
sustainability

Article

Web Service Instant Recommendation for Sustainable
Service Mashup

Feng Zhang 1,2 , Benming Chen 1 and Cong Liu 3,*
1 College of Computer Science and Engineering, Shandong University of Science and Technology,

Qingdao 266590, China; zhangfeng@sdust.edu.cn (F.Z.); chen9950918@163.com (B.C.)
2 Shandong Key Laboratory of Wisdom Mine Information Technology, Qingdao 266590, China
3 School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
* Correspondence: liucongchina@sdut.edu.cn

Received: 16 August 2020; Accepted: 13 October 2020; Published: 16 October 2020
����������
�������

Abstract: Service Mashups can help users to integrate data of multiple sources based on Web
services composition. Considering a kind of sustainable service Mashup whose data requirement
cannot be predetermined, so users need to choose and compose services in a tentative manner.
Meanwhile, users can choose and compose services continually to obtain more data based on existing
composition results. In such Mashups, a Web service is chosen according to the data provided
by the service. Because it is difficult for users to choose from large amounts of services manually,
it is a challenge to recommend services instantly for users during the construction of a sustainable
service Mashup. This paper proposes an approach to recommend Web services instantly for a
sustainable service Mashup. According to the services used in the service Mashup under construction,
candidate services are chosen based on the Mashups that are similar to the constructing Mashup,
as well as the parameter correlations of services from the perspective of actual operations of Web
service composition. Experimental results indicate that the proposed approach has better precision,
recall, and coverage values compared to existing state-of-the-art approaches, and therefore, it is more
suitable for instant service recommendation of sustainable service Mashups.

Keywords: sustainable service Mashup; Mashup similarity; parameter correlation; Web service
recommendation

1. Introduction

1.1. Sustainable Service Mashups

Service-oriented architecture (SOA) is a paradigm where services are used as building blocks
for distributed software applications. Web services are the basic elements for implementing SOA,
and they have been widely employed in building distributed systems. Moreover, Web services are
also widely adopted in cloud computing [1,2], Internet of things [3,4], and big data [5]. Nowadays,
there are a large number of available Web services on the Internet, including services based on SOAP [6],
services based on REST [7], as well as micro-services [8,9]. In a practical application, individuals
and organizations can share and integrate data by composing Web services [10,11]. As a way of Web
service composition, service Mashups [12,13] can assist users to integrate data from different data
sources on the Internet through composing multiple Web services. There is a kind of service Mashup
steered by the user [14], whose key features include: (1) The user requirement cannot be decided in
advance; (2) the required services and their composition logics cannot be predefined; (3) the users need
to choose and compose Web services manually according to his/her instant requirement; (4) the users
can continuously choose and compose other services to obtain more data after getting some required

Sustainability 2020, 12, 8563; doi:10.3390/su12208563 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-2646-9854
http://dx.doi.org/10.3390/su12208563
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/20/8563?type=check_update&version=2

Sustainability 2020, 12, 8563 2 of 18

data based on the constructing service Mashup. Based on the concept of the exploratory service
composition [15,16], we call this kind of service Mashups as sustainable service Mashups because a user
can compose the services in a sustainable way. During the construction of a sustainable service Mashup,
a user has to select from hundreds of Web services, which is extremely difficult and time-consuming.
Service recommendation is an effective technique to assist a user to select services. The efficiency of
service Mashups can be improved if subsequent required services can be recommended to the user
instantly according to the existing Mashup fragment. Therefore, instant service recommendation is
needed in the building process of a sustainable service Mashup.

Web Service recommendation is widely studied, and it is one of the hotspots in the service
computing field. Personalized information (preference [17], location [18], etc.) of users, time [19],
and QoS (Quality of Service) [20] can be used as the basis for Web service recommendation. However,
for a sustainable service Mashup, the goal is to obtain required data. As a result, service recommendation
in a sustainable service Mashup is irrelevant to a user’s preference, location, time, and QoS. Furthermore,
only services in the constructing Mashup can be regarded as the basis for recommendation because the
requirement of a sustainable Mashup cannot be expressed accurately. These features bring challenges
to the service recommendation of sustainable service Mashups.

1.2. Related Work

In this section, we introduce two types of approaches most relevant with the proposed approach
in this paper. These approaches are based on service composition history (Mashups or service
compositions) and the correlations of service parameters.

1.2.1. Composition History-Based Service Recommendation

This type of work first builds relations or networks among services according to their co-existence
relations extracted from existing service compositions. Then, services are recommended based on their
relations or networks [21]. For example, Huang et al. [22] build the network between the composite
services and the individual services, and use the link prediction algorithm to recommend services.
Similarly, Ni et al. [23] utilize the co-existence and negative-connection to recommend services using
existing service compositions.

Some work uses the implicit service composition knowledge in the composition library to
recommend services for a user. This type of work searches the similar composition patterns based
on existing composition library [24]. For example, MashupAdvisor [25] recommends the possible
building results of a Mashup. It uses the Mashup library to estimate the popularity of some outputs
(a service or a data source) and rank these outputs. Thus, multiple outputs are recommended to the
user based on the structure of the constructing Mashup. Abiteboul et al. [26] argue that different
Mashups generally share some common features, such as similar Mashup components. Therefore,
Mashup components and their linkages that can complete the constructing Mashup are recommended
automatically based on the similarity.

The above work uses existing Mashups or compositions library to recommend Web services by
statistics or composition patterns matching. However, if existing Mashups or service compositions
cannot reach a certain scale, these approaches cannot work effectively. Moreover, those less frequently
used and newly added services cannot be recommended in this case, making the coverage of these
approaches very limited.

1.2.2. Parameter Correlation-Based Service Recommendation

Some work draws on the idea of Web hyperlinks to describe parameter correlation among Web
services. Several service hyperlink models are introduced for different types of services, and services are
recommended directly through the service hyperlinks. Han et al. [16] introduce the service hyperlink
model for the business building block that is a kind of resource abstraction of the underlying business
action. A correlation among the building blocks is presented by the mapping between the former

Sustainability 2020, 12, 8563 3 of 18

block’s output parameter and the latter one’s input parameter. Similarly, Yan et al. [27] present the
service hyperlink that are used to describe the binary action constraint relation among business services.
Zhao et al. [28] propose the HyperService that contains four types of service relations among the
OpenAPI, REST, and SOAP services. Similarly, the link data relation in HyperService presents the
mapping between the source service’s output parameters and the target service’s input parameters.
In addition, for data services [29], Liu et al. [30] and Zhu et al. [31] propose the data service hyperlink
model that is introduced to describe data links among data services.

The above-mentioned service hyperlink models mainly focus on the composability of Web services,
i.e., the invoking relation based on the mapping between the source service’s output parameters and the
target service’s input parameters. However, for services that are used in Mashups, their composition
ways contain not only the way based on the invoking relation, but also other ways, such as the
aggregation of the output of two services. Furthermore, the emphasis of the above-mentioned work is
the service hyperlink model and the modeling techniques. However, the service recommendation is
simply implemented by selecting services directly linked by hyperlinks, and the application of service
hyperlink on recommendation is not fully addressed.

The above two types of work are introduced comprehensively in Table 1.

Table 1. The existing work.

Reference Recommendation Basis Approach Problem

[21,22]

Composition History

The network among the composite
and individual services is built by the
existing compositions, which is used

to recommend services.

(1) If existing Mashups or
compositions cannot reach a

certain scale, they do not
work effectively. (2) The less
frequently used and newly
added services cannot be

recommended.

[23]

The co-existence and
negative-connection of services are

mined by existing compositions,
which are used to

recommend services.

[24]
Similar composition patterns are

mined by existing compositions to
recommend services.

[25]
The popularity of services is ranked to
recommend services by the structure

of the constructing Mashup.

[26]

Services and their linkages that can
complete the constructing Mashup are
recommended based on the similarity

of Mashup components.

[16,27,28,30,31] Parameter Correlations

A correlation of two services is built
based on the mapping between the
former’s output parameter and the

latter’s input parameter.

(1) The aggregation based on
the outputs of two services is

ignored. (2) Services are
recommended simply by
selecting services directly

linked by correlations.

1.3. Contributions

In this paper, we propose an approach to recommend Web Services instantly for a sustainable
service Mashup. Candidate services are chosen from two aspects in this paper. First, the idea of
collaborative filtering recommendation based on users [32] is applied by assuming that similar service
Mashups use similar Web services. Therefore, we can obtain candidate services from Mashups that are
similar with the constructing one through services that are used. Second, by the observation of existing
service Mashups, services in a Mashup generally have correlations in their input or output parameters.
These correlations are the foundation for Web service composition [33]. Therefore, services that have
parameter correlations with those in the constructing Mashup can also be regarded as candidates.

Sustainability 2020, 12, 8563 4 of 18

Based on the above analysis, we propose to recommend N services instantly to the user in
the constructing process of a sustainable service Mashup as follows. First, some Mashups that are
similar with the constructing Mashup are selected based on services used in the constructing one.
Thus, services in these Mashups are chosen as candidates. Second, if the number of obtained candidate
services is less than N, other candidate services are selected by a Web service network that is built on
all services and their correlations among their input and output parameters. Finally, recommended
services can be instantly decided for a sustainable service Mashup by combining these two parts of
the services.

The main contributions of this paper are three-fold. (1) An instant Web service recommendation
approach that combines Mashup similarity and service parameter correlations is proposed for
sustainable service Mashups. (2) A service recommendation approach based on similar Mashups is
proposed by taking both the used same services and their used ways into account to compute the
similarity between two service Mashups. (3) An approach for selecting services based on services
and their parameter correlations are proposed. Learning from the Random Surfer Model [34] based
PersonalRank algorithm [35], a service network is built based on all the services and correlations
among their input and output parameters, and the algorithm for sorting services using this service
network is given.

The rest of the paper is structured as follows. A motivating scenario is first introduced in
Section 2 to illustrate the features of a sustainable service Mashup. The overall framework of the
proposed approach is introduced in Section 3. Then, Section 4 presents the recommendation approach
based on similar Mashups, and Section 5 presents the recommendation approach based on service
parameter correlations. Next, in Section 6, the instant service recommendation approach that combines
the proposed two approaches for a sustainable service Mashup is presented. Section 7 introduces
experimental results. Finally, Section 8 concludes the paper.

2. A Motivating Scenario

This section illustrates the features of a sustainable Mashup and the details in the actual construction
through an example of investigating a criminal case [13], in which the policemen need to obtain the
data related to the case from different business departments when they investigate a criminal case.
If each business department provides data access interfaces using Web services, the policemen can
implement data integration through composing available Web services. Thus, they can obtain the
required data. Figure 1 shows the process of the investigation.

Sustainability 2020, 12, x FOR PEER REVIEW 4 of 18

Based on the above analysis, we propose to recommend N services instantly to the user in the
constructing process of a sustainable service Mashup as follows. First, some Mashups that are
similar with the constructing Mashup are selected based on services used in the constructing one.
Thus, services in these Mashups are chosen as candidates. Second, if the number of obtained
candidate services is less than N, other candidate services are selected by a Web service network that
is built on all services and their correlations among their input and output parameters. Finally,
recommended services can be instantly decided for a sustainable service Mashup by combining
these two parts of the services.

The main contributions of this paper are three-fold. (1) An instant Web service recommendation
approach that combines Mashup similarity and service parameter correlations is proposed for
sustainable service Mashups. (2) A service recommendation approach based on similar Mashups is
proposed by taking both the used same services and their used ways into account to compute the
similarity between two service Mashups. (3) An approach for selecting services based on services
and their parameter correlations are proposed. Learning from the Random Surfer Model [34] based
PersonalRank algorithm [35], a service network is built based on all the services and correlations
among their input and output parameters, and the algorithm for sorting services using this service
network is given.

The rest of the paper is structured as follows. A motivating scenario is first introduced in
Section 2 to illustrate the features of a sustainable service Mashup. The overall framework of the
proposed approach is introduced in Section 3. Then, Section 4 presents the recommendation
approach based on similar Mashups, and Section 5 presents the recommendation approach based on
service parameter correlations. Next, in Section 6, the instant service recommendation approach that
combines the proposed two approaches for a sustainable service Mashup is presented. Section 7
introduces experimental results. Finally, Section 8 concludes the paper.

2. A Motivating Scenario

This section illustrates the features of a sustainable Mashup and the details in the actual
construction through an example of investigating a criminal case [13], in which the policemen need
to obtain the data related to the case from different business departments when they investigate a
criminal case. If each business department provides data access interfaces using Web services, the
policemen can implement data integration through composing available Web services. Thus, they
can obtain the required data. Figure 1 shows the process of the investigation.

Figure 1. An example of the sustainable service Mashup. Figure 1. An example of the sustainable service Mashup.

Sustainability 2020, 12, 8563 5 of 18

For example, there is a murder case somewhere. The time range of the crime and the height,
gender, and approximate age of the victim can be determined through on-the-spot investigation.
At the same time, there are tire marks around the scene and surveillance cameras around the junction.
So, how to get the potential suspects? How to get relevant clues from a large number of available data
sources? The policemen first try to determine the victim’s identity by the Web service getLostPersons,
provided by the public security department according to the obtained height, gender, and age of the
victim. Assuming that the identity of the victim is obtained in the example, which services should be
used to obtain the required data in the next step? The policemen try to use the victim’s recent telephone
contacts as candidate suspects. According to the obtained ID number of the victim, they use the service
getTelecomUser provided by the telecom department to obtain the names and mobile phone numbers
of the victim’s recent contact persons in the 2nd step. Next, how to determine whether these persons
are suspects? The policemen try to obtain the vehicles registered under the names of these persons,
and then judge whether these vehicles appear at the designated junction within the time period of
the murder. If so, they may be suspects. Therefore, the ID numbers of these contact persons can be
obtained through the service getContact in the 3rd step, and the license plate numbers owned by them
can be obtained through the service getVehicleRegistration in the 4th step. Then, the license plates of
all vehicles that pass through the scene junction during the time period of the murder are obtained by
the service getTrafficMonitoring. Through the service composition operation Intersection, the license
plates are compared with those of the vehicles owned by the recent contacts obtained previously
in the 4th step. If there are outputs, the persons in the output can be determined as the candidate
suspects. If there are no outputs, the policemen have to choose other Web services to get new clues.
On the basis of the obtained data, the policemen may try to take the victim’s relatives as candidate
suspects and obtain the information of the victim’s relatives through the service getRelatives in the 6th
step. Next, they can obtain the license plates of their vehicles and reuse the Intersection operation.
Finally, they can decide whether candidate suspects are contained in the comparison results.

In this example, the data requirement of the policemen cannot be accurately expressed before the
service Mashup is constructed. Furthermore, the data requirement may change based on obtained
data during the construction process. From the perspective of the overall process of a service Mashup,
it is impossible to determine exactly what services are required and how to compose these services in
advance. The policemen need to select and compose services manually, determine the subsequent
services according to the composition results. Based on the obtained composition results, they can
continue to select services for composition and obtain more data continuously. Therefore, this is a
typical sustainable service Mashup. Instant service recommendation can help the policemen to select
services at each step efficiently. Thus, the overall efficiency of building a service Mashup is improved.

3. The Overall Framework of the Proposed Approach

From the example in Figure 1, we can see that the services that have been selected in the constructing
process of a sustainable service Mashup imply the requirement of a user. Therefore, the services that may
be used next step can be recommended according to the services currently used by the user. So, how to
discover these services according to the services already used? Through the analysis of existing service
Mashups, it can be seen that service Mashups that meet the similar requirements of users may use
similar services. Therefore, in the construction process of a sustainable service Mashup, existing
Mashups that are similar to the currently constructed Mashup can be queried using the used services,
and services that are used in these similar Mashups can be used as recommended services. Moreover,
from the perspective of the actual operation of composing Web services, the composition strategy of
services should be determined according to the input and output parameters of the chosen services.
For example, in Figure 1, the values of the attribute ID NO in the output of the service getLostPersons
can be used as the input of the service getTelecomUser. Therefore, the correlations between the input
and output parameters of Web services are also a basis for determining candidate services.

Sustainability 2020, 12, 8563 6 of 18

The effectiveness of services recommendation using similar Mashups is affected by the number
of existing Mashups. Therefore, when recommended services cannot be obtained through existing
similar Mashups, the services can be further selected through the parameter correlations of the
used services. In this paper, service recommendation based on similar Mashups is combined with
the recommendation based on parameter correlations of Web services to provide instant service
recommendation for sustainable service Mashups. Using this approach, the following N services can
be recommended to the user according to the used services. Specifically, assume that N Web services
need to be recommended, and M services are chosen by similar Mashups first. If M is less that N,
other N-M services are chosen based on the parameter correlations of the used services.

4. Similar Mashups-Based Service Recommendation

For the similarity measure between the constructing Mashup and an existing Mashup,
a fundamental hypothesis is that, the more the same services are contained in these two Mashups,
the more similar they are. Moreover, the way that the same services are used should also be taken
into account when computing their similarity. Specifically, first, during the construction of a service
Mashup, a user needs to assign values to some input parameters of the used services. Second, after a
service is invoked, the user may need only a part of its output. For example, the user may delete
some parameters of the output to retain what he/she needs. Therefore, both input parameters that are
assigned values by a user and output parameters that are retained in a service Mashup imply the data
requirement of this Mashup more accurately.

Take the two service Mashups in Figure 2 for example. These two Mashups contain the service
getOwnerInfo that receives the plate number of a car and outputs the information of the car’s owner.
In the first Mashup, the user assigns values to the input parameters crossing number, monitoring start
time, and monitoring end time. Then, the user gets the output describing the cars passing X street
between the start and end time. After editing the output, the user only retains the car’s license plate
number. Next, the user takes the obtained plate number as the input of the service getOwnerInfo
and invokes this service. Finally, the user only retains the owner name and ID number of the output.
In this Mashup, the user aims to get the information of the owners whose cars pass the X street in the
specified period of time. In the second Mashup, the user first assigns the value for the input parameter
plate number for the service getOwnerInfo and gets the data about the car with the number XX567.
The user only retains the attribute type of the output. Then, the user uses the obtained type value
as the input and invokes the service getAutoInfo. Finally, the user gets the manufacturer, setting,
and price of the output. In this Mashup, the user aims to search for the specific information of a car
through its plate number. Both Mashups use the service getOwnerInfo. If their similarity is computed
only by the same services using the Jaccard formula, their similarity is 1/3. However, from the actual
requirements of these two Mashups, their similarity is much lower than 1/3. This is because the same
service is used in completely different ways. For the service getOwnerInfo, the retained parameters of
the output are different in two service Mashups, which reflects the difference of the user’s required
data. Meanwhile, the input parameters assigned by the user are also different, which indicates the
different initial states of these two Mashups. Therefore, if two service Mashups contain the same
services, input parameters assigned and output parameters retained by the user should all be taken
into account for their similarity measure.

Let s be a Web service contained in service Mashups u and v. The input and output parameters of
s are denoted as s.input = (i1, i2 . . . in) and s.output = (o1, o2 . . . om), respectively. Then, s.io = (i1, i2 . . .
in, o1, o2 . . . om) is an n + m dimension vector. In addition, su.io and sv.io are both n + m dimension
vectors that describe the input parameters assigned by the user and output parameters retained in the
final result, respectively. For su.io, let its xth (1 ≤ x ≤ n) input parameter be ix, and the value of the
dimension that ix stands for is: If s.ix in u is assigned by the user, su.io[ix] = 1, otherwise su.io[ix] = 0.
Similarly, for su.io, the value of the dimension that the yth (1 ≤ y ≤ m) output parameter oy stands for
is: If s.oy in u is retained by the user, su.io[oy] = 1, otherwise su.io[oy] = 0. Let Simu,v(s) be the similarity

Sustainability 2020, 12, 8563 7 of 18

that s is used in u and v. Based on the way that s is used in u and v, Simu,v(s) can be computed by the
cosine similarity in Equation (1). We denote the set of services contained in u and v as N(u) and N(v),
respectively. Then, the similarity between u and v that is denoted as Similarity(u, v) can be measured
by Equation (2).

Simu, v(s) =
su.io· sv.io
|s u .io| × |sv .io|

(1)

Similarity(u, v) =

∣∣∣N(u)∩N(v)
∣∣∣√∣∣∣N(u)

∣∣∣× ∣∣∣N(v)
∣∣∣ ×

∑
s∈N(u)∩N(v) Simu,v(s)∣∣∣N(u)∩N(v)

∣∣∣ (2)

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 18

getMonitorInfo

“X street”,
2017-02-10 22:20:15,
2017 -02-10 23:20:15

license plate
number

getOwnerInfo
plate number

owner name type ID number

getOwnerInfo
plate number

owner name ID number

getOwnerInfo
plate number

type

getAutoInfo

manufacturer
type

number

Mashup 1

Mashup 2

XX567

Web service

input or output parameter
parameter assignment

crossing number

monitoring start time

monitoring end time

setting price

Figure 2. Examples of service Mashups.

Let s be a Web service contained in service Mashups u and v. The input and output parameters
of s are denoted as s.input = (i1, i2…in) and s.output = (o1, o2…om), respectively. Then, s.io = (i1, i2…in, o1,
o2…om) is an n + m dimension vector. In addition, su.io and sv.io are both n + m dimension vectors that
describe the input parameters assigned by the user and output parameters retained in the final
result, respectively. For su.io, let its xth (1 ≤ x ≤ n) input parameter be ix, and the value of the
dimension that ix stands for is: If s.ix in u is assigned by the user, su.io[ix] = 1, otherwise su.io[ix] = 0.
Similarly, for su.io, the value of the dimension that the yth (1 ≤ y ≤ m) output parameter oy stands for
is: If s.oy in u is retained by the user, su.io[oy] = 1, otherwise su.io[oy] = 0. Let Simu,v(s) be the similarity
that s is used in u and v. Based on the way that s is used in u and v, Simu,v(s) can be computed by the
cosine similarity in Equation (1). We denote the set of services contained in u and v as N(u) and N(v),
respectively. Then, the similarity between u and v that is denoted as Similarity(u, v) can be measured
by Equation (2). 𝑆𝑖𝑚௨,௩(𝑠) = su.io∙ sv.io|su.io| ൈ |sv.io| (1)

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) = |ே(௨)∩ே(௩)|ඥ|ே(௨)|ൈ|ே(௩)| ൈ ෌ ௌ௜௠ೠ,ೡ(௦)ೞ∈ಿ(ೠ)∩ಿ(ೡ)|ே(௨)∩ே(௩)| (2)

The left part of Equation (2) is used to compute the similarity of u and v through the same
services in them, and the right part is used to compute the average similarity of all the same services.
After the same part of the numerator and denominator is divided out, the final formula for
measuring Similarity(u, v) is shown as Equation (3).

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) = ෌ 𝑆𝑖𝑚௨,௩(𝑠)௦∈ே(௨)∩ே(௩)ඥ|𝑁(𝑢)| ൈ |𝑁(𝑣)| (3)

Go back to the example in Figure 2. The first and second Mashup are noted as u and v,
respectively. For the service getOwnerInfo, its input parameter is assigned by the output of the
former service in u. While in v, this input parameter is assigned by the user. Therefore, there is no
same input parameter assigned by the user in u and v. Meanwhile, the output parameters of
getOwnerInfo retained in u and v are different. By Equation (1), Simu,v(getOwnerInfo) = 0. Therefore,
Similarity(u, v) = 0 according to Equation (3). The reason for this result is that the way that
getOwnerInfo is used in u and v is completely different, which is in accordance with the actual
situation of the example in Figure 2.

Through the similarity of the constructing Mashup and existing Mashups, each candidate
service can be assigned a score called a Mashup relevancy. Through Equation (3), we can obtain a
group of Mashups, in which each Mashup’s similarity with the constructing one is higher than a
threshold λ. Then, for each service that is used in these Mashups, but not in the constructing one, we

Figure 2. Examples of service Mashups.

The left part of Equation (2) is used to compute the similarity of u and v through the same
services in them, and the right part is used to compute the average similarity of all the same services.
After the same part of the numerator and denominator is divided out, the final formula for measuring
Similarity(u, v) is shown as Equation (3).

Similarity(u, v) =

∑
s∈N(u)∩N(v) Simu,v(s)√∣∣∣N(u)

∣∣∣× ∣∣∣N(v)
∣∣∣ (3)

Go back to the example in Figure 2. The first and second Mashup are noted as u and v, respectively.
For the service getOwnerInfo, its input parameter is assigned by the output of the former service in u.
While in v, this input parameter is assigned by the user. Therefore, there is no same input parameter
assigned by the user in u and v. Meanwhile, the output parameters of getOwnerInfo retained in u
and v are different. By Equation (1), Simu,v(getOwnerInfo) = 0. Therefore, Similarity(u, v) = 0 according
to Equation (3). The reason for this result is that the way that getOwnerInfo is used in u and v is
completely different, which is in accordance with the actual situation of the example in Figure 2.

Through the similarity of the constructing Mashup and existing Mashups, each candidate service
can be assigned a score called a Mashup relevancy. Through Equation (3), we can obtain a group of
Mashups, in which each Mashup’s similarity with the constructing one is higher than a threshold λ.
Then, for each service that is used in these Mashups, but not in the constructing one, we compute
its total Mashup relevancy. Let the constructing Mashup be c, and services in c be Sc. The Mashups
whose similarity with c are higher than λ is c1, . . . ci . . . cn(1 ≤ i ≤ n), and the similarity between ci and
c is Similarity(ci, c). For ci, the services in ci are denoted as Sci. For any service s ∈ Sci–Sc, the Mashup
relevancy obtained through ci is MReli(s) = Similarity(ci, c). Since s may be used in multiple Mashups,

Sustainability 2020, 12, 8563 8 of 18

the Mashup relevancy of s (denoted as MRel(s)) that is obtained through c1, c2, . . . ci . . . cn, can be
measured by Equation (4).

MRel(s) =
n∑

i=1

MReli(s)(s ∈ Sci − Sc) (4)

The algorithm getWSFromMashups (m, M, λ, N) to recommend N services for the constructing
Mashup m is shown in Algorithm 1. In this algorithm, the function getSimMashups (m, λ) is used
to obtain existing Mashups whose similarity with m is higher than λ. For a candidate service cs,
the function getMRel (cs, mu) returns the Mashup relevancy of cs in a Mashup mu. The function
add (R, cs, MRel (cs)) is used to add cs and its relevancy into R. If R contains cs, its Mashup relevancy is
added with the existing value in R. Finally, the function getTop (R, N) returns N services that own the
top Mashup relevancy in R. If the number of services in R is less than N, R is returned directly.

Algorithm 1 getWSFromMashups(m, M, λ, N)

Input: The constructing Mashup (m), services in m (m.S), the set of existing Mashups (M), Mashup similarity
threshold (λ), the number of recommended services (N)
Output: The set of services recommended (R)

1. R = candiWSs = Φ

2. simMashups = getSimMashups(m, λ)//obtain Mashups whose similarity with m is higher than λ
3. for each mu in simMashups
4. candiWSs = mu.S − m.S
5. for each cs in candiWSs
6. MRel(cs) = getMRel(cs, mu)//get the Mashup relevancy of cs in the Mashup mu
7. add (R, cs, MRel(cs))
8. Endfor
9. Endfor
10. return getTop(R, N)//get N services that own the top Mashup relevancy in R

5. Web Service Parameter Correlation-Based Service Recommendation

5.1. Service Parameter Correlations and Service Hyperlink

While constructing a sustainable service Mashup, services selected by a user in the next step
typically have parameter correlations with those already used services in the current Mashup.
Therefore, services having parameter correlations with those already used can also be regarded as
candidates. The parameter correlations of services in a service Mashup contain not only the correlation
between the former service’s output parameter and the latter’s input parameter, but also the correlation
between the input or output parameter of two services. According to the work [36,37], if the former
and latter services are denoted as s and t, respectively, there are three types of parameter correlations:
(1) OI correlation (denoted as pcOI), indicates that the value of an output parameter of s can be assigned
to an input parameter of t. (2) II correlation (denoted as pcII), indicates that an input parameter of s and
t can receive the same value as the input. (3) OO correlation (denoted as pcOO), indicates that an output
parameter of s and t are semantically equivalent concepts. Figure 3 shows some examples. There is
an OI correlation between the service 1 and 2, an II correlation between the service 1 and 3, and an
OO correlation between the service 3 and 4. From these examples, we can see that the OI correlation
is unidirectional, while the II and OO correlation are bidirectional [36]. Using the concept of service
hyperlinks [13], we describe the relation between two services in terms of parameter correlations of
Web services.

Sustainability 2020, 12, 8563 9 of 18

Sustainability 2020, 12, x FOR PEER REVIEW 9 of 18

are bidirectional [36]. Using the concept of service hyperlinks [13], we describe the relation between
two services in terms of parameter correlations of Web services.

Figure 3. Examples of the service parameter links.

Definition 1. Service HyperLink (SH). SH = <LinkID, Source, Target, PCS>, where LinkID is the id of the
service hyperlink, Source is the source service, Target is the target service, PCS = {pc1, pc2, pcn} is the parameter
correlations in SH, and type(pci) = pcOI| pcII| pcOO.

In this paper, if an SH’s source service is s, and the target service is t, SH is denoted as s→t. A
service hyperlink may contain the above three types of parameter correlations between the source
and the target service. Through the parameter correlations between s and t, the hyperlink between
them can be obtained as follows. (1) If there are one or more II or OO parameter correlations between
s and t, there exist two hyperlinks containing all the correlations, which are denoted as s→t and t→s,
respectively. (2) If there are one or more OI parameter correlations between s and t, there exists a
hyperlink containing all these correlations, which are denoted as s→t. (3) If a hyperlink can be
obtained according to more than one correlation, one hyperlink is retained, and all these links are
merged into this hyperlink [36].

The key for obtaining service hyperlinks is to obtain parameter correlations among services.
The links can be obtained manually by the service providers, or set up automatically by a program.
In addition, correlations can be obtained through extracting from existing service compositions or
Mashups [33]. Limited by space, the details are not presented in this paper.

If we take a service as a vertex, and a hyperlink as a directed edge among two services, we can
build a service network.

Definition 2. Service Network (SN). SN = <S, LINKS>, where S = {s1, s2...sn} is the services in SN, and
LINKS = {link1, link2... linkm} is the service hyperlinks among the services in S.

5.2. Service Network-based Service Recommendation

While constructing a sustainable service Mashup, services that have parameters correlations
with the used services can be directly obtained by SN. The services, whose distance with used
services in SN is one, i.e., services that have hyperlinks with used services, can be regarded as the
candidates. If the number of directly linked services is too small, we can look for indirectly linked
services in SN using the Width-First Traversal and select from services whose distances with the
used services in the constructing Mashup are two, three, and so on.

However, the key issue is how to select from multiple services according to SN. First, some
services have too many directly linked services by service hyperlinks. For example, if a service has
an attribute identity number in its output, it may have OI parameter correlations with multiple
services. Another example, if a service has an input parameter that can be assigned to
multi-parameter values, such as keyword, it may have II parameter correlations with many other
services. In this case, we need to select services from the linked services. Second, if N services need to
be recommended to a user, but the number of services that are directly correlated is smaller than N,
we need to select from services whose distance with those used is two. Similarly, if the number of
obtained services is still smaller than N, we need to select from services whose distance with the

Figure 3. Examples of the service parameter links.

Definition 1. Service HyperLink (SH). SH = <LinkID, Source, Target, PCS>, where LinkID is the id of the
service hyperlink, Source is the source service, Target is the target service, PCS = {pc1, pc2, pcn} is the parameter
correlations in SH, and type(pci) = pcOI| pcII| pcOO.

In this paper, if an SH’s source service is s, and the target service is t, SH is denoted as s→t. A service
hyperlink may contain the above three types of parameter correlations between the source and the
target service. Through the parameter correlations between s and t, the hyperlink between them can
be obtained as follows. (1) If there are one or more II or OO parameter correlations between s and t,
there exist two hyperlinks containing all the correlations, which are denoted as s→t and t→s, respectively.
(2) If there are one or more OI parameter correlations between s and t, there exists a hyperlink containing
all these correlations, which are denoted as s→t. (3) If a hyperlink can be obtained according to more
than one correlation, one hyperlink is retained, and all these links are merged into this hyperlink [36].

The key for obtaining service hyperlinks is to obtain parameter correlations among services.
The links can be obtained manually by the service providers, or set up automatically by a program.
In addition, correlations can be obtained through extracting from existing service compositions or
Mashups [33]. Limited by space, the details are not presented in this paper.

If we take a service as a vertex, and a hyperlink as a directed edge among two services, we can
build a service network.

Definition 2. Service Network (SN). SN = <S, LINKS>, where S = {s1, s2...sn} is the services in SN,
and LINKS = {link1, link2... linkm} is the service hyperlinks among the services in S.

5.2. Service Network-Based Service Recommendation

While constructing a sustainable service Mashup, services that have parameters correlations with
the used services can be directly obtained by SN. The services, whose distance with used services in
SN is one, i.e., services that have hyperlinks with used services, can be regarded as the candidates.
If the number of directly linked services is too small, we can look for indirectly linked services in SN
using the Width-First Traversal and select from services whose distances with the used services in the
constructing Mashup are two, three, and so on.

However, the key issue is how to select from multiple services according to SN. First, some services
have too many directly linked services by service hyperlinks. For example, if a service has an
attribute identity number in its output, it may have OI parameter correlations with multiple services.
Another example, if a service has an input parameter that can be assigned to multi-parameter values,
such as keyword, it may have II parameter correlations with many other services. In this case, we need
to select services from the linked services. Second, if N services need to be recommended to a user,
but the number of services that are directly correlated is smaller than N, we need to select from services
whose distance with those used is two. Similarly, if the number of obtained services is still smaller
than N, we need to select from services whose distance with the used services is three, four, and so on.
To sum up, the main challenge is how to select from services in the same layer of SN.

Sustainability 2020, 12, 8563 10 of 18

To solve this problem, we propose an approach for measuring the correlation degree between
a candidate service and a used service based on the structure of SN. In the Web hyperlink analysis,
the random walk model [34] is used to compute the probability that one Web page walks to another
Web page. Similarly, the correlation degree of a service with another service can be obtained using the
probability that the former service walks to the latter one along service hyperlinks in SN.

Based on the graph structure, Haveliwala [35] proposes a recommendation algorithm to get
the probability that one vertex randomly walks to another. Using this algorithm, we can regard the
probability that the service u walks to v randomly in SN as the correlation degree of v and u, which is
denoted as Rel(v,u). Rel(v,u) can be computed by Equation (5), in which d is the probability that a user
selects the next service along a service hyperlink, and out(v’) is the service set that hyperlinks of v’
point to. Similar to [24], d is set to 0.85.

Rel(v, u) =


d

∑
v′∈in(v)

Rel(v′, u)
|out(v′)|

(v , u)

1− d + d
∑

v′∈in(v)

Rel(v′, u)
|out(v′)|

(v = u)
(5)

Correlation degree values among services are computed iteratively based on SN until the value of
each pair of services is converged. Since this algorithm has a higher time complexity [35], it can be
executed offline. In addition, if SN changes, the correlation degree value of each pair of services needs
to be updated regularly.

After all correlation degrees between each pair of services are obtained, the average correlation
degree between a candidate service and those in the constructing service Mashup can be calculated.
If the constructing Mashup is denoted as c, and services used in c is s1, s2, . . . sn, the average correlation
degree Rel(s, c) between candidate service s and c can be measured by Equation (6).

Rel(s, c) =
∑n

i=1 Rel(s, si)

n
(6)

The algorithm getWSFromWSN (m, SN, N) to recommend N services for a constructing Mashup
based on SN is shown in Algorithm 2. In this algorithm, getWSFromSH (m.S, SN, distance) returns services
whose distances with services in m.S are equal to the value of distance. getTopRelatives (m.S, SN, N) is
used to select N services according to the average correlation degrees with services in m.S.

Algorithm 2 getWSFromWSN (m, SN, N)

Input: The constructing Mashup (m), services in m (m.S), the service network (SN), the number of recommended services (N)
Output: The set of services recommended (R)

1. R = Φ

2. for (distance = 1;N > 0;distance++)
3. candiServices = getWSFromSH(m.S, SN, distance)//returns services whose distances with services in m.S are equal to

the value of distance
4. If candiServices = = NULL
5. return R
6. Else
7. If (size(candiServices) < = N)
8. add (R, candiServices)
9. N = N − size(candiServices)
10. Else
11. add (R, getTopRelatives(m.S, SN, N))
12. return R
13. EndIf
14. EndIf
15. Endfor

Sustainability 2020, 12, 8563 11 of 18

6. Instant Service Recommendation for Sustainable Service Mashup

According to the overall framework of the proposed approach in Section 3, Algorithm 3 presents
the complete process to recommend N services for a constructing service Mashup using the above
two approaches.

Algorithm 3 recommendWS (m, M, SN, λ, N)

Input: The constructing Mashup (m), the set of existing Mashups (M), the service network (SN),
Mashup similarity threshold (λ), the number of recommended services (N)
Output: The set of N services recommended (R)

1. R = getWSFromMashups(m, M, λ, N)
2. If (size(R) = = N)
3. return R
4. Else
5. n = N − size(R)
6. add (R, getWSFromWSN(m, SN, n))
7. EndIf

In the constructing process of a sustainable service Mashup, services are recommended again by
Algorithm 3 if services in the constructing Mashup are changed. In this way, the instant recommendation
is implemented.

Algorithm 3 first uses getWSFromMashups to recommend N services. When the number of
services returned by getWSFromMashups is less than N, the remaining services are recommended by
getWSFromWSN. Therefore, the time complexity of Algorithm 3 can be obtained by the complexity of
getWSFromMashups and getWSFromWSN. The time complexity of getWSFromMashups is mainly
related to the number of Mashups (denoted as |M|) in the existing Mashup library and the average
number of services contained in each Mashup (denoted as |S|). As a result, its complexity is O(|M|*|S|).
As for getWSFromWSN, when the correlation between services in SN is calculated offline, its time
complexity is only related to the number of recommended services N, so its complexity is O(N). As N is
usually much less than |M|*|S|, the time complexity of Algorithm 3 is O(|M|*|S|).

We take the sustainable service Mashup in Figure 1 as an example to introduce the process of
Web services recommendation in Algorithm 3. Suppose that N Web services need to be recommended
each time by Algorithm 3 when the user selects a Web service. After the user selects the service
getLostPersons to identify the victim, the algorithm finds a group of Mashups from the existing Mashup
library that have a similarity value greater than the threshold through the used service getLostPersons,
as well as its input parameters assigned by the user and retained output parameters. Thus, the relevancy
values of each service except getLostPersons in these similar Mashups are calculated by Equation (4).
If the number of obtained services is greater than N, the top N services are regarded as recommended
services. On the contrary, if the number of services obtained is less than N (assuming M), the N-M
services with the highest correlation degree values with getLostPersons can be obtained from SN by
Equation (6), and they are regarded as another part of the recommended services. In special cases,
if the number of candidate services based on similar Mashups and SN is still less than N, only the
services obtained according to Algorithm 3 are recommended. Repeating the process, this algorithm
automatically recommends N services to the user after the user selects a new service to the current
Mashup. In this way, the instant service recommendation for a sustainable service Mashup is provided.

The proposed approach can cope with the problems of the existing two kinds of instant service
recommendation approaches in Table 1. First, this approach makes use of existing Mashups to find
candidate services through similar Mashups. The idea is similar to the service recommendation
approaches based on composition history listed in Table 1. The difference is that the approach in this
paper takes the same services used and the usage of the same services into account to measure the
similarity of Mashups. Thus, the implicit requirements of users can be described more accurately.

Sustainability 2020, 12, 8563 12 of 18

In addition, the complexity of searching similar Mashups is lower than those based on Mashup graph
matching [25,26], making this approach more suitable for the instant recommendation of sustainable
service Mashups. Although service recommendation based on composition history is limited by the
scale of existing Mashups, the proposed approach can find other services further based on SN when
services cannot be obtained as required by existing similar Mashups. Because the service hyperlinks
can be obtained in many ways [33,36], it is not limited by the scale of existing service compositions or
Mashups. As a result, our approach can solve the problem that the approaches based on composition
history exist. Second, for the approaches that only consider service parameter correlations, too many
correlations may be built because of different semantic granularity of service parameters, leading to
poor effectiveness in recommending services. As is shown in the two examples of Section 5.2, the service
that provides search function has the input parameter keyword may have hyperlinks with a large
number of other services in SN because the input and output parameters of most services can be
correlated with its input. However, most of these linked services may have nothing to do with the
actual requirements of the user when the service is used in a sustainable service Mashup. As a result,
the effectiveness of recommendation may be lowered. The proposed approach first leverages similar
Mashups to discover the user’s implicit requirements based on the used services. Thus, services can be
recommended more accurately compared with the approaches that only consider the directly linked
services by parameter correlations of services.

7. Experimental Evaluation

In this section, we present the experiments to evaluate the effectiveness of the proposed instant
service recommendation approach.

7.1. Data Set and Evaluation Metrics

We get a group of available Web services and Mashups from ProgrammableWeb.com, as well
as existing services and Mashups in our service composition platform. We get 1180 Web services
(including REST and SOAP services) and 638 Mashups in total. By our service composition platform,
these services can be encapsulated into the uniform services and composed to build these Mashups.
Service hyperlinks can be obtained through the hyperlink modeling approach proposed in [33].
Meanwhile, we divide the obtained Mashups into two groups. One is the test data set T, containing
100 Mashups, in which each Mashup contains at least three services and fit the demands of a sustainable
service Mashup. Another group that contains 500 Mashups is randomly selected from the remaining
Mashups, and it is regarded as the Mashups library. We select the test data set and Mashup library
randomly three times to conduct the experiments and take the average values of three times as the
final result.

The approach proposed in this paper belongs to TopN recommendation. Therefore, the precision
and recall are used as the evaluation metrics. Furthermore, coverage is used as another metric to
verify the effectiveness of the approach in recommending infrequently used services and newly added
services. Specifically, for each Mashup in the test data set, N services (the set is denoted as SR) are
recommended according to the 1/3 front services by the proposed algorithm. The service set made up
of the back 2/3 services in this Mashup is denoted as SU. The precision, recall, and coverage can be
measured by Equation (7). First, SR is all the recommended services using Algorithm 3, and SU is all
the services that should be recommended. Therefore, SR ∩ SU indicates the correctly recommended
services. Thus, we can get the Precision and Recall in Equation (7). Second, in the formula of coverage,
the numerator is the number of total services recommended for the 100 Mashups in the test data set T,
and the denominator is the number of all the services (denoted as S). Through dividing the number of
all recommended services by the number of all services, the coverage of the recommendation approach
can be obtained.

Precision =
SR ∩ SU

SR
Recall =

SR ∩ SU

SU
Coverage =

|∪m∈TSR|

|S|
(7)

Sustainability 2020, 12, 8563 13 of 18

In order to evaluate the effectiveness of our approach, we first analyze some features of our
algorithm. Specifically, we examine the effect of a few parameters on the algorithm, including the
number of existing Mashups, the scale of SN, the number of services to be recommended, and the
Mashup similarity threshold λ. Second, we compare the algorithm with other related approaches to
observe the effect on the precision and recall. Finally, we observe the coverage value of the proposed
approach and compare it with related approaches to analyze the effect on newly added and less
frequently used services.

7.2. Evaluation Approach

First, we observe the influence of the number of existing Mashups and the scale of SN on the
recommendation algorithm. We divide the existing Mashups library into five groups which contain 50,
100, 200, 300, and 500 Mashups, respectively. Meanwhile, we adjust service hyperlinks according to
the number of existing Mashups. For example, for the case of 200 Mashups, we randomly delete the
service hyperlinks in SN, and keep 2/5 (200/500) hyperlinks. In this way, the remaining SN is regarded
as the corresponding network. Through five groups of different Mashups libraries and SNs, we obtain
the precision, recall, and coverage of the algorithm.

Second, we compare our approach with the following related approaches. (1) The approach
only uses parameter correlations to recommend services. In this approach, correlations or hyperlinks
among services are built according to the input and output parameters of the services. Then, services
having correlations or hyperlinks with those used services are recommended [26]. In our experiments,
we get services linked by the hyperlinks of the front 1/3 services used in the constructing Mashup,
and select N services randomly as the recommendation. (2) The approach counts the co-existence of
services in existing Mashups and gets the similarity of services. In this approach, services similar to the
used services are recommended [38]. In our experiments, we use these two approaches to recommend
services and compare their results with ours. Because these three approaches are all affected by the
number of existing Mashups and the scale of SN, we divide existing Mashups into five groups and
deal with the SN as above. We observe the precision, recall, and coverage of these three approaches
in these five cases. In this experiment, the Mashup similarity threshold λ is 0.4, and the number of
recommended services is 5. In addition, we compare the running time of these three approaches to
evaluate the efficiency and availability of these approaches.

Third, we observe the influence of the number of recommended services (N) and the Mashup
similarity threshold (λ). We set fixed Mashups and the scale of SN to observe the influence of these
two parameters on the algorithm’s precision and recall.

7.3. Results

Figure 4 shows the experimental results, based on which we can get the following conclusions.
First, the proposed approach is influenced by the number of existing Mashups and the scale of

SN. If the scale of the existing Mashups, SN, and the number of recommended services are all small,
the precision, recall, and coverage are not high. As the scale of existing Mashups and SN increases,
the approach can find more similar Mashups and more services with higher correlation degree. As a
result, the values of the above three metrics are all increased.

Second, compared with the first approach, the precision and recall of our approach are higher.
In addition, the coverage of the first approach is comparable to our approach. If the scale of SN is
small, services are selected randomly in this approach. Thus, the less frequently used services can
be recommended. Therefore, the number of recommended services is comparable to our approach,
making its coverage comparable to our approach. However, recommended services are not selected
from the point of user requirement in the first approach. The services having parameter correlations
with a service in the constructing Mashup may belong to multiple domains, and some of them may
have little relation with the requirement of the constructing Mashup. In our approach, both services

Sustainability 2020, 12, 8563 14 of 18

with more comprehensive parameter correlations and those in the similar Mashups are all considered.
Therefore, our approach has higher precision and recall than the first approach.Sustainability 2020, 12, x FOR PEER REVIEW 14 of 18

(a) (b)

(c) (d)

Figure 4. The experimental results. (a) Precision, (b) recall, (c) coverage, (d) complexity.

First, the proposed approach is influenced by the number of existing Mashups and the scale of
SN. If the scale of the existing Mashups, SN, and the number of recommended services are all small,
the precision, recall, and coverage are not high. As the scale of existing Mashups and SN increases,
the approach can find more similar Mashups and more services with higher correlation degree. As a
result, the values of the above three metrics are all increased.

Second, compared with the first approach, the precision and recall of our approach are higher.
In addition, the coverage of the first approach is comparable to our approach. If the scale of SN is
small, services are selected randomly in this approach. Thus, the less frequently used services can be
recommended. Therefore, the number of recommended services is comparable to our approach,
making its coverage comparable to our approach. However, recommended services are not selected
from the point of user requirement in the first approach. The services having parameter correlations
with a service in the constructing Mashup may belong to multiple domains, and some of them may
have little relation with the requirement of the constructing Mashup. In our approach, both services
with more comprehensive parameter correlations and those in the similar Mashups are all
considered. Therefore, our approach has higher precision and recall than the first approach.

Compared with the second approach, the precision, recall, and coverage of our approach are all
higher when the number of existing Mashups is small. Meanwhile, if the existing Mashups reach a
certain scale, three metrics of the second approach are comparable to our approach. This is because
the specified number of services cannot be recommended only depending on the existing Mashups
using the second approach under the condition that the scale of the existing Mashups and SN is
small. However, candidate services can be selected through the SN when services cannot be
recommended only using existing Mashups in our approach. Specifically, for services that are not
popular or less frequently used in the constructing Mashup, services can also be recommended
based on SN. Hence, the coverage of our approach is higher. Through the experiment, we find that if
existing Mashups reach a certain scale, services can be recommended only using existing Mashups
in our approach. In this case, SN is not needed for service recommendation. That is, services that are
recommended through existing Mashups typically have parameter correlations.

In addition, in terms of the time complexity, the complexity of the proposed approach is higher
than the other two methods according to Figure 4d. This is because the proposed approach leverages
both service parameter correlations and existing similar Mashups. However, the experimental

Figure 4. The experimental results. (a) Precision, (b) recall, (c) coverage, (d) complexity.

Compared with the second approach, the precision, recall, and coverage of our approach are all
higher when the number of existing Mashups is small. Meanwhile, if the existing Mashups reach a
certain scale, three metrics of the second approach are comparable to our approach. This is because
the specified number of services cannot be recommended only depending on the existing Mashups
using the second approach under the condition that the scale of the existing Mashups and SN is small.
However, candidate services can be selected through the SN when services cannot be recommended
only using existing Mashups in our approach. Specifically, for services that are not popular or less
frequently used in the constructing Mashup, services can also be recommended based on SN. Hence,
the coverage of our approach is higher. Through the experiment, we find that if existing Mashups
reach a certain scale, services can be recommended only using existing Mashups in our approach.
In this case, SN is not needed for service recommendation. That is, services that are recommended
through existing Mashups typically have parameter correlations.

In addition, in terms of the time complexity, the complexity of the proposed approach is higher
than the other two methods according to Figure 4d. This is because the proposed approach leverages
both service parameter correlations and existing similar Mashups. However, the experimental results
show that compared with method 1 and method 2, the proposed algorithm can return results in less
than 100 ms under different Mashups libraries and scales of SN. Therefore, the requirements of instant
service recommendation in sustainable service Mashups can be met using our approach.

To observe the influence of λ, three services are recommended for each Mashup in the test data set.
The numbers of existing Mashups are set to 200 and 500, respectively, and SN is processed as above.
The value of λ ranges from 0 to 1 with 0.1 increasement each time. Figure 5 shows the values of the
precision as λ changes under the conditions that the numbers of existing Mashups are 200 and 500,
respectively. Based on the obtained results, we can see that the precision is the best when λ = 0.4.

Sustainability 2020, 12, 8563 15 of 18

Sustainability 2020, 12, x FOR PEER REVIEW 15 of 18

results show that compared with method 1 and method 2, the proposed algorithm can return results
in less than 100 ms under different Mashups libraries and scales of SN. Therefore, the requirements
of instant service recommendation in sustainable service Mashups can be met using our approach.

To observe the influence of λ, three services are recommended for each Mashup in the test data
set. The numbers of existing Mashups are set to 200 and 500, respectively, and SN is processed as
above. The value of λ ranges from 0 to 1 with 0.1 increasement each time. Figure 5 shows the values
of the precision as λ changes under the conditions that the numbers of existing Mashups are 200 and
500, respectively. Based on the obtained results, we can see that the precision is the best when λ = 0.4.

Figure 5. The influence of λ on the recommendation.

In order to observe how the number of recommended services (N) influences the effectiveness
of the recommendation, we set different values for N to get the precision and recall. The experiment
is conducted under the conditions that the number of existing Mashups is 500, and SN is in the
corresponding scale. Because the proposed approach does not need to recommend many services, N
is set to 1, 3, 5, 7, and 9, respectively. The obtained results are shown in Figure 6, based on which we
can see that the precision and recall are the highest when N = 5 and the number of existing Mashups
is 500.

Figure 6. The influence of N on the recommendation.

Based on the experimental results, we can draw the final conclusions. For sustainable service
Mashups, the effectiveness of our approach is improved as the scale of existing Mashups and SN
increases. If the scale of existing Mashups and SN reaches a certain scale, the precision, recall, and
coverage of our approach are higher than existing approaches.

To sum up, we can see from the experimental results that when the number of existing
composition history or Mashups reaches a certain scale, the proposed approach has the similar
precision and recall with the existing service recommendation approaches based on composition
history. Differently, the proposed approach has better coverage. While the number of existing
compositions or Mashups is small, the precision and recall of the proposed approach are better than
existing composition history-based service recommendation approaches because it can find other
suitable services through SN. Compared with approaches that only consider the parameter

0

0.2

0.4

0.6

0.8

1 3 5 7 9

Precision Recall

N

Pr
ec
isi
on

Figure 5. The influence of λ on the recommendation.

In order to observe how the number of recommended services (N) influences the effectiveness
of the recommendation, we set different values for N to get the precision and recall. The experiment
is conducted under the conditions that the number of existing Mashups is 500, and SN is in the
corresponding scale. Because the proposed approach does not need to recommend many services, N is
set to 1, 3, 5, 7, and 9, respectively. The obtained results are shown in Figure 6, based on which we can
see that the precision and recall are the highest when N = 5 and the number of existing Mashups is 500.

Sustainability 2020, 12, x FOR PEER REVIEW 15 of 18

results show that compared with method 1 and method 2, the proposed algorithm can return results
in less than 100 ms under different Mashups libraries and scales of SN. Therefore, the requirements
of instant service recommendation in sustainable service Mashups can be met using our approach.

To observe the influence of λ, three services are recommended for each Mashup in the test data
set. The numbers of existing Mashups are set to 200 and 500, respectively, and SN is processed as
above. The value of λ ranges from 0 to 1 with 0.1 increasement each time. Figure 5 shows the values
of the precision as λ changes under the conditions that the numbers of existing Mashups are 200 and
500, respectively. Based on the obtained results, we can see that the precision is the best when λ = 0.4.

Figure 5. The influence of λ on the recommendation.

In order to observe how the number of recommended services (N) influences the effectiveness
of the recommendation, we set different values for N to get the precision and recall. The experiment
is conducted under the conditions that the number of existing Mashups is 500, and SN is in the
corresponding scale. Because the proposed approach does not need to recommend many services, N
is set to 1, 3, 5, 7, and 9, respectively. The obtained results are shown in Figure 6, based on which we
can see that the precision and recall are the highest when N = 5 and the number of existing Mashups
is 500.

Figure 6. The influence of N on the recommendation.

Based on the experimental results, we can draw the final conclusions. For sustainable service
Mashups, the effectiveness of our approach is improved as the scale of existing Mashups and SN
increases. If the scale of existing Mashups and SN reaches a certain scale, the precision, recall, and
coverage of our approach are higher than existing approaches.

To sum up, we can see from the experimental results that when the number of existing
composition history or Mashups reaches a certain scale, the proposed approach has the similar
precision and recall with the existing service recommendation approaches based on composition
history. Differently, the proposed approach has better coverage. While the number of existing
compositions or Mashups is small, the precision and recall of the proposed approach are better than
existing composition history-based service recommendation approaches because it can find other
suitable services through SN. Compared with approaches that only consider the parameter

0

0.2

0.4

0.6

0.8

1 3 5 7 9

Precision Recall

N

Pr
ec
isi
on

Figure 6. The influence of N on the recommendation.

Based on the experimental results, we can draw the final conclusions. For sustainable service
Mashups, the effectiveness of our approach is improved as the scale of existing Mashups and SN
increases. If the scale of existing Mashups and SN reaches a certain scale, the precision, recall,
and coverage of our approach are higher than existing approaches.

To sum up, we can see from the experimental results that when the number of existing composition
history or Mashups reaches a certain scale, the proposed approach has the similar precision and
recall with the existing service recommendation approaches based on composition history. Differently,
the proposed approach has better coverage. While the number of existing compositions or Mashups
is small, the precision and recall of the proposed approach are better than existing composition
history-based service recommendation approaches because it can find other suitable services through
SN. Compared with approaches that only consider the parameter correlation, our approach has better
precision and recall. In addition, the time complexity of our approach is suitable for instant service
recommendation in the building process of a sustainable service Mashup.

8. Conclusions

In this paper, we propose an instant Web service recommendation approach for sustainable service
Mashups that considers services used in similar Mashups and parameter correlations among the
input and output parameters of Web services. First, services are selected from existing Mashups that
are similar to the constructing Mashup. The similarity between two Mashups is computed based

Sustainability 2020, 12, 8563 16 of 18

on the same services used and the way they are used. Second, services are selected through the
service network that is built based on the services and their hyperlinks from the perspective of actual
operations of Web service composition. We propose to compute the service correlation degree based on
parameter correlations. According to the experimental results, the shortcomings of existing approaches
in Web services instant recommendation for sustainable service Mashups are properly tackled by
combining two recommendation approaches. Meanwhile, the proposed approach has better precision,
recall, and coverage on the whole, and can recommend Web services instantly to a user during the
construction of a sustainable service Mashup. In conclusion, the proposed approach is more suitable
for instant service recommendation of sustainable service Mashups.

With the wider application of Web services, more and more service compositions or Mashups
will be accumulated on the Internet, and more parameter correlations between services will be found,
which help to gradually form service big data. How to combine the machine learning techniques,
especially the deep learning techniques, to achieve more accurate and efficient service recommendation,
is an important issue of the future work. In addition, the execution of composed services can be
regarded as a business process, advanced process modeling and analysis techniques, e.g., [39–41],
can be applied for service behavior analysis.

Author Contributions: Conceptualization, F.Z.; methodology, F.Z. and C.L.; validation, B.C.; formal analysis, F.Z.
and B.C.; data curation, B.C.; writing—original draft preparation, F.Z.; writing—review and editing, F.Z., B.C.;
project administration, F.Z. and C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Education Ministry Humanities and Social Science Research Youth
Fund Project of China (“User-Steering Multi-Source Education Data Integration Approach Research in Big
Data Environment” with grant number 19YJCZH240), 2019 Qingdao social science planning research project
(grant number QDSKL1901123), the NSFC (grant numbers 61902222 and 31671588), by Sci. & Tech. Development
Fund of Shandong Province of China (grant numbers ZR2017MF027), Taishan Scholars Program of Shandong
Province (tsqn201909109), Engineering and Technology R&D Center of IIOT in Colleges of Shandong Province
(QingDao Technical College, grant number KF2019002), and SDUST Research Fund (grant number 2015TDJH102).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hayyolalam, V.; Kazem, A.A.P. A systematic literature review on QoS-aware service composition and
selection in cloud environment. J. Netw. Comput. Appl. 2018, 110, 52–74. [CrossRef]

2. Vakili, A.; Navimipour, N.J. Comprehensive and systematic review of the service composition mechanisms
in the cloud environments. J. Netw. Comput. Appl. 2017, 81, 24–36. [CrossRef]

3. Sun, M.Y.; Zhou, Z.B.; Wang, J.P.; Du, C.; Gaaloul, W. Energy-efficient IoT service composition for concurrent
timed applications. Future Gener. Comput. Syst. 2019, 100, 1017–1030. [CrossRef]

4. Asghari, P.; Rahmani, A.M.; Javadi, H.H.S. Service composition approaches in IoT: A systematic review.
J. Netw. Comput. Appl. 2018, 120, 61–77. [CrossRef]

5. Barika, M.; Garg, S.; Zomaya, A.Y.; Wang, L.Z.; Moorsel, A.V.; Ranjan, R. Orchestrating big data analysis
workflows in the cloud: Research challenges, survey, and future directions. ACM Comput. Surv. 2019, 52,
1–41. [CrossRef]

6. Gudgin, M.; Hadley, M.; Mendelsohn, N.; Moreau, J.J.; Nielsen, H.F.; Karmarkar, A.; Lafon, Y. Simple Object
access Protocol (SOAP) Version 1.2. W3C Recommendation. 2007. Available online: http://www.w3.org/TR/

soap12/ (accessed on 9 March 2020).
7. Fielding, R. Architectural Styles and the Design of Network-Based Software Architectures; University of California:

Oakland, CA, USA, 2000.
8. Pautasso, C.; Zimmermann, O.; Amundsen, M.; Lewis, J.; Josuttis, N. Microservices in Practice, Part 2: Service

Integration and Sustainability. IEEE Softw. 2017, 34, 97–104. [CrossRef]
9. Valderas, P.; Torres, V.; Pelechano, V. A Microservice Composition Approach based on the Choreography of

BPMN fragments. Inf. Softw. Technol. 2020, 127, 106370. [CrossRef]
10. Lemos, A.L.; Daniel, F.; Benatallah, B. Web service composition: A survey of techniques and tools.

ACM Comput. Surv. 2015, 48, 3. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2018.03.003
http://dx.doi.org/10.1016/j.jnca.2017.01.005
http://dx.doi.org/10.1016/j.future.2019.05.070
http://dx.doi.org/10.1016/j.jnca.2018.07.013
http://dx.doi.org/10.1145/3332301
http://www.w3.org/TR/soap12/
http://www.w3.org/TR/soap12/
http://dx.doi.org/10.1109/MS.2017.56
http://dx.doi.org/10.1016/j.infsof.2020.106370
http://dx.doi.org/10.1145/2831270

Sustainability 2020, 12, 8563 17 of 18

11. Garriga, M.; Mateos, C.; Flores, A.; Cechich, A.; Zunino, A. RESTful service composition at a glance: A survey.
J. Netw. Comput. Appl. 2016, 60, 32–53. [CrossRef]

12. Deng, S.G.; Wu, H.Y.; Taheri, J.; Zomaya, A.Y.; Wu, Z.H. Cost Performance Driven Service Mashup:
A Developer Perspective. IEEE. Trans. Parallel Distrib. Syst. 2016, 27, 2234–2247. [CrossRef]

13. Wang, G.; Zhang, S.L.; Han, Y.B.; Zhang, Z.M. A Dataflow-Pattern-Based Recommendation Framework for
Data Service Mashup. IEEE. Trans. Serv. Comput. 2015, 8, 889–902. [CrossRef]

14. Hang, F.F.; Zhao, L.P. Supporting End-User Service Composition: A Systematic Review of Current Activities
and Tools. In Proceedings of the 2015 IEEE International Conference on Web Services, New York, NY, USA,
27 June–2 July 2015; pp. 479–486.

15. Bai, L.; Wei, J.; Huang, X.; Ye, D.; Huang, T. An Exploratory Service Composition Approach for Mobile
Application. J. Softw. 2015, 26, 2191–2211.

16. Han, Y.B.; Wang, H.C.; Wang, J.W.; Yan, S.Y.; Zhang, C. An End-User-Oriented Approach to Exploratory
Service Composition. J. Res. Dev. 2006, 43, 1895–1903.

17. Yang, J.; Zhu, X.J.; Zhou, X.Z.; Liu, Y. Personalized Web Service Recommendation Based on Heterogeneous
Social Network. Acta Electron. Sin. 2020, 48, 341–349.

18. Liu, J.; Tang, M.; Zheng, Z.; Liu, X.; Lyu, S. Location-Aware and Personalized Collaborative Filtering for Web
Service Recommendation. IEEE. Trans. Serv. Comput. 2016, 9, 686–699. [CrossRef]

19. Chen, S.H.; Fan, Y.S.; Tan, W.; Zhang, J.; Bai, B.; Gao, Z.F. Time-Aware Collaborative Poisson Factorization for
Service Recommendation. In Proceedings of the IEEE International Conference on Web Services (ICWS),
San Francisco, CA, USA, 27 June–2 July 2016; pp. 196–203.

20. Zhang, Y.W.; Ai, X.; He, Q.; Zhang, X.Y.; Dou, W.C.; Chen, F.F.; Chen, L.; Yang, Y. Personalized Quality
Centric Service Recommendation. In International Conference on Service-Oriented Computing; Springer: Cham,
Switzerland, 2017; pp. 528–544.

21. Chen, L.; Wu, J.; Jian, H.Y.; Deng, H.B.; Wu, Z.H. Instant Recommendation for Web Services Composition.
IEEE. Trans. Serv. Comput. 2013, 7, 586–598. [CrossRef]

22. Huang, K.M.; Fan, Y.S.; Tan, W.; Li, X. Service Recommendation in an Evolving Ecosystem: A Link Prediction
Approach. In Proceedings of the 20th International Conference on Web Services, Santa Clara, CA, USA,
28 June–3 July 2013; pp. 507–514.

23. Ni, Y.Y.; Fan, Y.S.; Huang, K.M.; Bi, J. Negative-Connection-Aware Tag-based Association Mining and Service
Recommendation. In Proceedings of the 12th International Conference of Service-Oriented Computing,
Paris, France, 3–6 November 2014; pp. 419–428.

24. Kang, G.S.; Liu, J.X.; Tang, M.D.; Liu, X.Q.; Cao, B.Q.; Xu, Y. AWSR: Active Web Service Recommendation
based on Usage History. In Proceedings of the 19th International Conference on Web Services, Beijing, China,
24–29 June 2012; pp. 186–193.

25. Elmeleegy, H.; Ivan, A.; Akkiraju, R.; Goodwin, R. Mashup Advisor: A Recommendation Tool for Mashup
Development. In Proceedings of the 15th IEEE International Conference on Web Services, Beijing, China,
12–15 October 2008; pp. 337–344.

26. Abiteboul, S.; Greenshpan, O.; Milo, T.; Polyzotis, N. Matchup: Autocompletion for Mashups. In Proceedings
of the 25th International Conference on Data Engineering, Shanghai, China, 29 March–2 April 2009;
pp. 1479–1482.

27. Yan, S.Y.; Han, Y.B.; Wang, J.; Liu, C. A User-Steering Exploratory Service Composition Approach.
In Proceedings of the Second International Conference on Services Computing, Honolulu, HI, USA,
8–11 July 2008; pp. 309–316.

28. Zhao, C.T.; Ma, C.; Zhang, J.; Zhang, J. HyperService: Linking and Exploring Services on the Web.
In Proceedings of the 17th International Conference on Web Services, Miami, FL, USA, 5–10 July 2010;
pp. 17–24.

29. Wang, G.L.; Yang, S.H.; Han, Y.B. Mashroom: End-User Mashup Programming Using Nested Tables.
In Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 20–24 April 2009;
pp. 861–870.

30. Liu, C.; Wang, J.W.; Zhu, M.L.; Han, Y.B. Discovery of Service HyperLinks with User Feedbacks for Situational
Service Mashup. Int. J. Database Theory Appl. 2015, 8, 71–80. [CrossRef]

31. Zhu, M.L.; Liu, C. Discovery and Reuse of Service Hyperlinks for Efficient Service Mashup. In Proceedings
of the Eighth IEEE World Congress on Services, Anchorage, AK, USA, 27 June–2 July 2014; pp. 147–154.

http://dx.doi.org/10.1016/j.jnca.2015.11.020
http://dx.doi.org/10.1109/TPDS.2015.2482980
http://dx.doi.org/10.1109/TSC.2015.2471307
http://dx.doi.org/10.1109/TSC.2015.2433251
http://dx.doi.org/10.1109/TSC.2013.32
http://dx.doi.org/10.14257/ijdta.2015.8.4.08

Sustainability 2020, 12, 8563 18 of 18

32. Goldberg, D.; Nichols, D.A.; Oki, B.M.; Terry, D.B. Using Collaborative Filtering to Weave an Information
Tapestry. Commun. ACM 1992, 35, 61–70. [CrossRef]

33. Zhang, F.; Wen, Y.; Wei, Y.S. Data Correlation of Data Services Oriented Service Hyperlink and Modeling
Research. J. Chin. Comput. Syst. 2017, 38, 328–333.

34. Bianchini, M.; Gori, M.; Scarselli, F. Inside PageRank. ACM Trans. Internet Technol. 2015, 5, 92–128. [CrossRef]
35. Haveliwala, T.H. Topic-Sensitive PageRank. In Proceedings of the 11th International Conference on World

Wide Web, Honolulu, HI, USA, 7–11 May 2002; pp. 494–502.
36. Zhang, F.; Zeng, Q.; Duan, H.; Liu, C. Composition Context-Based Web Services Similarity Measure.

IEEE. Access 2019, 7, 65195–65206. [CrossRef]
37. Gu, Z.F.; Li, J.Z.; Hu, J.Q.; Xu, B.; Wang, K.H. Modeling and Application of Data Links among Web Services.

Chin. J. Comput. 2008, 31, 1309–1318. [CrossRef]
38. Pan, W.F.; Li, B.; Shao, B.; He, P. Service Classification and Recommendation based on Software Network.

Chin. J. Comput. 2011, 34, 2355–2369. [CrossRef]
39. Liu, C.; Zeng, Q.; Cheng, L.; Duan, H.; Zhou, M.; Cheng, J. Privacy-preserving Behavioral Correctness

Verification of Cross-organizational Workflow with Task Synchronization Patterns. IEEE Trans. Autom.
Sci. Eng. 2020, 99, 1–12. [CrossRef]

40. Duan, H.; Liu, C.; Zeng, Q.; Zhou, M. Refinement-based Hierarchical Modeling and Correctness Verification
of Cross-organization Collaborative Emergency Response Process. IEEE Trans. Syst. Man Cybern. Syst. 2020,
50, 2548–2559.

41. Zeng, Q.; Liu, C.; Duan, H.; Zhou, M. Resource Conflict Checking and Resolution Controller Design for
Cross-organization Emergency Response. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 3685–3700. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/138859.138867
http://dx.doi.org/10.1145/1052934.1052938
http://dx.doi.org/10.1109/ACCESS.2019.2915371
http://dx.doi.org/10.3724/SP.J.1016.2008.01309
http://dx.doi.org/10.3724/SP.J.1016.2011.02355
http://dx.doi.org/10.1109/TASE.2020.2993376
http://dx.doi.org/10.1109/TSMC.2019.2906335
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Sustainable Service Mashups
	Related Work
	Composition History-Based Service Recommendation
	Parameter Correlation-Based Service Recommendation

	Contributions

	A Motivating Scenario
	The Overall Framework of the Proposed Approach
	Similar Mashups-Based Service Recommendation
	Web Service Parameter Correlation-Based Service Recommendation
	Service Parameter Correlations and Service Hyperlink
	Service Network-Based Service Recommendation

	Instant Service Recommendation for Sustainable Service Mashup
	Experimental Evaluation
	Data Set and Evaluation Metrics
	Evaluation Approach
	Results

	Conclusions
	References

