared to
other processes.

During photocatalysis, a semiconductor material is irradiated by a light source with energy equal
to or greater than that of its band gap. Thus, the irradiation promotes the excitation of electrons
that helps to generate hydroxyl radicals (•OH) with high oxidative power, and other intermediate
species

(
O• −2 , HO•2, etc.

)
that act on the degradation of organic pollutants, even at low concentrations

(<100 ppm) [8,9]. Various wide band gap semiconductor oxides, which include TiO2, SnO2, ZnO and
WO3 [8–14], and metal chalcogenides (CdS and PbS) [15,16], have been applied as photosensitizers
in the oxidation and reduction processes of organic molecules mediated by light. However, the
application of high concentrations of these elements for the rapid mineralization of chemical species
with environmental relevance can bring some practical inconveniences, besides being harmful to
man and the aquatic ecosystem due to the short time stability. All these things make it difficult to
consolidate most photocatalysts as alternatives for environmental applications [17].

Therefore, transition metal oxides such as MoO3 and Fe2O3 are promising candidates in
photo-oxidative processes; especially due to their redox properties and because they are more
environmentally friendly compared to other metallic-based systems. Particularly, iron oxide (Fe2O3)
might be highlighted as one of the most important transition metal oxides [18] due to its interesting
physical and chemical properties. Hematite (α-Fe2O3) in its rhombohedral R3c-type phase can be
readily applied in photocatalytic reactions for the degradation of contaminants in water due to its high
stability [19]. Zhang et al. [20] stated that the use of α-Fe2O3 in photocatalysis has a great practical
advantage when visible light irradiation is employed in the process due to the band gap energy value
(~1.9 eV) of Fe2O3, which is lower than that observed for TiO2 (~3.2 eV) [21]. Thus, different authors
have investigated the efficiency of hematite (α-Fe2O3) in the Fenton and photo-Fenton process toward
the degradation of different organic contaminants [20,22]. For instance, Zhang et al. [20] obtained
94.8% Rhodamine B dye (RhB) removal using Fe2O3/H2O2 after 180 min under UV and visible light
irradiation. On the other hand, Xiao et al. [22] obtained a photodegradation efficiency of 98% for the
Fe2O2/H2O2/vis system toward the degradation of red acid G (ARG) dye after 90 min of visible light
exposure. The authors associate the catalytic properties of this material with deformations and/or
defects in its crystal structure. Most iron oxides present iron cations in oxidation state +3 (Fe3+),
which is its most stable form, it is easily synthesized by ecosystems and naturally absorbed by the
human body [23]. Thus, it is evident that Fe2O3 becomes an excellent alternative as an environmentally
friendly heterogeneous catalyst for wastewater treatment.

Molybdenite (α-MoO3) is another important oxide with great technological interest, especially
in catalysis for hydrogen evolution, oxygen evolution, and fuel cells [24,25]. α-MoO3 is a non-toxic
semiconductor oxide material with high chemical stability. This oxide has a band gap energy in the
range of 3.0–4.0 eV [26], which makes it useful in UV-mediated photocatalysis. In spite of this, few
studies have been dedicated to the use of α-MoO3 as photocatalysts for environmental remediation,
since this material presents a low quantum yield that restricts its practical applications [25,27,28].
However, Huang et. al. [27] evaluated the photocatalytic activity of α-MoO3 toward Rhodamine B dye
(RhB) degradation and observed that the catalyst presented a good performance after 160 min under
UV exposure.

Several methods have already been used to synthesize α-Fe2O3- and α-MoO3-based materials,
such as the sol–gel method [29], micro-wave assisted hydrothermal [30], and solvothermal methods [31],
among others, but little is described about the synthesis of these oxides by a Pechini-based method,
also known as the polymerizing complex method [32]. This method stands out from others because of
its simplicity and low cost, besides presenting a good control of the desired phase, particle size and
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pore distribution. In addition, this method allows a homogeneous mixing of reagents at the molecular
level, has good stoichiometric control and a low processing temperature [33].

In this context, this work aimed to produce sustainable materials based on rhombohedral iron
oxide (α-Fe2O3) and orthorhombic molybdenum trioxide (α-MoO3) using a Pechini-based method to
be applied in visible-light-driven heterogeneous photocatalysis for the degradation of Rhodamine B
(RhB) dye. RhB dye was used as a target molecule commonly present in wastewater. RhB dye is a
persistent organic pollutant compound widely used in agate dyeing industries, animal feed industries
and textile industries. Moreover, RhB is also used as a fluorescent tracer in water and employed in the
production of cartridges inkjet and laser printers [27,34–36]. It is also important mentioning that the
visible light photocatalytic performance of α-Fe2O3 and α-MoO3 synthesized by the Pechini method
has not been investigated toward Rhodamine B or any other organic dye compounds yet.

2. Experimental Procedure

2.1. Synthesis and Characterization of the Photocatalysts

α-Fe2O3 and α-MoO3 oxides were synthesized by the Pechini-based method [37], using
stoichiometric amounts of ammonium molybdate tetrahydrate ((NH4)6Mo7O2·4H2O NEON, 83.0%),
citric acid monohydrate (C2H8O7·H2O NEON, 99.8%), iron nitrate nonahydrate (Fe(NO3)3·9H2O
SIGMA-ALDRICH, 98.0%) and ethylene glycol (C2H6O2 DINÂMICA, 99.5%). The precursor solutions
were prepared by dissolving stoichiometric amounts of metal salts into citric acid (AC) solution in a
proportion of 3 moles of AC to 1 mol of the metal to ensure the metal chelating. The mixing solution
was maintained under constant stirring and heating at a temperature of approximately 65 ◦C. After the
complete dissolution of the metal salts and AC, ethylene glycol (EG) with a mass ratio of 40% of EG to
60% of AC was added and the temperature was raised to 90 ◦C to promote the polymerization and
then to form a polymeric resin. This polymeric resin has a clear and characteristic color of the precursor
salt. Each resin was calcined at 300 ◦C for 2 h with a heating rate of 5 ◦C min−1 to obtain the precursor
powders. The precursor powders of α-MoO3 and α-Fe2O3 were deagglomerated in a mortar and
pestle, sieved through a 200-mesh sieve and calcined at 550 ◦C for 2 h at the heating rate of 5 ◦C min−1.
The calcination temperature was optimized based on the formation of the desired crystalline phase of
α-MoO3 (as described in the Discussion Section). Further details about the synthesis can be found in
previous works [32,33].

The quality of the obtained α-MoO3 and α-Fe2O3 samples were investigated by X-ray powder
diffraction (XRD) using a Shimadzu XRD 6000 diffractometer (Shimadzu Corporation, Tokyo, Japan)
equipped with a KCuα1 radiation source. The short-range structural ordering was investigated by
infrared (IR) spectroscopy using a Shimadzu IR Prestige-21 spectrophotometer (Shimadzu Corporation,
Tokyo, Japan), and Raman spectroscopy using a Renishaw inVia confocal Raman microscope
(Renishaw plc, Wotton-under-Edge, UK) that is equipped with an Ar laser. The morphology of the
photocatalyst particles were evaluated by scanning electron microscopy (SEM) using a Shimadzu SSX
550 microscope (Shimadzu Corporation, Tokyo, Japan). The chemical composition of the samples was
investigated using an energy dispersion X-ray (EDX) Shimadzu EDX 720 spectrophotometer (Shimadzu
Corporation, Tokyo, Japan). The optical properties of the oxides were evaluated by ultraviolet–visible
(UV–vis) absorption spectroscopy using a Shimadzu UV-3600 spectrometer (Shimadzu Corporation,
Tokyo, Japan), and the optical band gap values (Eg) were determined using Wood and Tauc’s
method [38]. The specific surface areas of Brunauer–Emmett–Teller (SBET) [39] were measured by N2

adsorption/desorption measurements using a BEL Japan BELSORP-mini II analyzer (BEL Japan Inc.,
Tokyo, Japan), while the particle sizes distribution was measured using laser light scattering performed
on Malvern Mastersizer 2000 analyzer (Malvern Panalytical Instruments, Malvern, UK).
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2.2. Photocatalysis and Adsorption Test

The photocatalytic efficiency of the α-Fe2O3 and α-MoO3 systems was evaluated toward the
photodegradation of Rhodamine B (RhB) dye solution. The experiments were conducted in a
custom-built photoreactor, containing a visible light irradiation source (λ = 500–800 nm, 160 W) placed
on the top. The distance of 15 cm between the lamp and dye solution was maintained during the
reactions. For the experiments, 10.0 mg of the oxide was dispersed in a petri dish containing 15.0 mL
of the RhB stock solution previously prepared in a concentration of 5.0 mg L−1.

All the tests were performed in triplicate at pH 5.0 (natural pH of the RhB dye solution in a
concentration of 5.0 mg L−1). A photolysis test was carried out under the same conditions without
the presence of a photocatalyst, while an adsorption test was performed in the dark using the same
methodology as described in our previous report [40].

To investigate the role of the hydroxyl radicals (OH•) on the photocatalysis, 0.5 mL of hydrogen
peroxide (H2O2, 30%) was added to the reaction vessel. Based on the literature reports, 0.5 mL of H2O2

is sufficient to increase the formation of further hydroxyl radicals (OH•) to improve the photocatalytic
activity of materials.

Therefore, to evaluate photolysis, an adsorption capacity and photocatalytic efficiency of the
oxides with the presence or not of H2O2, an aliquot of the solution, was collected from the petri dish
after 15 min of reaction, centrifuged and then filtered. After that, the resulting solution was analyzed
by UV–vis absorption spectroscopy using a Shimadzu UV-1800 spectrophotometer, with a wavelength
scanning between 400 and 800 nm. Thus, by monitoring the maximum absorption band of RhB at
553 nm, the final concentration of the solution can be calculated using the equation 1 as suggested by
Rahman et al. [41] and Chantelle et al. [33]:

Degradation rate (%) =

(
C0 −C

C0

)
× 100 (1)

where C0 is the initial concentration at the time 0 min and C is the variable concentration at time
t, respectively.

It is important mentioning that the maximum absorption of RhB is attributed to the chromophore
group, which is responsible for the dye coloring [41,42] and the decrease in this band after photocatalysis
indicates the photodegradation of the dye.

3. Result and Discussion

3.1. Characterization of the Photocatalysts

3.1.1. X-Ray Diffraction (XRD)

Figure 1 shows the XRD patterns of the MoO3 and Fe2O3 photocatalysts synthesized in the present
work. To evaluate the crystallization process and the formation of the desired phase for MoO3, the
sample was calcined at different temperatures and then analyzed by XRD (Figure 1a,b). The XRD
patterns of MoO3 (Figure 1a,b) show that a long-range disordered phase was observed at 300 ◦C. The
beginning of the sample crystallization occurred only at 350 ◦C as indicated by the presence of a few
diffraction peaks in the XRD patterns of this sample (Figure 1a). A long-range structural ordering was
achieved for the MoO3 sample calcined at 550 ◦C as indicated by the appearance of highly intense
and well defined peaks in XRD (Figure 1b). All these diffraction peaks were then indexed to the
orthorhombic Pbnm crystal structure (ICDD 05-0508) of α-MoO3, which is in good agreement with the
XRD results reported by Layegh et al. [43].
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In addition, it is possible to observe well defined and narrow diffraction peaks in the XRD patterns
of Fe2O3 (Figure 1c). All the diffraction peaks were indexed to the rhombohedral-type structure with
R3c symmetry (ICDD 33-0664), characteristic of the hematite mineral (α-Fe2O3), which is the most
stable phase of iron oxide. This behavior agrees with other reported work [44]. Maggi et al. [45]
observed the β-, γ- and α-phase transition of Fe2O3 when it is subjected to calcinations above 500 ◦C.
Similarly, Mathevula et al. [29] synthesized hematite nanoparticles (α-Fe2O3) by the sol–gel method
employing two-step heat treatments of 300 and 600 ◦C and observed the formation of the hematite
phase after calcinations at 500 ◦C.

It is also important to mention that no peak related to any secondary phase was observed in the
XRD patterns of the samples synthesized in this work. As a result, the proposed synthesis conditions
and the calcination temperature of 550 ◦C contributed to the formation of well crystallized and single
phase α-MoO3 and α-Fe2O3 samples in their thermodynamically stable structures.

3.1.2. Infrared Spectroscopy

The infrared spectra of theα-MoO3 andα-Fe2O3 samples are illustrated in Figure 2a,b, respectively,
and the assignments of the main vibration bands are summarized in Tables 1 and 2.
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In Figure 1a, the bands observed in the region between 1000 and 400 cm−1 refer to the three band
stretching vibration patterns of the orthorhombic structure of α-MoO3. The well-defined and narrow
band at 997 cm−1 is attributed to the vibration bond ν(Mo=O) that involves the terminal oxygen atoms.
Bands at 852 and 817 cm−1 are attributed to the angular deformation vibration of two-coordinated
oxygens (Mo–O–Mo). The broad band at 592 cm−1 and the shoulder at 487 cm−1 are attributed to
the vibrations of symmetrical Mo–O bonds that comprise the molybdenum and oxygen atoms. Some
authors [46,47] observed similar band frequencies for the Mo–O group in comparison to that found in
the present study (Table 1). As result, the formation of α-molybdenite crystallites is confirmed after
calcination at 550 ◦C, which is in accordance with XRD data.
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Table 1. Band positions and attributions of the IR absorption spectrum of α-MoO3.

Band Position (cm−1) Assignments

This Work Seguin et al. [46] Jiebing et al. [47]

997 990 995 ν(Mo=O)
852 876 868 δ(Mo–O–Mo)
817 818 818 ν(Mo=O)
592 603 557 ν(Mo–O)
487 509 513 ν(Mo–O)

Figure 2b shows the characteristic IR pattern of the rhombohedral structure of α-Fe2O3. The high
intensity vibration bands at 532 and 449 cm−1 were attributed to the stretching Fe–O bonds of the
hematite, which agreed with other studies. For instance, Wang et al. [48] observed three patterns of band
vibration for the same material, one at 578 cm−1, and two at 485 cm−1 and 380 cm−1 and the authors
correlated these bands with the size, shape, and internal structure of the Fe2O3 particles. Žic et al. [49]
investigated the influence of nitrate anions on the properties of hematite particles (α-Fe2O3) and
obtained four vibration modes at 571, 461, 397 and 343 cm−1 associated to Fe–O stretching vibrations.
Grigorie et al. [50], from the transformation of the maghemite phase (γ-Fe2O3) into hematite (α-Fe2O3),
found two vibration bands at 542 and 488 cm−1 associated with the Fe–O bond vibrations. Therefore,
all the IR results obtained in this work confirm the local structure vibrations of the synthesized oxides,
which agree with the literature. A comparison of the IR modes observed in this work with the literature
data is summarized in Table 2.
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Table 2. Band positions and attributions of the IR absorption spectrum of α-Fe2O3.

Band Position (cm−1) Assignments

This Work Wang et al. [48] Žic et. al. [49] Grigorie et al. [50]

532 578 571 542 Fe–O stretching mode
449 485 461 488 Fe–O stretching mode

380 397 α-Fe2O3

3.1.3. Raman Spectroscopy

The Raman spectra of the α-MoO3 and α-Fe2O3 photocatalysts are shown Figure 3a,b, respectively.
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The spectrum of each material resulted from a sum of four spectra scanned in the frequency range
between 100 and 1000 cm−1 acquired at different points in the samples. Well defined peaks related to
the Raman active modes of α-MoO3 and α-Fe2O3 structures are observed in the spectra. Based on
Raman results obtained for the molybdite phase (α-MoO3) (Figure 3a), high frequency and narrow
bands positioned at 994 cm−1 and 818 cm−1 are observed. These bands are attributed to asymmetric
vibrations of

(
υas Mo = O(1)

)
and symmetrical elongation modes (υas Mo−O3 −Mo) of the terminal

oxygen O(1) atoms, unshared and doubly O(3) coordinated, respectively. The defined band centered at

665 cm−1 is attributed to the asymmetric stretching vibration
(
υMo−O(2) −Mo

)
of the oxygen atom

doubly coordinated with two Mo, and the weak band at 473 cm−1 is characteristic of the O(2,2′)Mo3

unit. The bands between 377 and 336 cm−1 are assigned to the vibration modes of the oxygen atoms
O(2) in υO(2) = Mo = O(2) and the deformation of the oxygen atoms O(3) in δO(3) −Mo−O(3). The
band at 283 cm−1 is related to the wagging vibration of the oxygen atom O(1) in the δO(1) = Mo = O(1)
unit, while the bands at 244 and 217 cm−1 are attributed to scissor-type vibrations of the oxygen atom
O(2) in δO(2) −Mo−O(2). Finally, the bands observed below 200 cm−1 correspond to the stretching,
deformation and translational modes of the molybdenum oxide network [51].

For the hematite structure (α-Fe2O3), the spectrum (Figure 3b) presented the allowed Raman
modes of the R3c symmetry. The band at 219 cm−1 is attributed to the A1g mode, and the others at
237, 286, 401 and 602 cm−1 are attributed to the Eg symmetry mode characteristics of the iron oxide
structure with R3c symmetry [52–54]. The first two frequencies correspond to external vibrations of
the crystal (free rotations or translations of the molecule), and the latter two are attributed to internal
vibrations. The band at 489 cm−1 represents the A1g transition mode. All these results confirm that
both α-MoO3 and α-Fe2O3 samples synthesized in the present work are purely orthorhombic (Pbnm)
and rhombohedral (R3c), respectively, without the presence of any other coexisting phase. All these
results are in good agreement with XRD and IR data.
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3.1.4. Microstructure Characteristics and Elemental Analysis

SEM images of the photocatalysts are displayed in Figure 4. The elemental composition obtained
by X-ray dispersive energy (EDX) analysis is listed in Table 3.
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Table 3. Chemical composition of the synthesized photocatalysts.

Sample Chemical Composition (%)

MoO3 Fe2O3 SO3 P2O5

α-MoO3 83 0.1 16 0.8
α-Fe2O3 100 - - -

A difference in the particles morphology was observed for α-MoO3 (Figure 4a,c) and α-Fe2O3

(Figure 4b,d) and it might be associated with the creation of different types of nucleation sites as
a function of the composition. The orthorhombic α-MoO3 photocatalyst exhibited particles with a
well-defined and unoriented plate-like morphology (Figure 4a,c). A similar result was observed by
Chen et al. [55] who synthesizedα-MoO3 nanoplates using inorganic–organic hybrids molybdate-based
precursors, which were formed from the reaction of molybdic acid (MoO3·H2O) and n-octylamine at
room temperature. The EDX results (Table 3) confirmed that the molybdenum ion is the major element
present in the orthorhombic oxide structure. However, the presence of the volatile (SO3) in the α-MoO3

sample arises from the decomposition of the starting precursor [56], and insignificant traces of other
elements resulting from the preparation process (Table 3).

Analyzing the SEM images of the hematite α-Fe2O3 (Figure 4b,d), an undefined morphology is
observed, and aggregates composed by these unevenly distributed particles is also observed. Such
morphology might be due to the thermal treatment that induces the particles sintering. Li et al. [57]
observed similar morphological arrangements for hematite films deposited on Au and Ti. The results of
X-ray spectroscopy by dispersive energy (EDX) for this system (Table 3) indicated a majority presence
of iron metal confirming that the target composition was achieved for the α-Fe2O3 photocatalyst.
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3.1.5. UV–Visible Spectroscopy

The UV–visible spectra of the samples are displayed in Figure 5. The band gap energy (Eg) values
were estimated using the Wood and Tauc’s method [38] by extrapolating the linear part to the photon
energy axis. The calculated Eg values are indicated in the graph.
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Figure 5a illustrates the UV–vis spectrum of the molybdenite photocatalyst (α-MoO3). The band
gap energy Eg obtained for this oxide was 2.79 eV, which is close to that (2.76 eV) observed by Scanlon
et al. [58] and lower than those evidenced by Amlouk et al. [59] (3.14 eV) and by Boukhachem et al. [26]
(4.01 eV). Thus, the fluctuation in the band energy values of this material might be explained by the
existing structural ordering and the presence of different ionic defects such as mixed Mo valence, cationic
and anionic vacancies or even interstitial defects in the samples [60]. Conversely, hematite photocatalyst
(α-Fe2O3) (Figure 5b) presented a band gap energy of 1.89 eV, which is similar to the Eg value (1.90
eV) observed by Zhang et al. [20] and slightly lower than that obtained by Mathevula et al. [29] of
2.06 eV for the samples prepared by the sol–gel method, and to the Eg energy values (2.08–2.11 eV)
calculated by Li et al. [57] for the thin films samples obtained by electrodeposition method. The
difference among the samples prepared in the present work and the others synthesized in other studies
might be attributed to the presence of defects as mentioned before for MoO3 samples. The formation
of these defects creates different energy sublevels within the band gap of the materials. It is important
noting that the presence of defects strongly depends on its crystalline state and synthesis methods for
sample preparation [29].

3.1.6. N2 Adsorption/Desorption Isotherms and Granulometric Analysis

The N2 adsorption–desorption isotherms of the photocatalysts (α-MoO3 and α-Fe2O3)
were collected and the textural characteristics of the samples were investigated by the
Brunauer–Emmett–Teller (BET) method [39]. The isotherms are illustrated in Figure 6. It was
observed that the materials exhibited type II and III isotherm profiles with the absence of the hysteresis
phenomenon, which is able to define the structures containing multilayer adsorption. From the BET
measurements (Table 4), it was also possible to observe distinct textural features and the relatively
small values for a specific surface area, pore diameter and pore volume distribution in both samples.
These differences are due to the different nuclei sites and larger particle growth observed for α-MoO3

in comparison to the α-Fe2O3 system as evidenced in SEM images (Figure 4). The smaller values found
for the pore diameters could classify the catalytic powders as mesoporous [61], however, the observed
pores in these systems exist because of the interparticle domains.
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Table 4. Specific surface area, average pore diameter and pore volume of the synthesized photocatalysts.

Sample SBET (m2 g−1) Pore Diameter (nm) Pore Volume (cm3 g−1)

α-MoO3 3.24 5.80 4.70 × 10−3

α-Fe2O3 8.23 7.39 1.52 × 10−2

Figure 7a,b show the curves of the equivalent spherical diameter values of the particles as a
function of the cumulative mass of the photocatalysts. It was observed that the samples have a mean
particle diameter (D50) between 10 and 50 µm. For the molybdenite (α-MoO3) photocatalyst (Figure 7a),
one can be observed that half of its volume is composed by particles with diameters smaller than
37.96 µm. In addition, 50% of the hematite (α-Fe2O3) volume is composed of particles with diameters
smaller than 16.65 µm. These results indicate that small particles of the samples tend to agglomerate
after calcination and it is consistent with the morphology observed by microscopic analysis (Figure 4).Sustainability 2020, 12, x FOR PEER REVIEW 11 of 20 
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3.2. Photocatalytic Experiments

3.2.1. Photolysis

In order to evaluate the photo-stability of the RhB dye under visible light irradiation, a photolysis
test (control reaction) was performed in the absence of the photocatalyst. The UV–vis spectra of the
RhB solution before and after photolysis are shown in Figure 8a.
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After 15 min of irradiation, no meaningful decrease in the maximum absorption band of the
RhB dye was observed. The maximum absorption at 553 nm (E = 2.24 eV) is characteristic of the
chromophore group that is responsible for the dye coloring [41,42]. The low decrease in this band after
photolysis corresponds to approximately 5.8% of the dye discoloration.

According to the UV–vis spectrum of the light source employed in the experiment (Figure 8b), the
highest emission occurs in the wavelength range of λ = 600–750 nm (E = 2.07–1.65 eV). This energy is
not sufficiently high to promote the direct degradation of the dye without catalysts. Some authors
have also evidenced the photo-stability of RhB dye under irradiation, especially under UV light, even
after a long period of exposure [62]. All this confirms that RhB has great stability under irradiation.

3.2.2. Photocatalytic Activity and Possible Mechanism

Given the photo-stability of the RhB dye, the use of photocatalysts to promote the complete
degradation of the dye is necessary. In this context, α-MoO3 and α-Fe2O3 were investigated for the
photodegradation of RhB dye solution (5 mg L−1, pH 5) under visible light for 15 min.

The literature reports two distinct mechanisms to describe photocatalysis, the direct mechanism
and the indirect one. In the direct mechanism, there is an electron transfer from the catalyst to the
compound to be oxidized, while, in indirect photocatalysis, strong oxidizing agents are generated on
the surface of the catalysts. These oxidizing agents can react homogeneously with the organic material
degrading them [63,64]. For the indirect mechanism to occur, the adsorption of the dye molecules
onto the catalyst is necessary. Thus, to better understand this, adsorption tests were also performed as
shown in Figure 9a. It was observed that an adsorption of approximately 33.9% of the RhB dye was
attained when the molybdenite (α-MoO3) is used, while 10.2% of the adsorption was achieved for
the hematite (α-Fe2O3) sample. The different adsorption behavior observed for α-MoO3 and α-Fe2O3

might be especially due to the different types of defects present on the surface of the catalysts, since the
low specific surface area observed for both materials seems to not play an important role in the process
(Table 4), whereas we can suggest that the indirect mechanism is probably the most important way for
the photodegradation of RhB to occur in the presence of these catalysts.
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When α-MoO3 and α-Fe2O3 are used in the photocatalytic degradation of RhB under visible light,
a pronounced decrease in the maximum UV–vis absorption band of the dye at 553 nm was observed
after 15 min (Figure 9b). This indicates that a 93.3% and 67.2% degradation of RhB were achieved for
molybdite (α-MoO3) and hematite (α-Fe2O3), respectively (Figure 9d).
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Different factors may contribute to the photocatalytic performance of materials. For instance,
crystal structure and surface defects as well as particle sizes and surface area are important parameters
that affect the interaction of the dye molecules with catalysts for the photocatalysis to occur [33].
The higher photocatalytic activity observed for α-MoO3 might be attributed to either the presence of
structural defects that are inherent to the material or due to the presence of ionic defects in the material
as suggested by Raman results. As a result, a high interaction between dye molecules and the α-MoO3

surface occurs, which leads to an increased adsorptive capacity observed for this oxide (Figure 9)
despite its low surface area (Table 4). In addition to that, the particle morphology and band gap
energy may also favor the photogeneration of the

(
e−CB/h+VB

)
pairs to promote RhB photodegradation

in this system.
Zheng et al. [10] reported a higher degradation rate of RhB (95.0%) for α-MoO3 after only 60

min of visible light exposure. Similarly, Xi et al. [28] observed a photocatalytic performance of 90.2%
for α-MoO3 toward the degradation of RhB after 30 min under visible light. On the other hand,
Huang et al. [27] obtained a photocatalytic efficiency for α-MoO3 of 91.57% and 91.98 % toward the
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degradation of RhB dye under visible and UV light during 160 min, respectively. The different
photocatalytic efficiency among the catalysts prepared by these authors and the α-MoO3 synthesized in
our study might be due to the different morphological and electronic features of the samples, reflecting
the differences in the synthesis conditions.

In relation to the hematite (α-Fe2O3) catalyst, the observed photocatalytic performance might be
attributed to the low band gap value and the high recombination rate of the electron–hole pairs

(
e−CB/h+VB

)
generated in the process that affect the amount of oxidizing species promoting RhB photodegradation.
Some authors reported the lower photocatalytic efficiencies of Fe2O3 in comparison to that for the
α-Fe2O3 catalyst synthesized in our work. For instance, Wang et al. [65] reported that the hematite
(α-Fe2O3) presented a reasonable efficiency of 42.0% for the degradation of methyl orange dye, after
180 min of reaction under visible light, and the authors attributed it to the morphology of the catalyst
particles. A lower degradation rate of 15.4% was achieved by Luo et al. [66] for the degradation of RhB
dye after 60 min of reaction using hematite (α-Fe2O3) as a photocatalyst. These authors attributed the
catalytic efficiency to the redox property of iron cations

(
Fe2+

↔ Fe3+
)

that favored the recombination

of the photogenerated electron–hole pairs
(
e−CB/h+VB

)
.

Taking into account what was mentioned before and based on the adsorption capacity evaluated
(Figure 9a), the photocatalytic behavior of both materials prepared in this work can be understood
considering the possible indirect mechanism for the photodegradation of RhB.

According to Honorio et al. [67] and Ong et al. [68], the mechanism involves the reactions
represented in the following equations (Equations (2)–(12)). In summary, the photogenerated electrons
may interact with O2 to produce superoxide anionic radicals

(
O• −2

)
and finally hydroxyl radicals OH•.

On the other hand, the photogenerated holes
(
h+VB

)
react with the water of the medium to give rise

hydroxyl radicals OH•. The resulting hydroxyl radicals will attack the dye molecules adsorbed on the
surface of the photocatalyst to rapidly produce intermediate compounds, which will consequently
be converted into environmentally acceptable green compounds as CO2 and H2O (Equations (11)
and (12)):

photocatalyst hυ
→ photocatalyst

(
e−CB

)
+

(
h+VB

)
(2)

photocatalyst
(
h+VB

)
+ H2O → photocatalyst + H+ + OH• (3)

phtocatalyst
(
h+VB

)
+ OH− → photocatalyst + OH• (4)

photocatalyst
(
e−VB

)
+ O2 → photocatalyst + O•

−

2 (5)

O•
−

2 + H+
→ HO•2 (6)

HO•2 + HO•2 → H2O2 + O2 (7)

photocatalyst
(
e−CB

)
+ H2O2 → OH• + OH− (8)

H2O2 + O•
−

2 → OH• + OH− + O2 (9)

H2O2 + hυ → 2OH• (10)

Organic compounds + OH• → Intermediaries (11)

Intermediaries → CO2 + H2O (12)

3.2.3. Increased Photocatalytic Activity

According to Xiao et al. [22] and Miklos et al. [69], the combination of hydrogen peroxide (H2O2)
and ultraviolet (UV) radiation has been applied to oxidize numerous organic pollutants, since H2O2

can increase the formation of hydroxyl radicals (OH•) to promote photodegradation. However, the
formation kinetics of these radicals using only H2O2 and UV radiation can be limited. In this sense, to
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enhance the generation of hydroxyl radicals (OH•) from the photocatalysts and therefore, improve the
photodegradation of RhB, the photo-Fenton process was used.

The UV–vis spectra of the dye solution (RhB) after the photocatalysis in the presence of H2O2 are
illustrated in Figure 9c. The results of the photodegradation in the presence of H2O2 are shown in
Figure 9d. It is possible to observe that after 15 min of photocatalysis using catalysts/H2O2/visible
light, a satisfactory increase in the degradation percentage of the dye was observed in comparison
to the tests performed in the absence of H2O2 (Figure 9b). It is also possible noting that, without
photocatalysts (H2O2/visible light), a low degradation rate of RhB was achieved (Figure 9b). This result
may be associated with the low amount of hydroxyl radicals (OH•) produced during the process,
which indicates a limitation of the hydrogen peroxide activity in Fenton methodology.

When the molybdenite (α-MoO3) is combined with Fenton reagent (H2O2) and visible light
(Figure 9c), an increase in 5.1% in the photodegradation rate of the dye was observed compared to that
seen for the α-MoO3/visible light system (Figure 9b). In this case, the presence of the photocatalyst
enhances the H2O2 decomposition and consequently, produced more hydroxyl radicals (OH•) to
promote dye degradation. The results indicate that the α-MoO3 synthesized in our work presents a
promising Fenton and photon-Fenton efficiency as compared to the results reported for α-MoO3 by
other authors [70–72].

For the α-Fe2O3 sample, a higher efficiency was achieved after 15 min, reaching 100% of the
photodegradation of RhB (Figure 9d). The catalytic efficiency obtained for α-Fe2O3 in the presence of
H2O2 is much higher than that observed without H2O2 (Figure 9d). This result can be attributed an
improvement of hydroxyl radicals (OH•) generated by the decomposition of H2O2 promoted by the
Fe2+ cation, which is regenerated by the reaction between Fe3+ and the photogenerated electrons

(
e−CB

)
and from the reaction of holes

(
h+BV

)
with the water molecules present on the catalyst surface. According

to the literature, hydrogen peroxide can also be catalyzed by the Fe3+ ion, but the degradation of organic
pollutants by the photon-Fenton reagent (Fe3+/H2O2) is much slower than Fe2+/H2O2 reagent, due to
the lower reactivity of iron (III) with respect to H2O2 [66,69]. Different authors have also investigated
the efficiency of the Fenton and photo-Fenton process toward the degradation of different organic
contaminants using hematite [20,22]. For instance, Zhang et al. [20] obtained a 94.8% RhB degradation
using Fe2O3/H2O2 after 180 min under irradiation. Xiao et al. [22] obtained a photodegradation
efficiency of 98% of red acid G (ARG) dye using α-Fe2O2/H2O2/vis system after 90 min of light exposure.
According to these authors, the high percentage yield observed for the α-Fe2O2/H2O2/vis system
resulted from a synergistic effect existing among H2O2, photocatalyst and irradiation, besides the high
surface area of the catalyst that led in an increase in large amount of active sites exposed on the surface.

Based on what was mentioned above, the use of H2O2 is one of the main factors to increase the
photogenerated hydroxyl radicals (OH•) and then enhance the photodegradation rate of the organic dye.
Therefore, we evidenced that the recombination of the electron–hole pairs in this work was effectively
suppressed and more oxidizing radicals (OH•) were produced in the dye/catalysts/H2O2/visible
irradiation (Figure 9c) in comparison to the common photocatalysis dye/catalysts/visible light (Figure 9b).
Additionally, the combination of all these results showed that a significant improvement of the
photocatalytic properties of the synthesized oxide materials was achieved.

4. Conclusions

α-MoO3 and α-Fe2O3 catalysts were successfully synthesized at a low temperature using a Pechini
method, showing to be effective for the preparation of different materials. Monophased and well
crystallized samples were obtained after calcinations at 550 ◦C, with different structural symmetries
(orthorhombic Pbnm for α-MoO3, and rhombohedral R3c-type for α-Fe2O3) as indicated by XRD
results and confirmed by Raman and IR spectroscopy. The particles morphology, specific surface
areas and band gap energies (evidenced by BET, granulometric analysis and UV–vis spectroscopy)
differed according to the composition and strongly affected the photocatalytic properties. A higher
catalytic activity toward RhB photodegradation was observed for α-MoO3 (93.3%) in the absence
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of H2O2. However, the addition of H2O2 to the photocatalytic systems promoted a faster RhB
photodegradation, especially for α-Fe2O3 with 100% of efficiency after 15 min of reaction. The efficiency
of the photocatalytic processes was strongly related to the mechanism that involves heterogeneous
photocatalysis, the indirect mechanism. Our findings suggest that the visible light-driven photocatalysis
using the α-Fe2O3 as catalyst might be considered more advantageous in comparison to other processes
reported in the literature due to its economic viability and environmental sustainability, since the sun
light can be readily applied in the process. In addition to that, the photocatalytic process can promote
the complete degradation of organic pollutants (mineralization of these compounds in environmentally
acceptable green compounds, CO2 and H2O), decreasing their toxicity. As a consequence, the studied
systems are promising candidates for the rapid treatment of wastewater contaminated by persistent
organic pollutants.
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