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Abstract: As the key element of urban transportation, taxis services significantly provide
convenience and comfort for residents’ travel. However, the reality has not shown much efficiency.
Previous researchers mainly aimed to optimize policies by order dispatch on ride-hailing services,
which cannot be applied in cruising taxis services. This paper developed the reinforcement learning
(RL) framework to optimize driving policies on cruising taxis services. Firstly, we formulated the
drivers’ behaviours as the Markov decision process (MDP) progress, considering the influences after
taking action in the long run. The RL framework using dynamic programming and data expansion
was employed to calculate the state-action value function. Following the value function, drivers
can determine the best choice and then quantify the expected future reward at a particular state.
By utilizing historic orders data in Chengdu, we analysed the function value’s spatial distribution
and demonstrated how the model could optimize the driving policies. Finally, the realistic simulation
of the on-demand platform was built. Compared with other benchmark methods, the results verified
that the new model performs better in increasing total revenue, answer rate and decreasing waiting
time, with the relative percentages of 4.8%, 6.2% and −27.27% at most.

Keywords: Markov decision process; reinforcement learning; optimizing driving policies; cruising
taxis services

1. Introduction

In recent years, taxis service has become blossomed, with worldwide coverage by transportation
networks companies such as Uber, Lyft, and DiDi ChuXing [1]. As the convenience and flexibility,
compared with the public transportation modes, taxis services profoundly impact residents’ travel
behaviours and consequently change the urban transportation system. However, the reality has
not shown much efficiency [2]. Specifically, many vacant taxis often wander around the city to find
potential orders, while passengers failed to get available cars during particular times in some areas.
The imbalance between the supply and demand of taxis has led to mismatches of orders and drivers,
causing passengers and drivers to spend more time and money. Furthermore, this phenomenon can
result in traffic congestion, consumption of resources, and environmental pollution.

In China, there are two ways of developing taxis services. One way is cruising taxis
service organized by taxis companies. The other is ride-hailing platform services such as Uber,
Meituan ChuXing, and DiDi ChuXing. Cruising taxis services take up over 60% of total passenger
volumes in China in 2019 [3], indicating that cruising taxis are still in the lead. In ride-hailing platform
services, drivers usually are restricted to answer orders according to dispatch measures from a unified
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decision-making platform. They can only handle the orders recommended according to dispatch
measures. Consequently, the driving policies are purely determined by the centralized system. When it
comes to cruising taxis service, drivers wander around to seek orders. People who require a trip
prefer to wait by the streets. When drivers meet passengers, they negotiate the travel and then make a
deal. During this progress, drivers receive little advice from the taxis company. Their driving policies
usually depend on their experience or temporary situation, which is too subjective and partial to be
the optimal decision.

In this paper, we focus on optimizing driving policies for cruising taxis, which increase drivers’
benefits and opportunities for matches of drivers and passengers. Previously, taxi companies
widely implemented greedy geographic methods to finish order dispatch, such as searching
the nearest driver-passenger pair or using the queueing strategies based on the principle of
first-come-first-serve [4,5]. Different objects were aimed to increase taxis services’ efficiency, such as
minimization of waiting time, minimization of the distance between the drivers and passengers,
maximization of the expected profits, and the probability of finding potential passengers [6–8].
Although these works seemed easy and effective, they neglected the spatiotemporal relationship of
cars and orders, bringing about a suboptimal consequence when considering in the long run.

To explore optimal strategies, many researchers have investigated the factors influencing the
demands and supplies carefully. Four factors included average waiting time, distance, the fare, and the
transition probability for recommending a potential high-revenue location were investigated to build
a taxi recommender system [9]. The results showed that distance to the next cruising location and
waiting time are most essential features. Ji Wang comprehensively studied the spatiotemporal features
for taxi route recommendations [10]. They studied the dynamic taxi route recommendation problem
as a sequential decision-making problem and designed an effective two-step method to tackle it.
A taxi monitoring method is presented to detect anomalous driving behaviours, improving the taxi
service [11]. A spatiotemporal data mining framework was proposed to explore mobility dynamics
from taxi trajectories [12]. The framework aimed to predict travel demand in different regions of
a city efficiently and timely. These works helped us have a good grasp of the factors that improve
taxis service.

With information and communication technology tools (ICT) involved [13–15], recent works
have shown that reinforcement learning (RL) could achieve remarkable results. Gao formulated
the optimizing problem as a Markov decision process (MDP) and developed the RL model [16].
The results showed that the method dramatically improves profits and efficiency for cabdrivers.
A novel model-free deep reinforcement learning framework was defined to solve the taxi dispatch
problem by predicting the number of taxis allocated [17]. Unlike previous researches that mostly
focused on using model-based methods, the paper explored the policy-based deep reinforcement
learning algorithm as a model-free method. The numerical studies indicated that the model-free model
has better performance. At the same time, researches with many deep learning models (i.e., Deep Q
Network (DQN), Policy Gradients, Actor-Critic) were proposed to optimize the dispatch between
the driver and orders [18–20]. They provided reliable optimization policies and expected superb
rewards in actual applications throughout the investigated historical taxi trajectory and orders dataset.
However, these works mainly focus on the optimization of ride-hailing platform services.

There are two main limitations to those researches:

(1) Order dispatch could profoundly change the spatial and temporal distribution of cars and
passengers. The policies without long-term consideration tend to satisfy the current environment,
leading to inappropriate matches between drivers and orders. As a result, the optimization might
not guarantee global optimization.

(2) Previous research mainly focused on order dispatch to provide optimal driving policies.
The information about taxis and orders were indispensable for making policies so that the
optimization was concentrated in a unified decision- making framework. For cruising taxis
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services, the framework was unavailable. Therefore, a single taxi driver cannot take measures
without receiving instructions from the central platform.

Our contributions in this paper are as follows:

• Different from the previous works focusing on the orders dispatch on the ride-hailing platforms,
our method is studied for the cruising taxis service, which is still useful for a single driver.

• A developed reinforcement framework is proposed. This approach considers long sequences of
drivers’ processes in a global environment, so it can guarantee the drivers obtain optimal policies.

• Dynamic programming is employed to reduce complexity, with data expansion algorithm
alleviating data sparsity.

• A simulation for the on-demand platform is built to confirm that the model is equally powerful in
improving the expected future benefits and increasing the opportunities for matches of drivers
and passengers.

The rest of this paper is organized as follows: We provide the system architecture of the proposed
model using RL in Section 2. The Experiments and results are then described in Section 3. We analyse
the optimal policies in detail and conduct a simulation to verify the superiority in Section 4. At last,
Section 5 concludes the paper.

2. Methods

In this section, we firstly describe the optimal problem as the Markov decision process. That is
necessary for us to apply reinforcement learning (RL). Then, we develop the RL framework with two
novel algorithms. Notations that will be used are listed in Table 1.

Table 1. Notations.

Variable Explanation

S An infinite state space
A An infinite action space
P A state transition probability matrix
R Reward function
γ A discount factor
s State
s’ Next State
a Action
K The time of the end state

Pr(a, s) , π(a
∣∣∣s) The probability of taking action a at state s

V(s), Vπ(s) State value function
V(s), Qπ(s, a) State-action value function

T Time Space
L Location Space
l Location index of current state
l’ Location index of next state
t Time index of current state
t’ Time index of next state
r Order price

Rγ The reward when considering γ
Rγ(s, a) The reward of taking action a at state s

Tr Consuming number of transition steps on an order trip
α Learning rate
∆t Time difference

2.1. Preliminaries

The Markov Decision Process (MDP) is typically used to model sequential decision-making
problems, which is the necessary process of RL. Generally, the MDP can be described by a tuple
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〈
S, A, P, R,γ

〉
. Considering a specific state s ∈ S and a specific action a ∈ A at time t, the probability of

reaching state s at time t + 1 is determined by transition probability matrix P(s, a, s′) as Equation (1):

P(s, a, s′) ≡ Pr(st+1 = s′|st = s , at = a) (1)

Furthermore, the essential part of MDP is that the action selected is purely determined by the
current state, which can be described as Equation (2):

Pr(st+1 = s′|s0 , a0, s1, a1, · · · · · · st, at) = Pr(st+1 = s′|st = s , at = a) (2)

There are two types of value function in MDP. One is state value function V(s), another is
state-action value function Q(s,a). V(s) represents the expected cumulative future rewards of current
state, and Q(s,a) represents the expected cumulative future rewards of taking action a at state s.
In standard MDP, agents adapt to the environment by following a policy π, which is mapping from
(s,a) to the probability π(a

∣∣∣s) of taking action a at state s. Therefore, under the policy π, V(s) and Q(s,a)
are denoted as Vπ(s) and Qπ(s,a) as Equation (3).

Vπ(s) = Eπ
[
Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γK−t−2RK−1 + γK−t−1RK

)
| st = s

]
= Eπ

[
K∑

k=t+1
γk−t−1Rk | st = s

]
Qπ(s) = Eπ

[
K∑

k=t+1
γk−t−1Rk | st = s, at = a

] (3)

Besides, the relation of Vπ(s) and Qπ(s) are described as Equation (4):

Vπ(s) =
a∈A∑

A

π(a | s)Qπ(s, a) (4)

The optimal policy for maximizing the rewards is simply to maximize the Vπ(s). According to
Equation (4), the greedy approach is to take the largest one among the Qπ(s, a) (Equation (5)):

Vπ(s) = maxa∈AQπ(s, a) (5)

Reinforcement learning is a primary approach to learning control strategies by considering what
actions intelligent agents should take to maximize a numerical reward signal [21]. RL acquires the best
actions in different states by accumulating experience through continuous trial and error training in
the environment. Therefore, RL mainly performs much more excellently in the long-term than the
short-term [22]. By maximizing the expected cumulative reward in every independent state in constant
iterations, RL is adopted to help the agents obtain the optimal strategy in each state. Specifically, after
calculating the Vπ(s) and Qπ(s, a), the optimal policies are then determined according to Equation (5).

2.2. Problem Statement and Application

Taxi drivers’ behaviours depend on the current situation instead of previous situations [20].
They mainly care about the current state and the influence of the current action selected. Meantime,
drivers are assumed to be resourceful and rational [16], so they are considered to make every decision
based on calculation and experience, which means that each decision is the current best strategy.
Expressly, drivers accept orders and get passengers from one place to another when they thought this
trip deserved. By taking the action of serving the trip, drivers earn money after completing orders.
Apart from accepting orders, drivers can also idle when there were neither available orders or worthy
orders. The drivers stop or wander around to search for valuable orders. Drivers take actions based on
their driving policies. Therefore, we regard the drivers as the agents in MDP, which behave in the
environment under the policy that identifies how the agents select actions for maximizing reward.
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In this paper, we aim to maximize the drivers’ profits in the long run by adjusting the driving policies.
Next, the key elements of the driving behaviours as MDP are introduced.

State Space: The state of the driver is defined as a two-dimensional vector representing
spatiotemporal status. Each state consists of time and location. Formally, we define s = (t, l) ∈ S. Thus,
|S| = |T| × |L|. In this paper, we discretize the time-space into steps of 10 min and discretize the location
space by dividing the area into 500 m × 500 m grid cell, respectively [23].

Action Space: A driver has two available actions in any state, i.e., {idling, serving}. The first type
of action is to represent the driver hanging around or waiting in the vacant taxi area. He/she is not
matched with any orders temporarily, so he/she can move freely. The last type of action is to assign the
driver to serve a specific order. When a driver takes action serving, his/her action cannot change until
the order is accomplished. Formally, we define a = {0 , 1}, where 0 means action idling, while 1 means
action serving.

Reward: reward means that a driver acquires the profit after taking action and finishing the
transition between states. Intuitively, the reward can be represented as an order price. A discount
factor was defined to control the degree of how far the MDP looks into the future. The larger factor
causes slight future impacts. It is beneficial to use a small discount factor as long horizons introduces a
large variance on the value function. Formally, we give the Equation (6) to express this function.

Rγ =
Tr−1∑
t=0

γt r
Tr

(6)

State-action value function: As the optimize object, the state-action value function evaluates
driving policies by accumulating every action’s rewards at each iteration. Each action not only
determines the immediate reward but also impacts the future reward. It is significant to consider the
future reward for global optimization. Mathematically, it is described as Equation (7):

Q(s, a) = E

 K∑
k=t

γk−tRγ(sk, ak) | st = s, at = a

 (7)

The relation between Rγ(s, a) and Rγ are described as Equation (8):

Rγ(s, a) =

Rγ a = 1

0 a = 0
(8)

Policy: π(a | s) stores the distribution from a state (s) to each action (a) over the action space.
The greedy policy was used to learn the best value, π(s) = argmaxaQ(s, a).

State value function: It is expected cumulative reward that the driver gains till the end of an
episode if he/she starts at state s and follows a policy π. In the learning process, the State function is
updated by π(a | s); therefore, V(s) = maxa∈AQ(s, a).

2.3. General Framework

2.3.1. Policy Learning

Generally, policy learning consists of two steps: policy evaluation and policy improvement.
Based on the MDP formulated problem above, the optimization can be solved by a model-free
approach. Policy evaluation represents the agents continually evaluate the value function from the
sample, and the policy improvement gives the better policy for maximizing the rewards.

Policy evaluation: In the policies evaluation step, each agent evaluates the corresponding state
value function and state-action value function by taking particular policies. The value function is
updated after taking action serving or action idling.
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Temporal-Difference (TD) learning is a conventional value update method [24]. This algorithm
learns from the incomplete state sequence obtained from sampling. It firstly estimates the possible
return of a state through reasonable bootstrapping and then uses progressively updating the average
value to obtain the final value. The value of this state is continuously updated through sampling.

Figure 1 shows the two types of actions. Serving means the drivers receive an order and then
proceeded to the destination. Drivers finished the states’ transition from state s to state s’, including
the spatial and temporal dimension. As shown in Figure 1a, when taking action serving, the agent goes
to the destination and consequently gets a reward. The Temporal-Difference update rule is as follows:

Q(s, a)← Q(s, a) + α
[
Rγ + γ∆tV(s′) −Q(s, a)

]
(9)

s = (t, l) is the current status of the driver, and s′ = (t′, l′) is the state after completing the
order. ∆t represents the sum of the estimated time of pickup, waiting, and delivery process, which
approximately equals t′ − t.

When it comes to action idling, an agent can go to the nearby areas and get no immediate reward.
They are restricted to wander around nine neighbour grids at most. Therefore, s’ equal s + 1, and l’
must be one of the adjacent grids of the l. The TD update rule is computed as:

Q(s, a)← Q(s, a) + α[γV(s′) −Q(s, a)] (10)

Policy improvement: Policies improvement is the optimization stage, corresponding that the
agents choose action with the maximum cumulative reward in the current state. The greedy strategy
was widely used to determine the best action. It can be described as the following: For every
spatiotemporal state s, V(s) = maxa∈AQ(s, a) where Q(s, a) are learned by policy evaluation.
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2.3.2. Dynamic Programming for Policies Learning

Because of massive calculation and iterations, the TD rules seem complicated in this case. The paper
develops an implementation based on dynamic programming (DP) to update the value functions. It is
suitable to take advantage of the data structure. Drivers take action and then finish the transitions
from one state to another. Because of the transitions, the opening state and ending state are connected
by the rewards of transitions. For those states with the same locations index, their value function can
be calculated by other state whose time index is later. The DP algorithm is executed in an inverted
order of time slots. Algorithm 1 describes the process specifically. There are some details needed to
be noticed.
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(1) At the last time index, the V(s) was set zero manually.
(2) The V(s) usually does not equal the expected total revenue that drivers earn on average from the

current state because of the discount factor.
(3) The set

(
si, 0, ri, s′i

)
is produced by the vacant drivers’ historic transition probabilities calculated

from the trajectory data.

Algorithm 1: Policy learning using dynamic programming

Input: Dataset that stores the historical state transitions pair: P =
{
(si, ai, ri, s′i)

}
Output: V(s), Q(s, a)
1: Initialize V(s), Q(s, a), auxiliary matrix N(s, a) as zeros for all state space.
2: Each state consists of a time index and a location index: si = (ti, li).
3: K is the maximum time index.
4: for t = K-1 to 0 do
5: Collect subset Pt =

{
(si = (ti, li), ai, ri, s′i) | ti = t

}
6: for each (si, ai, ri, s′i) in Pt do
7: N(si, ai)← N(si, ai) + 1
8: if ai = 1 then
9: Q(si, 1)← Q(si, 1) + 1

N(si,1)

[
γ∆tV(s′i) + Rγ −Q(si, 1)

]
10: else
11: Q(si, 0)← Q(si, 0) + 1

N(si,0)

[
γ∆tV(s′i) −Q(si, 0)

]
12: end if
13: end for
14: V(s) = MAX(Q(s, 0), Q(s, 1))
15: end for

2.3.3. Transitions Expansion

Some rare states may have an empty historical data set since the orders’ spatiotemporal distribution
is uneven. The more specific the divisions of time and space are, the more serious the problems are.
Generally, transitions pair

(
si, ai, ri, s′i

)
could not have the ability to cover the state entirely. The historic

orders data may not show all possibilities. In some states, there might be a small amount of orders data
starting from there. It is difficult for the RL framework to evaluate the policies sufficiently. In the policy
evaluation progress, the corresponding action-state function value could not be calculated correctly.
As a result, optimal policies are useless there. In the real world, when a driver goes through a state
where few transitions take place, i.e., midnight and remote area, he/she cannot learn from the optimal
policies to make good decisions. More training data can significantly reduce the data sparsity. We use
a unique method, performing an expanded transitions’ search in both spatial and temporal space to
overcome the limitations.

(1) The first search is through spatial expansion. According to Tobler’s First Law of Geography [25],
adjacent geographic entities have similar characteristics. If there are no historic orders data that
started from s = (t, l), the historical dataset is empty. We search within the same time interval to
collect the data from neighbour cells, and those transitions in states s∼ = (t, l∼) were then added
to state s (l∼ is adjacent to the l). Notably, a passenger who failed to get a car could go to neighbour
grids to seek cars. The same as the actual progress, transitions with the same destination may
occur in a nearby area. We can reorganization these transitions to the transition set by replacing
s∼ with s.

(2) The second search is based on temporal expansion. Since the similarity between states with
the same location index and approximate time index, this paper considers that transitions pair
(s∼ = (t∼, l), a, r, s′) could also happen as transitions pair (s = (t, l), a, r, s′) where the difference
between t∼ and t is small. An actual case can explain it. A passenger is willing to spend some
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time waiting for the orders received. Especially in some remote area or low peak period, the time
spent might be extended, causing the orders to be placed later.

The two approaches above are established in the hypothesis that passengers are patient enough.
Algorithm 2 shows the specific algorithm.

Algorithm 2: Transitions expand using spatiotemporal search

Input: Dataset that stores the historical state transitions pair: P =
{(

si, ai, ri, s′i
)}

Output: Expandable transitions set P
1: Initialize Pexp and = {}

2: State space S =
{
s = (t, l)

}
, parameter tlim

3: for each s = (t, l) in S do
4: Collect subset Ps =

{
(si, ai, ri, s′i)|si = s

}
5: if Ps = ∅ then
6: Spatial Search:
7: Find nearby location index set L∼ =

{
l∼

∣∣∣Dis(l∼, l) = 1
}
,, Dis(l∼, l) is the manhattan distance

between l∼ and l.
8: for l∼ in L∼do
9: if Pl∼ =

{
(si, ai, ri, s′i)|si = (t, l∼)

}
, ∅ then

10: Random choose (si, ai, ri, s′i) from Pl∼ , add (snew = (t, l), ai, ri, s′i) to Pexp and
11: go to line 3
12: End if
13: End for 1
14: Temporal Search:
15: for t∼in max(0,t∼ − tlim) to min( K −1, t∼ + tlim) do
16: if Pt∼ =

{
(si, ai, ri, s′i)|si = (t∼, l)

}
, ∅then

17: Random choose (si, ai, ri, s′i) from Pt∼ , add (snew = (t, l), ai, ri, s′i) to Pexp and
18: go to line 3
19: End if
20: End for
21: End if
22: End for
23: P = Pexp and + P

3. Case Study

We utilized the historic orders data in Chengdu to represent how the RL frameworks optimize the
driving policies.

3.1. Data Description and Preprocessing

The taxi orders data collected from Didi ChuXing taxi company has 6,105,003 pieces of record
from the 1st to 30 Nov 2016 in Chengdu city, China. The single-piece data include order ID, pickup
time, drop-off time, pickup location, drop-off location, and order price. The order price is not the actual
price but calculated as evaluated value by DiDi Chuxing’s algorithm.

The main road networks in Chengdu was collected as the background data (Figure 2a). The research
region of Chengdu was then divided into 500 m × 500 m grids for spatial discretization. There were
2700 grids, covering approximately 678 km2. Approximate 5 million pieces of records fall in the
research area. Lack of historic orders originating from there, some grids must be removed. Finally,
1482 grids were left for further experiments (Figure 2b).
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The orders data could be easily broken down into the transition dataset. A set of transition pairs(
si, ai, ri, s′i

)
was then collected from the historic orders data. Transitions of the first 23 days in the

dataset are utilized for training, and the others are left as validation dataset. We focus on the general
solution for all agents, so the driver’s identity was not distinguished, supporting that transactions for
all drivers form a single dataset. It is consistent with that all agents are trained in one progress of policy
learning. Notably, the training data for the proposed model are required to reflect the passengers’
demands. Agents learn from historical experiences to evaluate rewards, caring about the value of
transitions instead of the mode. In other words, the model is flexible that the optimization for cruising
taxis also takes effects in the ride-hailing platform services equally.

3.2. Application Results

The transition data were utilized for policy training. The value function V(s) and Q(s, a) in
each state were computed iteratively by the RL model. The minority of state, Q(s, 0) or Q(s, 1) may
be zero due to the lack of training data. In these states, the missing values demonstrate that the
policies can be affected by the current dataset. If at least one state-action value in one state is obtained,
the policy improvement still works because the maximum one is regarded as the optimal option.
This case may be explainable as the drivers always prefer the optimal option. If Q(s, a) are both zero
in one state, the V(s) is also zero owing to the greedy strategy, which means that no policy can be
deduced. Using the transition expansion algorithm helps reduce missing situations. Without transitions
expansion, approximately 12% of the states had missing values. After using the expansion, the rate of
the incomplete states declined to 5%. More training data can significantly reduce the incompleteness.

It is difficult to reveal the optimal policies by showing Q(s, a) directly as the state space is
two-dimensional. To better reflect the results, we showed the distribution of spatial dimensions
by fixing the temporal dimension. Three-time indexes representing 8:00–8:10 (morning rush hour),
11:00–11:10 (daytime hours) and 18:00–18:10 (night rush hour) were selected by design.

As shown in Figure 3, the Q(s, a) evaluating actions serving and idling, are assigned to each grid cell
at a particular period respectively. Notably, figures used different legends since Q(s, a) has excessive
discrepancies in different figures. Quantile classification was applied for better visualization. At the
same period (i.e., Figure 3a,b), action idling receives a high score in an urban area, but the action serving
usually receives higher scores in the suburbs, especially around the second ring road. More passengers’
resources in urban areas suggest it is more worthwhile for drivers to idle around, seeking potential
orders. Thus, the idling action chosen can eventually bring more profits over the long run.
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On the other hand, the highest scored areas of serving are mostly distributed around the second
ring road. In these areas, passengers are likely to go to more remote areas, leading to long-distance
trips and higher rewards. Besides, the cells with high values of idling action distribute in areas where
transportation hubs are located. The cells with high action serving values have wider distribution,
which explains the hot spots on the ride-hailing services.

As Figure 3a,b shown, during the 8:00–8:10, the idling scores formed a hot spot in the central
city, while the high score of serving was mainly distributed in the main outer ring. In other periods,
the spatial pattern appears similarly, with small differences in the details. This phenomenon can be
explained by the fact that drivers prefer to idle in the central area because of the higher answer rate.
Respectively, the higher prices of orders in remote areas attract drivers to take action serving.

It is worth noting that the value of Q(s, a) will be smaller overall as time goes by. The Q(s, a)
reflects the expected cumulative return in this state to some extent. There is a long-time-interval to the
end, so the driver has more opportunities to complete the orders.

Except for the results above, we also discovered some interesting phenomena from the distributions.
For instance, there is a small region with high Q(s, a) in the north of Chengdu. This phenomenon
shows that there is a high demand for taxis during the morning peak period. By analysing these
areas with high scores, we can explore potential hot spots for urban traffic. Another strange example
is in Figure 3a. According to the analysis above, central areas are more valuable than other areas.
However, some grids with low Q(s, a) appear in the very central city. At 8:00, many taxis have moved
to destinations by the orders answered, which might cause that vehicles are far more than orders in
some grids. In that case, drivers have to grab orders with other active drivers. The value of action
serving becomes lower than in nearby areas, consequently.

3.3. Optimal Policies Analysis

As Figure 4 is shown, the action with the maximum value is preferred as the optimal action.
In this period, grids whose optimal policy is serving occupy most of the central city. According to these
optimal policies, drivers can determine their driving actions in any state. For example, when vacant
drivers start in a specific state, this state’s highest valued action will be recommended. (1) If the value
of serving is higher than value of idling, drivers prefer to receive orders if possible and pick up the
passengers to the destination. However, drivers have to take action idling when there are no available
orders. (2) If the action idling should be chosen, drivers head to one of the neighbour grids with the
highest state function value in the next time index. (3) When drivers are carrying on the passengers,
they must drive directly to the destination. Drivers are not allowed to make other choices, no matter
which action is highest in the cells traversed. After finishing the orders at the ending state, drivers
return to the vacant state and then follow the previous description’s optimal policies. Optimizing
policies only take effects on the vacant drivers. The optimal action in the current state was chosen,
influencing the following states and choices and forming a behavioural decision chain in the long run.

As Figure 5 shown, the difference between the two types of action value is further explored.
The smaller the difference, the more serving is superior to idling. The most excellent grids for serving are
distributed mainly in the centre of the city, and the score declines outward. The grid with the highest
score has some sporadic distribution on the edge of the city. So, it is a wise choice to take action serving
in an urban area while taking action idling is better in marginal areas. For example, when a driver has
a lower serving utility, he/she may even be unwilling to answer the orders since the value function
tells that idling could bring a simple higher monetary revenue. Based on the differences, drivers can
quantity their expected profits of taking one specific action than another.
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4. Simulation

An example by simulating the real world was designed to illustrate the capacity in handling
spatiotemporal optimizing problem.

4.1. Simulation Setup

We imitated the interaction between drivers and orders for an entire day in a virtual environment
constructed by 2700 grids with 5 min each step. For data generation, we aimed to build the
environment positively reflect the realistic traffic patterns. We used the demands from the test dataset.
Orders’ information (starting location, starting time, ending locations, ending time, price) was utilized
to generate the orders’ requests. Drivers’ actions were determined by the simulator, computing the
system results under different driving policies.

The simulation’s fundamental details are organized here:

(1) At each time step, the framework adjusts vacant drivers’ actions according to the policies, while
drivers carrying passengers are not the adjustment objects until they finish orders. In each step,
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vacant drivers have to take two actions: answer order or idle around (staying or moving to one of
the neighbour grids). A driver carrying passengers cannot take other actions until he/she arrives
at the destination. Drivers are restricted from moving vertically or horizontally.

(2) The road conditions are assumed to be similar to the history, so we use the historical travel time
to represent the simulated travel time.

(3) An order is cancelled if not being answered by any driver for 10 min. An order is matched to the
driver when they are in the same grid, respectively.

(4) Taxis are temporarily unavailable during the off-shift periods, so we simulate this situation by
shift Change algorithm, which is proposed by Mustafa Lokhandwala (the same setting can be
found in that paper) [26].

(5) All the taxis enter the system at the beginning. The set makes little impact on the simulated results
because the demand between midnight and the morning rush hour is very low. During this
period, the system has enough time to self-balance the available taxis. The number of taxis was
7000, approximately the number of current taxis in the historical dataset.

(6) The time required for refuelling was considered to be negligible.

We compared the proposed method with four basic methods—a random method, a historic-based
method, a primary RL method [16], a proposed method without expansion. The random method
applied random policy to select actions and movements. The historic-based method collected the
transfer probabilities from the historical data and then made the vacant drivers moving to near grids by
the probabilities. According to realistic policies followed by temporary accidents or drivers’ experiences,
the random method and historical method were set to reflect the actual situation. The primary RL
model was applied for optimizing policies in a simple architecture. The primary model considered the
spatial dimension without a temporal dimension. The proposed method without expansion was set to
show the excellence of data expansion. For quantitative comparison, the paper concentrated on the
answer rate, the total revenue of all drivers and average waiting time. Furthermore, seven experimental
groups using different day data from the test dataset were examined for avoiding contingency (there
are approximate 170,000 orders on the average every day). The final average values were regarded as
evaluation indicators.

4.2. Simulated Result and Discussion

Table 2 shows the comparison results of the five methods. It is not astonishing that the random
method and historic-based method performs similarly, with the lowest scores of the three evaluated
indicators among methods. The policies that depend on historical experiences and temporal situation
suggest the low effectiveness of the purposeless account. The primary RL method even performs worse,
which indicated that the RL framework might not be applied in a simple architecture. The primary RL
method considers the problem without the time dimension. The policies obtained are optimal most
time, but they cannot guarantee the effectiveness for a whole day. Although RL takes advantage of
handling the MDP progress, we still need to understand it thoroughly. Otherwise, the RL framework
may produce error optimization. The proposed method without expansion has slight improvements
thanks to active regulation. However, compared with the proposed method, the method without
expansion is not effective in the long run. Lack of essential data expansion, the policies obtained cannot
explore the state sufficiently. Therefore, drivers receive no optimal strategies in some states, resulting
in that overall optimization does not go far enough. The developed RL method achieves the best
answer rate, total revenue and waiting time. The results are consistent with our optimal goal that a
farsighted consideration improves the overall performance.

We also use the relative percentages in Table 3. The relative value is computed as Equation (11):

relative = (I0 − I)/I × 100% (11)
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where relative is the relative percentage, I0 is the value of indicator obtained from the proposed RL
method, I is the value obtained from the compared method.

Table 2. Simulated results.

Metric Answer Rate Total Revenue Waiting Time(s)

Random method 88.75% 579,205.05 220
Historic-based method 89.35% 582,295.24 220
Primary RL method 69.09% 458,538.14 426
Proposed RL method without expansion 91.90% 603,177.23 164
Proposed RL method 93.01% 615,114.25 160

Table 3. Simulated results using the relative percentage.

Metric Answer Rate% Total Revenue% Waiting Time(s)%

Random method +4.80% +6.20% −27.27%
Historic-based method +4.10% +5.64% −27.27%
Proposed RL method without expansion +1.21% +1.98% −2.44%

The proposed method achieves an increase of 4.8% in answer rate, an increase of 6.2% in total
revenue and a decrease of 27.27% in waiting times at most (primary RL method is not compared due
to its error optimization). Although the improvements seem slight, the proposed method presents a
novel way of optimizing driving policies for cruising drivers when most researchers consider order
assignment and dispatch. We could further achieve more significant improvements by investigating
more spatial and temporal features.

Figure 6 presents the differences in revenue among the RL method and other methods in each
time step. Axis X is the time, and axis Y is the difference of revenue during a specific period. The larger
the difference is, the higher the proposed method’s revenue gets in a single time step. It can be seen
that the RL method acquire higher revenue than the random method and historic-based method in
most time (Figure 6a,b), especially in 10:00–11:30, 14:00–15:00 and 18:00–19:00. There are amounts of
order requests so that optimal policies can produce significant impacts on the revenue. In 0:00–6:00
(night time), order requests are too few to cause an enormous difference. There are few low peaks at
13:00 (afternoon peak), 15:50 (before evening peak), and 16:20 (evening peak) when random policies
and historic-based method has better revenue than the RL method. It can be explained that the random
method and historic-based method sometimes focus on the best choice in the current view, with higher
profits consequently. It is no doubt that the proposed method is better than the primary RL method
overall (Figure 6c). When comparing the proposed method with proposed method without expansion
(Figure 6d), we can find that the former has sight improvements than the latter. Although the curve
fluctuates around y = 0, the difference is above 0 in most time. The proposed method without expansion
is unstable in offering policies, so it eventually is lower than the proposed method.
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4.3. Sensitivity Analysis

We ran several scenarios for analysing the sensitivity of the number of taxis (Figure 7). We set
different taxis numbers from 3000 to 10,000 with 1000’s step. It is not surprising that as the number of
taxis increase, answer rate and total revenue all increase, while waiting time decreases. Similar ranks
appear in each scenario: the proposed RL method has the best performance, with the method without
expansion ranks second. Random method and historic-based method perform similarly, while the
primary method is underperformance all along. When the taxis’ number is less than 7000 (the current
number of taxis in real world), the three indicators have poor values. Especially when the number
of taxis is 3000 (much less than 7000), the indicators are much lower than those in scenarios 7000.
With the extreme unbalance of orders and taxis, the orders are too massive to match available taxis.
Therefore, the policies have little space to achieve the expected optimization. Besides, as the number
of taxis increases, the improvements gradually become smaller. With the number of taxis increase,
the spatiotemporal unbalance between orders and taxis are smaller. The majority of orders can be
answered successfully, so the influences of optimal policies are narrow.
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The results show that the proposed method performs best among the compared methods in
each scenario. The paper suggests how effective the proposed method works in environments with a
different number of taxis through the sensitivity analysis.

5. Conclusions

This paper proposed a novel method falling within reinforcement learning to optimize the driving
policies on cruising taxis services to pursue the maximum profits of drivers and increase the match
rate of drivers and passengers. By formulating the drivers’ behaviours to the MDP process, TD update
rules using dynamic programming and data expansion were applied to calculate the state-action
function value. The proposed method is model-free and globally optimal, thus avoiding that optimal
policies fall into suboptimal. The paper uses the historic orders data to recommend the optimal choice
of idling and serving to drivers at a particular location and time. A simulation environment was also
built to perform detailed modelling of the physical world for the on-demand platform. The results
indicated that the proposed method has reasonable improvements over other benchmark methods,
which provided useful strategies for drivers and system. We also conducted a sensitivity analysis to
figure out how effective the proposed method works in scenarios with different taxis’ numbers.

From the results of the case study and simulation, the main conclusions are made as follows:

• Drivers usually receive more profits when they take action idling in an urban area than in the
suburbs. However, in the ring roads, action serving is more valuable than in urban areas.

• The optimal results help explore the transportation pattern in urban transportation.
• The proposed RL model is proved to be realistic to improve the whole platforms’ total revenue

and increase the orders’ answer rate.
• We can quantify the advantages over other approaches through the revenue’s difference and

sensitivity analysis.

However, this method can be further improved by investigating a more detailed dataset.
More temporal and spatial features may be utilized to enhance performance. Besides, we can
develop the RL on riding-hailing taxis services in the future. Big data and high computing abilities
can also improve the efficiency and accuracy of reinforcement learning. The competitions from other
modes are also interesting research points.
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