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Abstract: Short-term traffic speed prediction is vital for proactive traffic control, and is one of the
integral components of an intelligent transportation system (ITS). Accurate prediction of short-term
travel speed has numerous applications for traffic monitoring, route planning, as well as helping
to relieve traffic congestion. Previous studies have attempted to approach this problem using
statistical and conventional artificial intelligence (AI) methods without accounting for influence of
data collection time-horizons. However, statistical methods have received widespread criticism
concerning prediction accuracy performance, while traditional AI approaches have too shallow
architecture to capture non-linear stochastics variations in traffic flow. Hence, this study aims to
explore prediction of short-term traffic speed at multiple time-ahead intervals using data collected
from loop detectors. A fast forest quantile regression (FFQR) via hyperparameters optimization was
introduced for predicting short-term traffic speed prediction. FFQR is an ensemble machine learning
model that combines several regression trees to improve speed prediction accuracy. The accuracy of
short-term traffic speed prediction was compared using the FFQR model at different data collection
time-horizons. Prediction results demonstrated the adequacy and robustness of the proposed
approach under different scenarios. It was concluded that prediction performance of FFQR was
significantly enhanced and robust, particularly at time intervals larger than 5 min. The findings also
revealed that speed prediction error (in terms of quantiles loss) ranged between 0.58 and 1.18.

Keywords: ITS; traffic simulation and modeling; travel speed prediction; fast forest quantile
regression; Beijing

1. Introduction

With rapid growth in car ownership, traffic congestion has become one of the most critical social
concerns in urban metropolitans around the world. In addition to restraining smooth inter-city mobility,
it also poses a threat to the urban economy and stable development [1–4]. Traffic congestion could
be recurrent resulting from routine cyclic fluctuations in traffic, or it may be non-recurrent due to
emergency incidents, special events, unforeseen bad weather conditions, and so forth. China is one
of the fastest growing economies in the world, second after the US. China’s transport sector has
witnessed a dramatic increase during the past four decades, with the motorization rate exponentially
accumulated from 1.8 million in 1980 to 340 million in 2019 [5,6]. Similarly, motor vehicle ownership in
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the country has increased from 1.8 per 1000 persons in 1980 to 179 in 2019 [6]. China has also become the
largest car market with annual sales exceeding 24 million vehicles in 2016 [7]. But this rapid economic
development has also brought severe consequences in terms of energy, environment, and social costs.
According to statistics, the most prominent cities in the country are accounting for huge daily economic
loss worth $1 billion, due to traffic congestion [8], which is an alarming situation. Further, traffic
congestion has slowed down the average running speed in many Chinese cities. For example, in 2011,
the average driving speed in Beijing was 7.5 miles per hour compared to 12.4 in Hong Kong, 15.5 in
New York city, and 18 in London despite the fact, that all of these cities have car populations larger than
Beijing [9]. Additionally, around 30% of Beijing’s air pollution is dominated by transport emissions [9].
Thus, it is essential to identify the underlying causes, and properly tackle the issue of traffic congestion.

Accurate traffic information is of great importance for managing traffic congestion in urban areas.
In addition to information about existing traffic conditions, accurate knowledge about traffic state
parameters (traffic flow, density, speed) in subsequent short time intervals is vital for deciding on
a potential control and management strategy. Accurate traffic prediction is an integral component
of advanced travelers information system (AITS) in intelligent transportation system (ITS). It has
numerous applications such as route planning, navigation, dynamic traffic assignment, congestion
estimation, and other mobility services [10,11]. Among traffic state parameters, travel speed is one of
the main indexes that reflect the quality of operating conditions along the highways. Travel speed
directly influences the implementation of traffic management strategies like traffic control system
(TCS) and traffic guidance System (TGS) [12]. The accuracy of travel speed prediction is largely
influenced by available data, traditionally from loop detectors, radars, and traffic cameras fixed at some
important road locations. However, with the increasing amount of available data collected from mobile
services (smartphones and on-board GPS devices), probe vehicles, remote traffic microwave sensors
(RTMS), and various internet of things (IOT) sensors, the challenge is no longer related to data quantity,
but rather to extraction and modeling of useful information from this data [13]. With accurate travel
speed prediction, travelers can make more informed decisions about trip generation and dynamic
route planning. Developing traffic congestion can be mitigated collectively, and traffic conditions can
become more stable. However, it is always challenging to realistically estimate short-term future travel
speed conditions because of the complexity of road network, instability and stochasticity in traffic flow,
and floating vehicles speed.

In previous literature, different approaches have been utilized for short-term travel speed
prediction including time series analysis methods [14,15], statistical regressions [16], artificial neural
(NN) [17,18], and support vector regression (SVR) methods [19]. Although, time series and statistical
methods have good theoretical interpretations, these methods have been frequently questioned
regarding prediction performance. While traditional machine learning methods like NN and SVR
have too shallow architecture to capture latent interactions among variables, particular for complex
network. Recently, with unprecedented opportunities for collecting detailed data, deep learning has
drawn widespread research attention due to its excellent ability to extract essential data features, with
enhanced computational efficiency at a rapid pace. Although prediction accuracy from all machine
learning is relatively better, it receives criticism of being operated within a black box lacking sound
theoretical basis. Regarding travel speed prediction, most of the methods used in the existing literature
have focused on selecting arbitrary time-horizons for data collection without accounting for influence
of different time intervals on predictive performance. It is essential to study the influence of varying
time-horizons for the collection of data on travel speed prediction. Present study attempts to fill this
research gap using a novel regression approach.

Given the variability in travel speed under recurrent and non-recurrent traffic conditions,
the objective of current research study is to make better speed predictions under multiple traffic data
collection time-horizons, that would ultimately assist in alleviating congestion in the city of Beijing.
Speed data with varying time intervals was collected from loop detectors on 2nd Ring Road in Beijing.
The specific contributions of this study are: (i) short-term traffic speed performance using novel FFQR
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approach, to the best of our knowledge, FFQR has not been used in traffic flow forecasting; (ii) to
compare the performance of proposed approach under varying data collection time-horizons (i.e., 5,
10, and 15 min intervals); (iii) to conduct hyperparameter optimization of model by random grid to
improve the prediction accuracy; (iv) to demonstrate prediction accuracy for varying data collection
time-horizons in terms of quantile loss. Study results indicated that the proposed approach was
efficient and robust under the considered multiple time-horizons.

The remainder of this paper is structured as below. Section 2 provides a detailed review of
existing literature in traffic flow forecasting in general, and particularly short-term speed prediction.
Section 3 describes the study area, data used in the study, and key algorithm parameters setting.
Section 4 discusses the architecture of the proposed approach in context of current study, and model
performance evaluation. Section 5 presents results and discussions with reference to quantile loss
associated with multiple time-ahead scenarios. Finally, Section 6 summarizes the key study conclusions,
study limitations, and recommendations for potential future work.

2. Related Work

2.1. Literature Review

Travel speed is an essential measure for estimating the quality of operating conditions in traffic
networks. Accurate short-term travel speed prediction plays a vital role in proactive traffic control in
ITS. Short-term traffic prediction involves precise predictions of various traffic parameters such as
traffic flow, speed, density, and occupancy [20,21]. Researchers are challenged continuously by the
consequences of rapid urbanization, including severe congestion and safety issues. The ideal conditions
for precise prediction of traffic state is that vehicles occupy their respective lane without frequent lane
change maneuvers, as sudden lane changes have been found to be associated with low prediction
accuracy as well as motor vehicle crashes [22,23]. Uncertainty in travel time and speed estimation can
be disastrous, leading to extreme man-hours wasted waiting in a queue, increased fuel consumption,
and vehicular emissions [24–26]. Travel speed prediction refers to the estimation of average vehicle
fleet speed in the near future (for example, 1 to 60 min) using real-time traffic data. Robust and accurate
traffic state prediction has numerous applications for active traffic management, intelligent driving,
high-precision navigation, route planning, and several other advanced applications [18,27]. However,
realistic traffic state prediction is a challenging task due to the non-linear and stochastic nature of traffic
data. Also, it is challenging to record individual vehicle speed on a busy urban route, particularly
during rush hours. This issue was addressed by Anil et al., who proposed a comprehensive framework
incorporating a processing module with traffic cameras [28]. The proposed architecture was found
capable of tracking and estimating speed in real-time for every single vehicle in the camera frame.
Further, most of the existing approaches for traffic state prediction rely on previous speed records,
and it is closely associated with other different traffic variables such as density and traffic volume on
contagious links and road segments. These roads may not be necessarily linked to the target road,
but changes in traffic attributes of surrounding roads will affect travel speed later on [29]. However,
considering too many irrelevant adjacent roads are likely to aggravate the complexity of the prediction
algorithm as well as decreasing its running performance, while considering only a few adjacent links
will degrade its prediction accuracy. Hence, a sensitivity analysis is recommended to select the most
relevant adjacent roads providing a reasonable trade-off between the two.

Traffic state prediction always requires prior real-time speed information/data from devices
such as loop detectors, traffic cameras, GPS navigation devices, and mobile phones. It is rather
difficult and impractical to capture network-wide speed data using fixed location devices; GPS and
mobile phones may serve as a suitable alternative. Mobile phone navigation devices have several
advantages over the former methods such as high accuracy, reliability, optimal performance in real-time,
less construction time and costs, etc. [30]. To detect the instantaneous speed of vehicles, remote traffic
microwave sensor (RTMS) is another useful non-intrusive new piece of equipment. The device is
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installed roadside and is capable of directly recording moving or stationary vehicle speed without
interrupting traffic flow. In addition to capturing speed data, RTMS can provide reliable information
about traffic volume, density, and occupancy for multiple lanes simultaneously, even during adverse
weather conditions [31,32]. In recent years, researchers have proposed various methods to improve the
accuracy of speed estimation. For example, speed estimation results from the cellular probe system,
and loop detectors were aggregated using the travel-time based method [33]. To avoid tracking each
vehicle using any labeled data, velocity-based estimation approach was proposed [34]. A recent study
introduced a path inference approach [35], using taxi GPS traces having low sampling frequency to
accurately estimate network-wide speed on congested links.

The principal input parameters in predicting short-term travel speed are traffic flow, travel speed,
and occupancy. While each of the three parameters for traffic congestion can be used, both speed
and traffic flow correlate with occupancy. Furthermore, speed is more directly associated with traffic
operation status. A study previously conducted found that short-term speed prediction results are
significantly influenced by real-time dynamic traffic control [36]. Traffic speed is a commonly used
metric to evaluate the road segment’s traffic status. A wide variety of sensors, including GPS vehicles,
inductive loop detectors, and mobile phones, have been continuously collecting large scale traffic data
promoting the advancement of data-driven intelligent transport systems (ITS). In general, the term
“short-term” relates to a prediction horizon of up to one hour. It predicts traffic conditions ahead of the
present moment for a few seconds to a few hours, which is the optimal time for individual navigation
and global urban traffic planning. Existing traffic state prediction methods with traffic sensor data are
commonly divided into three categories: data-driven, model-driven, and data-driven streaming [37].
In recent years the analysis of road traffic data and future traffic characteristics were investigated
by statistical, machine learning, and data mining techniques. Numerous methodologies have been
introduced and adopted for short-term traffic prediction, and the ultimate objective remains the same:
to acquire the prediction results accurately and as efficiently as possible. Predicting with machine
learning models, a fine setting of parameters for any model has a significant impact on its performance,
as highlighted by previous study [38].

2.2. Previous Studies

During the past two decades, numerous studies have been conducted for travel speed prediction.
Researchers have considered various methods based on statistical modelling, neural networks, machine
learning, big data, etc. These methods are studied under two main categories i.e., parametric and
non-parametric based. Recently, some studies have utilized hybrid-based techniques combining two
or more methods to enhance prediction accuracy. Parametric methods have a fixed structure, where
parameters are learned using an observed data set [39]. Parametric methods have explicit theoretical
interpretations, and are easily implemented. These methods require high data quality, with a data
sequence desired to be stable and accurate. However, the nature of obtained traffic data is usually
unstable and stochastic, which limits their use in complex applications. Some parametric methods
explored for short-term traffic flow and speed prediction are: time series models [40,41]; exponential
smoothing model [42]; spectral analysis [43,44]; autoregressive integrated moving average (ARIMA)
models [45–47]; ARIMA model with extended structures like Kohonen-ARIMA [48]; model seasonal
autoregressive integrated moving average (SARIMA) model [49]; and ARIMA with Kalman filter [50].
Like parametric methods, non-parametric methods assess dynamic correlation directly from training
data; however, they have an enhanced adaptive learning ability and strong generalization resulting in
better prediction accuracy [51]. Some nonparametric used for speed prediction are: artificial neural
network (ANN) model [52,53]; multi-type neural network [54]; deep convolutional neural network [55];
kernel smoothing [56], k-nearest neighbor approach [57,58]; and support vector regression model
(SVRM) [59,60]. Ma et al. suggested a long short-term memory neural network commonly known as
LSTM-NN, using a remote sensor network data in the city of Beijing [32]. In another study, researchers
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compared LSTM with a convolutional neural-network (CNN) for network-wide travel speed prediction,
and found that CNN was more robust than LSTM with a 42.91% improvement in mean square error [55].

Recently some studies have focused on hybrid approaches in an attempt to improve prediction
accuracy considering the merits and application associated with each prediction method. Few studies
that have utilized hybrid models are; the Bayesian-neural network approach [61]; hybrid fuzzy
rule-based approach [62]; state-space approach coupled with least-squares support vector machine
(LS-SVM) [63]; KNN-Gaussian regression process [64]; and chaos-wavelet analysis support vector
machine approach (CWSVM) [65]. Intuitively, hybrid models provide better prediction accuracy
compared to single prediction models [66–68]. However, complex model architecture and high
computational efforts limit their network-wide implementation [43]. With the advent of big data and
machine learning technology, different types of machine learning are being explored in short-term travel
speed prediction. Some commonly used machine learning models utilized for travel speed prediction
are: evolving fuzzy neural network (EFNN) [69]; long short-term memory networks (LSTM) [32,70];
bi-directional long short- term memory neural-network (Bi LSTM-NN) [71]; and include support
vector regression (SVR) [59]. NN, and fuzzy schemes have also been successfully used in other related
disciplines such as image retrieval, feature extraction, and signal cycle length optimization [72–74].

It is evident from the reviewed literature, that different approaches have been adopted for traffic
state prediction to improve prediction accuracy. These may be categorized into three distinct categories,
parametric, non-parametric methods, and methods based on deep learning. The former has reliable
theoretical interpretations but is not considered good in terms of prediction accuracy because of the
stochastic nature of traffic data, while the non-parametric methods works in a black box with a weak
theoretical basis. However, machine learning approaches are relatively flexible, with very little or no
initial assumptions for input parameters. Machine learning methods have much deeper and complex
architecture to capture stochastic variation thus yielding improved prediction accuracy. Further these
methods are capable of processing outliers, missing, and noisy data. Comprehensive review of existing
literature also indicates that most of the studies focused on selecting arbitrary time-horizons for data
collection without taking into account the effects of time interval on predictive performance. It is
important to study the influence of varying time-horizons for the data collection on travel speed
prediction. Hence, this paper examines short-term travel speed performance of novel fast random
forest quantile regression (FRFQ) using varying data collection time-horizons speed data from four loop
detectors on a freeway segment of 2nd Ring Road in Beijing. To the best of our knowledge, this method
has not been used in previous studies for traffic forecasting.

3. Data Collection and Parameters Settings

Numerous powerful traffic simulation tools are available to replicate realistic field driving
conditions by incorporating appropriate parameters inputs. It was anticipated that very realistic
outcomes can be achieved by enabling a precise geometric representation of conditions, the behavior
of drivers, and vehicle features. A number of verifications have been initiated, involving examination
of coded networks, so that the coded network can replicate current field conditions. Microscopic traffic
simulation tool VISSIM was used to realistically simulate traffic conditions in the study area. However
prior to the field conditions, it is essential to calibrate the driving behavior parameters for the traffic
simulator using appropriate procedures as reported by a recent study [75]. After default parameter
calibration and validation of a traffic simulator, multiple simulation runs were performed with different
random seeds to ensure that the model worked as planned. A portion of Beijing’s 2nd freeway Ring
Road (shown in Figure 1) was selected to verify the performance of the proposed approach. The length
of the selected segment was 1.326 km. The 2nd freeway Ring Road is approximately 33 km and includes
37 on-ramps and 53 off-ramps. After getting the appropriate freeway architecture, the macroscopic
characteristics (e.g., split ratio and demand flow) needed for the tuning of the complete microscopic
simulator were identified. Using the VISSIM 2nd freeway Ring Road network simulation model,
the traffic flow from around 06:00 a.m. to 12:00 p.m. has been further mimicked. The data was
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collected on a selected portion of 2nd freeway Ring Road from different loop detectors with different
time intervals, including 05, 10, 15 min. The location of 2nd freeway Ring Road from detector 1 to
detector 4 can be seen in Figure 2. Figure 3 presents the flow chart for sequential methodology.
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4. Methodology

4.1. Fast Forest Qunatile Regression

There are various regression types. Regression models aim to fit a target variable that is expressed
as a numerical vector. Nevertheless, statisticians have increasingly developed sophisticated regression
techniques. Quantile regression enables to understand the predicted value distribution. FFQR is
a powerful tree-based quantile regression model utilized in this study that is capable of predicting
non-parameter distributions. FFQR uses decision trees to implement random forest quantile regression.
Random forests (RF) can help prevent overfilling with decision trees. A tree ensemble is developed in a
random forest using bagging to select a subset of random samples and training data characteristics, and
then fit a decision tree into each data subset, unlike the algorithm of random forests, which averages
all trees output. FFQR keeps all of the predicted labels in trees indicated by the quantile sample count
parameter. It displays the distribution to allow the user to view the quantile values for the given
instance. The main strength of FFQR is that in every leaf of every tree, all relevant observations are
stored, not just their average like happens in a random forest. Instead of the conditional mean or
average, it helps to predict conditional quantiles of a given instance. Tree-based quantile regression
models such as fast forest quantiles regression have the additional advantage that they can be used to
predict non-parametric distributions. In general, RF combines several regression trees into an ensemble
to generate more accurate regressions by extracting many bootstrap samples from the original training
data and fitting each sample with a tree [76].

In FFQR, traffic prediction problem could be formalized as: let Xm(t) be a measured value vector
containing traffic measurements from a point of traffic network indexed by m at time t. The vector X
could have travel speed component measured by a specific loop detector indexed by m. The datasets
further divided into three sets, training, validation, and testing. Firstly, the training procedure
uses two sets, whilst the third sets evaluates the capacity of predicting trained FFQR. In the RF,
predicted outcomes Yp for m = 1, . . . , k, new data samples resulting from predictors, Xm, are modelled
as a weighted average of responses Y, y = 1, . . . , training data samples, with weights w given in
Equation (1), [77]. In particular, we consider the conditional distribution function (in Equation (2)) of
response variable Y conditioned on the specific values x of the predictor variable Xm.

Yp
m =

n∑
j=1

w j(Xm)Y j (1)

F(y |X = x) =
n∑

j=1

w j(x)I(Y j ≤ y) (2)

The estimated conditional distribution function F̂(y
∣∣∣X = x) is then given below (Equation (3))

Furthermore, the τ− th quantile qτ(x) is predicted by Equation (4).

F̂(y
∣∣∣X = x) =

n∑
j=1

w j(x)I(Y j < y) (3)

q̂τ(Y
∣∣∣X = x) = inf{y : F̂(y

∣∣∣X = x) ≥ τ} (4)

Each RF is comprised of several trees. Every tree T is grown by repeatedly splitting s the training
data by a bootstrap sample. Every split is a predictor value. Splitting frequently happens until the
partition has reached a minimum number of observations. At that point, the partition becomes reach a
terminal node. The average overall trees provide predictions that depend on the complete set of training
data, including responses and predictors. Random forests provide an accurate and consistent estimation
of the conditional mean of the variable response. FFQR is an overall random forest generalization
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that provides a robust, non-linear, and non-parametric method to estimate conditional quantities [78].
Besides, FFQR provides a robust, non-linear, and non-parametric method to estimate conditional
quantities. On the other hand, random forests estimated the conditional mean, while FFQR gives an
estimation of the entire conditional distribution. A brief overview of the Algorithm 1 is given below [78].

Algorithm 1. Identification Algorithm

1. Grow k trees T(θ t), t = 1, . . . , k. Considering all observation for each leaf of tree. θ is the random
parameter vector that defines how the tree works (e.g., and variables are used for split points at each node).

2. For a given X = x, drop x down all trees. Measure the weight w j(x, θt) of observation j ∈ {1, . . . n} for
every tree.

3. Compute weight w j(x) for every observation j ∈ {1, . . . n} as an average over w j(x, θt) t = 1, . . . , k.
4. Compute the estimate of the distribution function for all from Equation (3), using the weights from Step 2.

The model depends on several parameters, which are essential for the efficacy of the model.
In order to find improved results and high accuracy, we used the random grid as a hyperparameters
optimization for FFQR. The range of best combination for hyperparameters optimization used for
different prediction horizons are given in Table 1,

Table 1. Range of hyperparameters for prediction horizons.

Parameter Description Value/Range

maximum leaves per tree, l {16–128}
number of trees constructed, T {40–256}

Minimum samples per leaf node {1–9}
begging fraction {0.25–1}
feature fraction {0.25–1}
split fraction, s {0.25–1}

samples count for quantiles estimation {100}
required quantile values, τ {0.07, 0.51, 0.95}

The above listed tuned-optimized hyperparameters were achieved using 10-fold cross-validation.
For each prediction horizon, the number of iterations performed was 18. The FFQR via random grid
implemented in Azure machine learning studio.

4.2. Model Evaluation

Quantile Loss functions proved to be useful for the prediction of an interval instead of
only point-predictions. Also, quantile loss is simply an extension of mean absolute error (MAE).
The performance evaluation metrics used in this study were quantile loss and root mean squared
errors (RMSE). The metrics were calculated from the below equations;

Lr(y, yp) =
∑

i=yi<yp
i

(γ− 1).
∣∣∣yi − yp

i

∣∣∣+ ∑
i=yi<yp

i

(γ).
∣∣∣yi − yp

i

∣∣∣ (5)

RMSE =

√√
1
n

n∑
i=1

(
yi − yp

i

)
(6)

where yi is the ground truth, yp
i is the predicted output, γ is the selected quantile and n is the number

of observations.
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5. Results and Discussion

5.1. Quantile Loss for Different Time Horizon

The hyper tuning parameters included for mean prediction, 0.07 quantile interval, and 0.95
quantile interval are the number of trees, number of leaves, minimum leaf instances, bagging fraction,
and feature fraction. Figure 4 shows the quantile loss of detector 4 for 15 min prediction horizons,
which are number of trees and a number of leaves. The quantile loss obtained for the mean prediction,
0.07 quantile, and 0.95 quantiles were 0.8007, 0.471, and 0.94, respectively. Figure 5 presents the detector
4 quantile loss for 10 min prediction horizons which were obtained for mean prediction, 0.07, and 0.95.
The achieved values for a number of trees and the number of leaves is 0.68, 0.77, and 0.60. Similarly,
Figure 6 indicates the quantile loss of detector 4 achieved for 5 min prediction horizons for mean
prediction, 0.07, and 0.95 were 1.1, 1.4, and 0.84, respectively.

Figure 7a depicts the impact of minimum leaf instances, bagging fraction, split fraction, and
feature fraction on quantile loss for 0.95 interval, which was achieved when the quantile loss was 0.47.
The values achieved for minimum leaf instances, bagging fraction, split fraction, and feature fraction
was 2, 0.9, 0.6, and 0.6, respectively. Figure 7b,c indicate the quantile loss for 0.07 interval and mean
prediction, which was obtained for 0.94 and 0.80, respectively. The obtained values of 0.07 quantile
for minimum leaf instances, bagging fraction, split fraction, and feature fraction were 2, 0.6, 0.9, and
0.1, respectively. Similarly, Figure 8c shows the achieved values of mean prediction for minimum leaf
instances, bagging fraction, split fraction and feature fraction were 2, 0.9, 0.6, and 0.6, respectively.
In Figure 7a–c, the encircled values show the values of the best-tuned parameters for mean prediction
with less quantile loss, which was obtained for 10-fold cross-validation.
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Figure 8 shows the predicted trends measured for detector 4 under different time intervals during
morning peak hours and off-peak hours. It also indicates the actual mean prediction, 0.07, and 0.95
quantiles for 5, 10, and 15 min prediction horizons. We find that mean travel speed prediction, 0.07,
and 0.95 quantiles were close to the actual speed data in the period of off-peak between (6:00 a.m. to
7:30 a.m. and 10:30 a.m. to 12:00 p.m.). In addition, results showed that the prediction accuracy for
off-peak hours (normal time) is better than the peak hours’ period because the traffic flow is more
stable during normal time than the peak time.
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5.2. Model Perfrmance under Different Time Intervals

The impact of data collection time intervals on the prediction of short-term travel speed accuracy
is essential. FFQR was used to predict short term travel speed at different time intervals (i.e., 5,
10, and 15 min). The quantile loss of mean prediction for data collected in different time intervals
from different loop detectors can be seen in Figure 9, which shows a similar trend for detector 3 and
detector 4, as time-horizons increased the quantile loss decreased. It can be observed from Figure 9
that the proposed FFQR yielded robust travel speed prediction outcomes with varying time-horizons,
particularly at larger time intervals. The prediction accuracy increased for increasing the time intervals,
as shown in Figure 9. The model performed better as shown in Tables 2 and 3 with lower quantiles
loss and RMSE for loop detectors at different time intervals, demonstrating the traffic speed pattern
characteristics over time. For example, the mean quantile loss and RMSE for all loop detectors for
time intervals of 10 min are 0.941 and 11.26, respectively. In contrast, the mean quantile loss and
RMSE for all loop detectors for time interval of 15 min are 0.93 and 10.73 respectively. Despite
the sophisticated and complex road conditions in the empirical test, model performance remained
entirely satisfactory. The decrease in these two indicators, quantile loss and RMSE, indicated the
improvement in the short-term speed prediction. Further, it may be noted from the results that the
suggested model yielded desirable travel speed prediction results with low RMSE. These results are
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indicative of the fact that increasing the time interval for data collection could reduce traffic uncertainty,
therefore the speed pattern is more stable and also predictable [79]. Additionally, the higher accuracy
relationship with increased time intervals for data collection is aligned with many other legitimate
prediction approaches [80]. Similar studies conducted suggest that prediction accuracy is inversely
proportional to data collection time-horizons. For example, in a study the accuracy obtained (in term
of RMSE) for traffic speed prediction using Elman NN for 1 min and 4 min were 10.79 and 12.92,
which was less reliable relating to our obtained prediction accuracy for different time-horizons [32].
In addition, researchers have compared various models such as SVR, ANN, bayesian regularized
neural network (BRNN) and SARIMA to forecast short-term speed and achieved prediction accuracy
estimates comparable to our proposed method. In these studies, authors have demonstrated the
predicted travel speed trend during off-peak hours and peak hours of the day and captured traffic
nonlinearity in arbitrary time horizons [81–83].
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To evaluate the predictive accuracy of the models at different time intervals, the performance
metrics of the model were also presented in Tables 2 and 3.

Table 2. Mean Quantile loss under different time intervals.

Quantile Loss Prediction Horizons

5 min 10 min 15 min

Detector 1 0.58 0.99 1.08
Detector 2 0.71 0.93 1.17
Detector 3 0.655 0.788 0.70
Detector 4 1.083 1.010 0.80

Table 3. Root mean squared errors (RMSE) under different time intervals.

RMSE
Prediction Horizons

5 min 10 min 15 min

Detector 1 14.95 17.33 20.26
Detector 2 2.29 12.30 16.12
Detector 3 6.03 6.68 5.74
Detector 4 9.99 8.71 1.16
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6. Conclusions, Study Limitations, and Future Work

6.1. Conclusions

The objective of this study was to predict short-term travel speed under different time-horizons,
which is extremely essential for travel route planning, real-time proactive traffic control,
and management in ITS. Existing literature on the topic was reviewed, which revealed that previous
studies have mostly focused on time-series, statistical regression, and conventional artificial intelligence
techniques (such as ANN, SVM). However, prediction accuracy from time-series methods are relatively
low, whereas traditional AI approaches have too shallow architecture to capture the non-linear,
stochastic, and intricate characteristics of traffic flow. Thus, we proposed a novel FFQR model for
short-term travel speed forecasting under multiple data collection time-ahead horizons. FFQR is an
ensemble technique having relatively deep architecture that combines several regression trees to yield
more accurate regressions estimates for a predictor variable. The proposed method was applied using
loop detectors data based on a microscopic traffic simulator along a freeway segment on 2nd Ring Road
in Beijing. The results showed that the FFQR model performed well in predicting short-term travel
speed, particularly at larger time-horizons. The study findings also showed that speed prediction
error quantified in terms of quantiles loss on average ranged between 0.58 and 1.18. It was also noted
that the proposed FFQR model was efficient in capturing the observed variations in field speed data.
Prediction results demonstrated the adequacy and robustness of the proposed approach under different
data collection time scenarios. Hence, travel speed prediction from the FFQR model could serve as
useful guidance for policy and decisions makers particularly in the study area (city of Beijing) as wells
as travelers in the city for efficient operations and commute through urban metropolitans.

Future studies should focus on exploring the influence of other important external factors such
as weather and traffic incidents to enhance prediction accuracy of travel speed. In addition, current
study could be extended to data collected from network-wide loop detectors or sensors considering
the spatial information of travel to evaluate the adequacy of the proposed approach. Lastly, future
studies could concentrate on additional advanced optimization techniques to explore more appropriate
parameter combinations for the current proposed model, and to achieve more accurate short-term
travel speed prediction outcomes.

6.2. Study Limitations

This study has a few limitations that must be acknowledged. First, the current study utilized speed
data from a single road segment; however, traffic on adjacent road segments may affect the predicted
speed performance on the target road segment. Second, uncertainty in travel speed prediction emerged
as an inevitable issue due to the stochastic nature of traffic data. Third, this study used speed data from
fixed location loop detectors that are not reliable for collecting such data network-wide. Data from
GPS navigation devices and RTMS could serve as a potentially more valuable alternative for capturing
instantaneous speed in a congested urban network. Finally, this research utilized VISSIM simulation
data to justify the efficacy of the proposed approach, however, it should be noted that there are some
limits on the developed simulated urban freeway network model.
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