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Abstract: Accurate forecasts of construction waste are important for recycling the waste and
formulating relevant governmental policies. Deficiencies in reliable forecasting methods and historical
data hinder the prediction of this waste in long- or short-term planning. To effectively forecast
construction waste, a time-series forecasting method is proposed in this study, based on a three-layer
long short-term memory (LSTM) network and univariate time-series data with limited sample points.
This method involves network structure design and implementation algorithms for network training
and the forecasting process. Numerical experiments were performed with statistical construction
waste data for Shanghai and Hong Kong. Compared with other time-series forecasting models such
as ridge regression (RR), support vector regression (SVR), and back-propagation neural networks
(BPNN), this paper demonstrates that the proposed LSTM-based forecasting model is effective and
accurate in predicting construction waste generation.

Keywords: environmental engineering; construction waste; short and long-term memory (LSTM)
network; time-series forecasting; deep learning

1. Introduction

As urbanization and transformation of old urban districts progress, the volumes of construction
waste that are generated constantly increase [1]. Statistics show that the total annual disposal volume
of construction waste in China has ranged from approximately 1.55 to 2.4 billion tons in recent years,
accounting for approximately 40% of the total volume of urban solid waste. Construction waste disposal
in China is relatively extensive, with landfilling and dumping as the primary disposal approaches.
Research indicates that with effective planning and technical measures, most construction waste can be
reused as renewable resources. However, thoughtless disposal will produce serious environmental
issues, including air, land, and water pollution. These issues will pose a threat to human health and
generate waste of potentially recyclable resources.

Recycling of construction waste is considered an effective means to digest urban waste. Methods for
quantifying construction waste are the basis for management of its recycling. Forecasting of trends
and variations of construction waste has significance because it enables a government to estimate the
landfill capacity requirements in advance and formulate relevant policies [2]. In 2014, Wu et al. [3]
broadly reviewed the literature on construction waste management. They noted that relatively few
studies had been conducted to predict construction waste generation, the lack of support information
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that can be used in forecasting, and that additional efforts should be made to investigate this topic.
Forecast analysis is performed in this study for the generation of construction waste.

2. Literature Review

Historical construction waste generation data are mostly presented as time series and can show
the dynamic evolutionary process of a system. When the sample size is sufficiently large, forecasts can
be made using multiple data-driven methods, such as multiple linear regression (MLR), gray models
(GMs), support vector machine regression (SVR), and artificial neural networks (ANNs).

In 2014, Zuo and Fu [4], and Zhang et al. [5] in 2013 established an autoregressive integrated
moving-average model and a GM based on estimated historical data, respectively. These models
can satisfactorily fit and predict continuous growth and relatively regular curves. For complex and
irregular time series, in 2012, Wu [6] introduced gene-expression programming into the forecasting of
urban construction waste generation and combined the advantages of time-series and factor-regression
models. In 2013, Antanasijevic et al. [7] established a backpropagation neural network (BPNN) and
a general regression neural network (GRNN) model for forecasting urban solid-waste generation.
They discovered that the GRNN model significantly outperformed the conventional BPNN model and
exhibited relatively high stability even for long-term forecasting. In 2016, Abbasi and Hanandeh [8]
demonstrated that the adaptive neuro-fuzzy inference system (ANFIS), k-nearest neighbor (KNN),
and SVR models can be employed to establish forecasting models and provided accurate and reliable
monthly waste-generation forecasts, and that the ANFIS and KNN models outperformed the SVMR
model in terms of forecast accuracy.

Considering the limitations of single models, in 2009, Li et al. [9] introduced a variable-weight
combination forecasting model and determined that in terms of forecast accuracy, this model
outperformed various single forecasting models, such as unary linear regression, exponential smoothing,
and GM. In 2014, Yuan [10], proposed a forecasting method that consists of principal component
analysis (PCA) and the hidden Markov model, and used it to predict waste generation based on a small
sample size. In 2017, Song et al. [11] established a PCA–SVR-combined forecasting method. In this
method, modeling and forecasting are achieved after characteristic components are extracted from
the original data. Better experimental results were obtained using this combined model than single
models. However, in practical application, combined forecasting methods are disadvantageous due to
the complexity of their construction processes and strong reliance on human involvement.

With rapid urbanization, China’s data on urban construction waste generation exhibit complex,
nonlinear characteristics. Due to various factors (e.g., statistical specifications and data storage) that
relate to these data, the data published by the statistics bureaus of China’s major cities are limited.
The use of conventional time-series forecasting methods to capture the complex patterns contained in
these small volumes of data is often difficult. On the other hand, making accurate predictions for such
irregular time series must be solved, since many management decisions are based on these forecasts.
However, accurate forecasting of construction waste generation has practical significance and is an
important research problem that must be effectively addressed.

In recent years, forecasting methods based on deep learning have been gradually applied in
research on time-series data. In particular, recurrent neural networks (RNNs) exhibit relatively high
adaptability in time-series analysis. As a typical RNN variant, long short-term memory (LSTM)
can better represent long- and short-term dependency than RNNs, and effectively address the
problems of RNNs, such as vanishing and exploding gradients, and rapid long-term memory loss. It is
applicable to forecasting problems with relatively small volumes of data. LSTM models have been
successfully applied in research on time-series data in various fields, including machine translation,
speech recognition, and traffic flow forecasting [12]. These models are expected to provide effective
means to predict construction waste generation based on relatively small volumes of historical
data. However, the application of LSTM models in time-series forecasting of urban construction
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waste generation has not been reported, indicating that this problem needs to be carried out with
advanced techniques.

This study will contribute to the literature by developing a novel and effective LSTM-based method
for the forecasting of construction waste generation. A forecasting method based on a three-layer
LSTM neural network structure is proposed for time-series data for construction waste generation.
Network design and implementation algorithms for network training and forecasting are described.
Additionally, the proposed model is compared with multiple time-series forecasting models via
numerical experiments. The experimental results show that the proposed LSTM-based forecasting
model exhibits exceptional performance in time-series forecasting of construction waste generation.

3. LSTM Network

LSTM networks are a type of RNN and an improvement over the standard RNN structure.
The difference between an LSTM network and a standard RNN is that only one threshold function
exists in the standard RNN cell structure, whereas three important threshold functions are introduced
in the hidden-layer cell structure of an LSTM network [13], as shown in Figure 1.
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Figure 1. LSTM cell structure in hidden layer.

Compared with the other methods, the advantage of LSTM is learning long-term dependencies.
For an LSTM network, information storage and interaction in the forward-propagation process are
controlled by the three thresholds in the hidden-layer cell structure. The forget gate ( ft) controls the
unit state information at the previous time point that needs to be discarded. The input gate (it) controls
the information-input process at the current time point. The output gate (ot) controls the filtered output
of the current unit state.

The three thresholds are calculated using the following equations [14]:
ft = σ

(
W f ·[ht−1, xt] + b f

)
it = σ(Wi·[ht−1, xt] + bi)

ot = σ(Wo·[ht−1, xt] + bo)

(1)

The update equation for the cell state information for the current time point is expressed as:

C̃t = tanh(WC·[ht−1, xt] + bC) (2)

Based on the combined actions of the ft and it, the cell state at the current time point (Ct) can be
represented as follows:

Ct = ft ∗Ct−1 + it ∗ C̃t (3)

The information returned to the hidden layer (ht) is:

ht = ot ∗ tanh(Ct) (4)
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where x is the input vector, h is the output vector, C is the cell state, σ and tanh are the sigmoid. and
tanh. activation functions, respectively, and W and b are the corresponding weight and deviation
matrices, respectively.

The backpropagation-through-time algorithm [15] is employed to train an LSTM model in the
following steps:

Step 1: Use Equations (1)–(4) to calculate the output value of the forward propagation;
Step 2: Inversely calculate the error term for each LSTM cell, including the longitudinal propagation

between the layers and the temporal transverse propagation;
Step 3: Calculate the gradient of each weight, based on the corresponding error term;
Step 4: Use a gradient-based optimization algorithm to update the weights.

4. LSTM Network-Based Construction Waste Generation Forecasting Model

In this study, an LSTM model was constructed based on the characteristics of univariate time-series
data with limited sample points and the simple RNN design principle. Figure 2 shows the total
framework based on a typical three-layer LSTM structure, which involves four main modules of data
preprocessing, network training, network prediction and model evaluation. Relevant steps of LSTM
time-series prediction can be described briefly as follows:

Step 1. Preprocess historical data and split it into training set and test set;
Step 2. Construct the model construction and train LSTM network based on training set;
Step 3. Make predictions based on test set;
Step 4. Evaluate the model accuracy.

Sustainability 2020, 12, x FOR PEER REVIEW 4 of 12 

Step 2: Inversely calculate the error term for each LSTM cell, including the longitudinal 
propagation between the layers and the temporal transverse propagation; 

Step 3: Calculate the gradient of each weight, based on the corresponding error term; 
Step 4: Use a gradient-based optimization algorithm to update the weights. 

4. LSTM Network-Based Construction Waste Generation Forecasting Model 

In this study, an LSTM model was constructed based on the characteristics of univariate time-
series data with limited sample points and the simple RNN design principle. Figure 2 shows the total 
framework based on a typical three-layer LSTM structure, which involves four main modules of data 
preprocessing, network training, network prediction and model evaluation. Relevant steps of LSTM 
time-series prediction can be described briefly as follows: 

Step1. Preprocess historical data and split it into training set and test set; 
Step2. Construct the model construction and train LSTM network based on training set; 
Step3. Make predictions based on test set; 
Step4. Evaluate the model accuracy. 

 
Figure 2. LSTM network-based framework for construction waste generation forecasting. 

During data preprocessing, to make inputs conform to the LSTM structure, the investigated time 
series can be transformed to a supervised learning problem by creating inputs of delayed 
observations and labels of forecasts. For a given lag step k (which equals to the number of neurons in 
input layer of LSTM structure), the input vector (𝑦 , 𝑦 , ⋯ , 𝑦 ) at period t is used to calculate 
the forecasting value 𝑦 . 

Network training is aimed at a trained LSTM network and its forward calculation f by 
optimizing loss function of mean square error (MSE). The final forecasting model can be simply 
expressed as follows: 𝑦 = 𝑓(𝑦 , 𝑦 , ⋯ , 𝑦 ) (5) 

Next, an iterative manner is adopted in prediction process, which means that each new forecast 
on test set will be taken to create new input vector to obtain the next forecast until all forecasts are 
collected. Lastly, all forecasts are taken to compute model accuracy with original observations on test 
set. 

5. Numerical Experiments 

In this study, a forecasting model was constructed based on the historical construction waste 
generation data for two cities, namely, Shanghai and Hong Kong. Note that a change was made in 
Shanghai’s statistical standards for construction waste generation. As a result, it is unreasonable to 
forecast using all historical data for Shanghai. However, this study is focused on the forecasting of 
urban construction waste generation instead of construction waste classification. 
  

   

Network 
training

Accuracy

Data Training set Test set

LSTM 
structure

Model evaluation

Network 
prediction

Model outputs

Data 
preprpcessing

Trained LSTM 
network

Figure 2. LSTM network-based framework for construction waste generation forecasting.

During data preprocessing, to make inputs conform to the LSTM structure, the investigated time
series can be transformed to a supervised learning problem by creating inputs of delayed observations
and labels of forecasts. For a given lag step k (which equals to the number of neurons in input layer of
LSTM structure), the input vector (yt−k, yt−k+1, · · · , yt...1) at period t is used to calculate the forecasting
value ŷt.

Network training is aimed at a trained LSTM network and its forward calculation f by optimizing
loss function of mean square error (MSE). The final forecasting model can be simply expressed
as follows:

ŷt = f (yt−k, yt−k+1, · · · , yt−1) (5)

Next, an iterative manner is adopted in prediction process, which means that each new forecast
on test set will be taken to create new input vector to obtain the next forecast until all forecasts are
collected. Lastly, all forecasts are taken to compute model accuracy with original observations on
test set.

5. Numerical Experiments

In this study, a forecasting model was constructed based on the historical construction waste
generation data for two cities, namely, Shanghai and Hong Kong. Note that a change was made in
Shanghai’s statistical standards for construction waste generation. As a result, it is unreasonable to



Sustainability 2020, 12, 8555 5 of 12

forecast using all historical data for Shanghai. However, this study is focused on the forecasting of
urban construction waste generation instead of construction waste classification.

5.1. Experimental Data and Design

5.1.1. Experimental Data and Preprocessing

Data Collection and Outlier Elimination

We collect two datasets of construction waste data from Shanghai and Hong Kong, respectively,
for the experiments. The construction waste generation data from Shanghai statistical yearbook
(http://tjj.sh.gov.cn/tjnj/nj18.htm?d1=2018tjnj/C0618.htm) for the pre-2012 period (a total of 32 years),
which is denoted by dataset A, exhibit complex time-series features with substantial volume. The dataset
B is the annual construction waste generation data for the 31-year period from 1986 to 2016, which is
collected from the Waste Reduction Office in the Environmental Protection Department of Hong Kong
(https://www.wastereduction.gov.hk/en/assistancewizard/waste_red_sat.htm#top).

Outliers refer to data points beyond the normal value range and generally identified by scatter or
box plots. Due to the relatively small sample size of the datasets selected in this study, correcting the
outliers can facilitate the use of the available data information and prevent an insufficient sample
size caused by eliminating outliers. The outliers in the datasets A and B were treated by mean-value
interpolation, as shown in Figure 3.
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Data Segmentation

In this study, each time series was divided into a training set and a test set based on the time
sequence by hold-out cross-validation, and the subsets of the training set (segmented based on the
time sequence) were preserved to examine the model performance, as shown in Figure 4 [16]. Due to
the slight difference in sample sizes between datasets A and B, to facilitate the comparison of model
performance, the sample sizes of both the test sets were set to 5 (i.e., data for the last five years).

http://tjj.sh.gov.cn/tjnj/nj18.htm?d1=2018tjnj/C0618.htm
https://www.wastereduction.gov.hk/en/assistancewizard/waste_red_sat.htm#top
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Thus, the first 27 data points (pre-2007 data) in dataset A and the first 26 data points (pre-2016 data) in
dataset B were selected to form training sets.
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Data Normalization

Data normalization can eliminate the difference in dimension among input data and increase
the computational speed of the model. In this study, the input data were mapped by min-max
normalization [17] to the interval of [0, 1], which can be represented by the following equation:
y∗ = (y− ymax)/(ymax − ymin), where y is the input datum, y∗ is the normalized datum, and ymax and
ymin are the maximum and minimum values, respectively, of the input data. Denormalizing the output
of the forecasting model is necessary to enable it to fall within the actual range and be consistent with
the actual significance.

5.1.2. Evaluation Indices

To reduce the limitation associated with the use of a single index to evaluate the model
performance, the following three indices were employed in this study to examine the forecasting
models comprehensively.

Mean absolute error (MAE) was used to evaluate the closeness between the actual values and
predicted values.

MAE =
1
T
·

T∑
t = 1

∣∣∣yt − ŷt
∣∣∣ (6)

Mean absolute percentage error (MAPE) was used to evaluate the relative error, which can be
used to compare the forecast performance for various dataset ranges.

MAPE =
T∑

t = 1

∣∣∣∣∣ yt − ŷt

yt

∣∣∣∣∣× 100%
T

(7)

Root mean square error (RMSE) is highly sensitive to extremely large or small errors, and therefore
can satisfactorily reflect the forecast accuracy.

RMSE =

√√√
1
T
·

T∑
t = 1

(yt − ŷt) (8)

Here, yt and ŷt are the actual and predicted values, respectively, output by the model at the time t.

5.1.3. Comparison Models

The following three models were selected for experimental comparative analysis.
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Ridge Regression (RR)

RR is an approach that adds L1 regularization to a general linear regression model to prevent
overfitting. The RR time-series forecasting model is structurally similar to MLR [18] and can be
represented by the equation: Yt = a0 + a1Yt−1 + a2Yt−2 + · · ·+ akYt−k + e, where Yt is the predicted
value at time t, a1, a2, · · · , ak are the regression coefficients of Yt−1, Yt−2, · · · , Yt−k, respectively, at various
time points and a0 and e are the bias and error terms, respectively. In this study, the regularization
coefficient α of the RR model was set to 0.5. Additionally, the step size of the input series (i.e., k) was
selected by trial and error.

SVR

SVR determines the nonlinear mapping relations between low-dimensional data and output
indices by regression after mapping the low-dimensional data to a high-dimensional space via a
nonlinear kernel function [19]. In this study, the Gaussian-radial basis function was selected as a
nonlinear kernel function. The corresponding penalty coefficient C and kernel function coefficient γ
were set to certain values, and k was also determined.

ANN

Three-layer BPNNs exhibit excellent performance in approximating nonlinear data [20,21].
Thus, a three-layer BPNN was employed in this study. The sigmoid activation function was applied
between the input layer and the hidden layer and between the hidden layer and the output layer.
The network was trained using the gradient descent with momentum algorithm. The learning rate
was set to 0.1. The momentum parameters were set to the following values: momentum = 0.9
and Nesterov = true. The random seeds for network initialization, maximum number of iterations,
and expected error were set to 0, 2000, and 1 × 10−6, respectively. In this study, point-by-point
forecasting was performed for the test-set data. Therefore, the number of neurons in the output layer
was set to 1. Additionally, the number of neurons in the input layer (i) and the number of neurons in
the LSTM hidden layer (n) were determined by trial and error (i = k).

5.2. Experimental Results and Discussions

5.2.1. Analysis of Model Parameters

First, dataset A is used as an example. The training set of the time-series data for construction waste
generation was normalized using the proposed method. Additionally, an LSTM-based forecasting
model was constructed. The numbers of nodes in the input and hidden layers of a three-layer
LSTM model exert an extremely significant impact on the network scale. The selected optimizer
also affects the convergence rate of the network during the training process. Thus, n and k were
determined by trial and error to be 64 and 2, respectively. An adaptive-gradient optimizer was
selected [22,23] (default parameters were preserved). For the non-key model parameters, the random
seeds for network initialization, maximum number of iterations, and expected error were set to 0, 2000,
and 1 × 10−6, respectively.

Due to the relatively large n value, the model is relatively complex, which may cause overfitting
and relatively poor generalization performance. In this study, the dropout method [24] was employed.
Specifically, a dropout layer was added after the LSTM hidden layer to randomly invalidate
some neurons and prevent them from updating by forward propagation and backpropagation,
which prevented overfitting to a certain extent. In this study, an optimal dropout rate was determined
by comparing the MSE values on the test set with respect to various dropout rates, as shown in Figure 5.
The MSE on the test set was the largest before adding a dropout layer to the model. At a dropout rate
of 2, the MSE for the test-set data was the smallest, and the optimal training performance was achieved
on the test set.
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Figure 5. MSE of test set under different dropout probabilities (dataset A).

To examine its forecast effectiveness and accuracy, the LSTM-based model was compared with
various time-series forecasting models. Table 1 summarizes the parameter settings for each model.
Additionally, to determine the advantages of the LSTM-based model among RNNs, the hidden-layer
cells in the LSTM-based model were replaced by the RNN structure, and experiments were conducted
using the same parameters.

Table 1. Model parameter settings for datasets A and B.

Model Parameter Dataset A Dataset B

RR (k) (4) (3)
SVR (k, C, γ) (4, 4, 2) (2, 10, 4)
BPNN (k, n) (4, 4) (3, 4)

RNN (k, n, optimizer) (2, 64, Adagrad) (4, 14, RMSprop)
LSTM (k, n, optimizer)

The experimental process for dataset B was similar to that for dataset A. The parameters of
the LSTM-based model were adjusted based on experience. The k and n were set to 4 and 14,
respectively. A root-mean-square propagation (RMSProp) optimizer was selected (default parameters
were preserved). The non-key parameters were set to the same values selected for the non-key
parameters for dataset A. For dataset B, because the n value was moderate, no dropout layer was
added to the network structure.

5.2.2. Forecasts and Comparative Analysis

First, dataset A is used as an example. The network was trained using the previously
determined LSTM network structure and parameters. Values fitted to the training set were obtained.
Additionally, point-by-point recursive forecasting was performed on the test set. The corresponding
predicted values (for the period 2007–2011) were obtained. The fitting and forecast performance of
various time-series forecasting models were comparatively analyzed using the evaluation indices
described in Section 5.1.2, as shown in Table 2.

Figures 6 and 7 display the performance of the LSTM-based model and each comparison model
in terms of the predicted value and error. As demonstrated in Figure 6, the forecast curves of the
RR, SVR, and BPNN models tend to be stable and unable to accurately predict the data for the fifth
test point, which produces relatively large prediction errors. In comparison, the LSTM-based model
exhibits relatively excellent forecast performance. The prediction error of each model for the fourth
data point is relatively large. However, the forecast curve of the LSTM-based model is closer to the
variation trend in the actual data.
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Table 2. Comparison of fitting and prediction performance of different models (dataset A).

MAE MAPE (%) RMSE

RR
training set 34.54 19.17 40.98

test set 12.54 6.83 17.39

SVR
training set 19.3 12.06 21.23

test set 13.9 8.2 15.34

BPNN
training set 30.38 17.16 36.08

test set 10.18 5.58 13.84

RNN
training set 26.65 15.26 35.14

test set 12.78 7.9 16.01

LSTM
training set 22.15 12.02 30.00

test set 6.79 4.17 10.14
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Figure 7 further compares the LSTM-based model and other forecasting models in terms of
performance on the test set. The LSTM-based model is employed as an example. The values of
the evaluation indices for the LSTM-based model are lower than those for other forecasting models,
which suggests that the proposed LSTM-based model satisfactorily tracks the actual data in the test set
and achieves relatively ideal forecast performance.

Dataset A has low timeliness. The data for the following six years (2012–2017) predicted by the
LSTM-based model were converted using a conversion factor (i.e., ratio of the mean construction
waste generation (excluding the construction waste soil generation) in the period 1980–2011 to the
mean construction waste generation (including the construction waste soil generation) in the period
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2012–2017). Table 3 show the forecasting result for the years 2012–2017, and the result was compared
with the trend of construction waste generation (including the construction waste soil generation) in
the period 2012–2017. The correlation coefficient (R) between the two trendlines is 0.87. This finding
indirectly demonstrates that the LSTM-based model is effective in forecasting.

Table 3. Forecast for the next 6 years.

Year 2012 2013 2014 2015 2016 2017

Predictive value (10,000 tons) 281.80 312.26 287.55 260.11 248.04 246.14

The applicability of the proposed method to forecast construction waste generation in other
cities was further examined based on dataset B. Table 4 and Figure 8 show the experimental results,
which demonstrate that the proposed LSTM-based model outperforms the comparison models in
terms of forecast accuracy.

Table 4. Comparison of fitting and prediction performance of different models (dataset B).

MAE MAPE (%) RMSE

RR
training set 48.71 19.68 59.95

test set 36.7 25.29 37.84

SVR
training set 41.81 17.88 51.18

test set 6.13 4.2 6.73

BPNN
training set 50.82 21.26 60.77

test set 27.94 15.57 22.09

RNN
training set 5.94 2.68 7.53

test set 12.16 8.12 14.19

LSTM
training set 5.54 2.83 7.07

test set 5.48 3.98 5.95
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According to the aforementioned case study of two datasets, the proposed LSTM model performs
well for obtaining more accurate forecasts than four benchmarking models. Our proposed model
aims to solve univariate time series forecasting problem with nonlinearity and non-stationarity due to
the lack of multivariate data of influencing factors. However, in practice, our model can be used in
multivariate time series prediction problem by slightly changing inputs to LSTM structure, and its
effect can be discussed in the further research.
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6. Conclusions

The forecasting of construction waste generation enables local governments to manage construction
waste landfill and formulate construction waste management policies. However, a review of the available
literature indicates that the methods for this type of forecasting and their accuracy require improvements.

Available data for urban construction waste generation have the characteristics of small volumes
and high nonlinearities. A three-layer LSTM network is proposed in this study for forecasting based
on univariate time series with limited sample points. The proposed model is compared with regression
and neural-network models. The results show that the LSTM-based model is highly effective in solving
univariate nonlinear forecasting problems. Additionally, a dropout layer is added to effectively address
the overfitting problem of the LSTM-based model and improve its generalization performance.

The applicability of the LSTM-based model to forecasting construction waste generation is
demonstrated. The scope of the deep-learning technique is expanded. This study has theoretical and
practical significance in quantifying and managing construction waste. Obtaining construction waste
data for cities in China is difficult. As a result, the proposed method is validated based on data for only
Shanghai and Hong Kong. In the future, the proposed method can be used to predict construction waste
generation in other cities and solve forecasting problems in other fields. Additionally, the application
performance of various network-training optimization algorithms, such as Adam and RMSProp,
can be compared.
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