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Abstract: Electrical and energy production have a noticeable water footprint, and buildings′ share of
global energy consumption is about 40%. This study presents a comprehensive experimental analysis
of different thermal impacts and water consumption of green roofs in a Mediterranean climate.
The study aims to investigate the use of water directly for green roofs and reduce the water footprint
of energy in summer and winter due to its thermal impacts. The measurements were carried out for an
extensive green roof with an area of 55 m2 and a thickness of 22 cm, and direct water consumption by a
green roof and direct and indirect water consumption by cooling and heating systems were analyzed.
According to the analysis, in summer, the maximum roof temperature on a conventional roof was
72 ◦C, while under the green roof it was 30.3 ◦C. In winter, the minimum roof temperature on a
conventional roof was −8.6 ◦C, while under the green roof it was 7.4 ◦C. These results show that green
roofs affect energy consumption in summer and winter, and the corresponding thermal requirements
for the building have a water footprint regarding energy production. In summer, the thermal
reduction in the water footprint by a green roof was 48 m3 if an evaporative air conditioner is used and
8.9 m3 for a compression air conditioner, whereas the water consumed in the green roof was 8.2 m3.
Therefore, using water directly in the green roof would reduce the energy consumption in buildings,
and thus less water has to be used in power plants to provide the same thermal impact. In winter,
green roofs′ water consumption was higher than the thermal water footprint; however, there is no
need to irrigate the green roof as the water consumed comes from precipitation. This experimental
analysis determines that in the Mediterranean climate, green roofs allow the achievement of the same
thermal conditions for buildings in both summer and winter, with a reduction in water consumption.

Keywords: water and energy; green roofs; Mediterranean climate; water footprint; power plant

1. Introduction

The negative impacts of energy production, especially those by fossil fuels on the environment
and climate change, are remarkable and have been mentioned by many researchers [1,2]. The 2015
electricity production data show that the worldwide share of renewable energy was about 23.1%
(mostly hydroelectric), that for fossil fuels was 66.3% (mainly by coal 39.3%, natural gas 22.9%, and oil
4.1%) and that for nuclear power was 10.6% [3]. At the global level, the total water withdrawal can be
divided into agricultural activities (69%), municipal (12%), and industrial (19%); however, this varies
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considerably between regions as in Europe 21% belongs to agriculture, 57% to industries and 22% to
municipal [4].

One of the largest parts of water consumption in industry is for power plants. The amount of water
supply to produce one kilowatt-hour by a coal power plant is about 1.9 × 10−3 m3. In hydropower
systems, a calculation for Arizona in an arid and semi-arid climate showed that the necessary
water supply for producing each kilowatt-hour was about 0.246 m3, excluding evaporation from the
reservoir′s surface [5]. In 2010, the total water used for energy production was 583 × 109 m3, which
represented 15% of the world’s total water withdrawals, and that year, the total water consumption
was about 66 × 109 m3. According to the predictions, the water withdrawals for energy production
will increase to 20% and water consumption by 85% in 2035 [6,7]. The freshwater consumption for
electricity and heat production for over 150 countries in 2014 was estimated at approximately 52 billion
cubic meters annually [8].

Sand oil production, unconventional gas development, and maintaining oil reservoir pressures
also require water consumption, as well as new energy sources such as solar, wind, and biofuels [6,9,10].
In this context, the water footprint concept, i.e., the volume of water needed for the goods and
service production, is also a crucial indicator [11]. Water availability is crucial for electricity and heat
production, and there exists an important relationship between water and energy: water is necessary for
energy production, and energy is needed for water supply [12]. The water and energy interconnection
can be considered as a multifaceted topic [13]. Natural water is becoming precious and, since it is
necessary not only for human and health concerns but also for production and industrial processes,
mitigation strategies and conscious use are becoming key issues all over the world [14].

Geddes, L. (2020) and Frosini and Nova (2015) explained the historical roots of attentions to
water and nature in Leonardo da Vinci, a form of visual thinking to understanding better nature and
using nature-based solutions [15,16]. Jimenez et al. (2019) analyzed the electricity generating systems
and water–electricity nexus in Ecuador and developed a dynamic method to consider the temporal
fluctuations and water availability. They showed that the water footprint might change according
to the fluctuation in availability, especially in dry periods [17]. Pfister et al. (2020) analyzed water
scarcity and the environmental impact of hydropower plants. Their results show the advantages
of many hydropower reservoirs that store water in the wet season, release it during the dry season,
and underscored the important role of the meteorological condition [18]. Wu et al. (2019) investigated
the water footprint of thermal power in China. Their results demonstrated that the amount of water
consumption in the power plants depends on the type and capacity. Due to many coal-fired power plants
in China, the corresponding share is about 8.4% of the direct freshwater withdrawal [19]. Koura et al.
(2020) investigated the Life Cycle Assessment (LCA) for traditional and extensive vegetative roofs.
Their results show that an extensive vegetative roof has a better water scarcity (based on m3 world eq
representing a cubic meter consumed on average in the world) than a traditional one, 8.85 × 101 m3

world eq compared to 8.65 × 101 m3 [20].
Other similar studies in this field include the water footprint in the energy sector [21–23], electricity

footprint in industry [24,25], the Life Cycle Assessment of the traditional and green roof [26–28],
thermal simulation of the roof [29–31], and the impact of electricity production on regional water
resources [32,33].

1.1. Water–Energy Nexus

This section highlighted the main variables in the analysis of water footprint in electricity,
heat demands, air conditioners, and green roofs.

1.1.1. Water Footprint of Electricity and Heat

The total water footprint in electricity production can be divided as the following [34]:

• The water footprint of the fuel supply per unit of electricity;



Sustainability 2020, 12, 10178 3 of 16

• The water footprint in the construction phase of the power plant based on the life cycle of the
power plant;

• The average water footprint in the operational phase.

The water footprint in electricity production by different types of power plants is presented in
Table 1. The highest amount of water consumed in the fuel supply corresponds to coal power plants,
and during the construction phase of the plants to photovoltaic. In the operation phase, hydropower
uses the highest water amount, in part consuming water by evaporation from stream or reservoirs and
the rest because of water withdrawal. Another critical factor is the type of cooling system in the power
plants. The studies show that, from total global electricity production, 30% is by once-through cooling,
45% by re-circulating cooling, and only 2% by dry-cooling [35]. The water demands for the generation
of electricity in different types of power plants with diverse cooling systems are indicated in Table 2.

Table 1. The water footprint in different types of power plants, m3 of water per GWh [12].

Type Fuel Supply Construction Operation Total

Coal (C) 61–2394 1.2–94 220–5076 282–7563
Natural Gas (NG) 4–126 1.2–4 266–4320 272–4450

Conventional oil
(CO) 72–1965 1.2–94 698–2214 771–4273

Hydropower (HP) N/A 1.1
5400–68,000 5400–68,000 Evaporation

1080–3,059,755 1081–3,059,756 Operation

Geothermal (GT) N/A 7.2 19–2725 26–2732

Wind (W) N/A 0.4–34 0.4–8 0.7–42

Photovoltaic (PV) N/A 19.1–796 4–295 23–1091

Table 2. Water withdrawal (W) and Consumption (C) in power plant cooling systems, m3 of water per
MWh of electricity produced [36].

Type of Power Plant
Once-through Re-Circulating Dry-Cooling

W C W C W C

Coal (conventional) 75–187.5 0.38–1.20 1.89–4.54 1.82–4.16 N/A N/A
Natural gas 28–75 0.08–0.38 0.57–1.07 0.49–1.14 0–0.02 0–0.02

Nuclear 94–225 0.38–1.54 3.03–9.84 2.27–3.03 N/A N/A
Solar thermal N/A N/A 2.70–4.20 2.74–4.20 0.16–0.30 0.16–0.30

1.1.2. The Footprint of Air Conditioners on Energy and Water Resources

Many researchers have analyzed the high electricity consumption in compression air
conditioners [37,38], and some of them suggested that evaporative air conditioners are a green
alternative [39]. While evaporative air conditioners are widely using in dry climates such as those of
the Middle East (mostly with a dry climate and some with Mediterranean climate) and Australia, they
require a considerable amount of water [40]. The result of a study in dry climates, Australia, shows
that the water consumption by an evaporative air conditioner is about 60 liters/hour which is between
2 and 10% of the total annual water usage in a typical Australian household [41]. Another study for an
evaporative air conditioner in Adelaide, Australia, determined an average direct water consumption of
about 0.83 m3/day [42]. These values are remarkable for a country such as Australia with a dry climate
and around 45% of households using rainwater tanks [43,44].

An analysis of the evaporative air conditioner in California, USA, in dry climate shows that
this type of cooling method contributes by about 10% to the annual water usage of a household [45].
The analysis in another country with a dry climate, Mexico, shows similar results. The direct water
consumption for an evaporative air conditioner with a capacity of 6800 m3/hour, suitable for a 60 m2
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house, was about 0.8 m3/day [46]. The power and water consumptions in different air conditioners are
presented in Table 3.

Table 3. Power consumption in two types of air conditioner for different house areas up to 140 m2 [40].

House
Area (m2)

Type of Air
Conditioner

Thermal
Capacity

Power Consumption of
the Devices (W)

Direct Water
Consumption (L/h)

Up to ≈60 Compression 9000 1100 N/A
Evaporative 3500 (m3/h) 530 35

Up to ≈110 Compression 20,000 2500 N/A
Evaporative 5500 (m3/h) 690 53

Up to ≈140 Compression 24,000 3000 N/A
Evaporative 9360 (m3/h) 950 59.4

Some factors must be considered to calculate the water and power consumption by air conditioners,
as follow [40]:

• The daily usage of the air conditioner;
• The direct water consumption by evaporative air conditioners;
• The power consumption by the compression air conditioner and evaporative cooler;
• The indirect water consumption (water withdrawal and evaporation) in the power plants for

generating the electricity;
• The type of power plant and type of cooling system.

1.2. Green Roofs and Saving Energy in the Buildings

The share of buildings in total global energy consumption is about 40% [47]. Green roofs are
a natural cooling method with a high potential to make energy consumption and roof temperature
decrease [48]. However, in a dry climate, the water demands of the green roofs in the summer cannot
come totally from precipitation and, in some cases, irrigation might be required [49]. The amount
of irrigation depends on the goal for using green roofs since the green roofs can be used for several
purposes, such as urban runoff, flood management, and energy management [50–56]. Therefore,
optimization is necessary to determine the best amount of water for cooling/heating and urban water
management purposes [57–60].

The type of green roof can be extensive or intensive [61,62]. In extensive green roofs, the soil layer
is less than 20 cm with minimal maintenance, whereas, in intensive green roofs, the soil layer is more
than 20 cm, so that plants with longer root lengths can be used [51].

The analysis showed that a dynamic thermal model could be used to determine the heat transfer
in houses with a green roof, and the reduction in the thermal load by a green roof can be used for
economic analysis [63]. An analysis of energy reduction by green roofs in three localities in Southern
Italy (Calabria region) with Mediterranean climate shows that the maximum energy loads were reduced
in summer and winter, 69% and 43%, respectively [64]. Another study in the Mediterranean climate
shows that the green roof can decrease the annual need for energy by 30 to 70%, depending on the type
of green roof and the layers [65].

From this overview, emerges the key role played by the interdependency of energy and water
and the innovative and sustainable approaches to decrease the footprint of electricity and heat can be
analyzed. A promising strategy in this direction is to look to the green roof as a tool to save energy in
the buildings. However, although several studies analyzed the thermal benefits of green roofs, their
efficiency in decreasing water footprint has not been widely investigated. This paper′s novelty is that
we compared the water used to produce electricity in Italy and direct water consumption by green
roofs that could decrease the need for energy and electricity. Therefore, to overcome the scientific gap,
our paper presents a comprehensive experimental analysis of different thermal impacts and green
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roofs′ water consumption in a Mediterranean climate. The study will analyze the measurements
carried out in an extensive green roof located at the University of Calabria (in Southern Italy) regarding
direct water consumption by green roofs and direct and indirect water consumption by cooling and
heating systems. The study′s main aim is to analyze the feasibility of the direct use of water on the
green roof to reduce water footprint in energy production due to the green roof′s thermal impacts in
summer and winter. The other aim of the study is investigating the contributions of the type of air
conditioner system to indirect water consumption (in the power plants) and the feasibility of applying
green roofs to reducing the use of water, achieving the same thermal conditions for the buildings.
Therefore, according to the aims, we will analyze first the water footprint of electricity (in the selected
case study which is Southern Italy with a Mediterranean climate), and the water consumption by green
roofs. We will then calculate the water footprint for cooling and heating systems with and without a
green roof to compare the results with the direct water consumption by green roof. The results show
the answer to the study aims.

2. Materials and Methods

2.1. The Water Footprint of Electricity in Italy

Table 4. presents the electric production by sources in Italy for 2016. From 2007 to 2016, the share
of renewable energy in Italy increased from about 15% to about 35% [34]. The highest share in 2016
(49.6%) corresponds to natural gas. Among the total renewable electricity sources, the main share
belongs to hydropower. Together, these two sources have the highest share (66.3% in 2016) of total
electricity production in Italy.

Table 4. Electric production by source for 2016 in Italy [34].

Type
2007 2016

GWh % GWh % GWh % GWh %

Fossil
Coal 44,112 15.6

239,623 84.9
35,608 14.0

165,883 65.2Natural Gas 172,646 61.2 126,148 49.6
Conventional oil 22,865 8.1 4127 1.6

Renewable

Hydropower 32,815 11.6

42,457 15.1

42,432 16.7

88,514 34.8
Geothermal 5569 2.0 6289 2.5

Wind 4034 1.4 17,689 7.0
Photovoltaic 39 0.01 22,104 8.7

Total 282,080 100 254,397 100

The water footprint of electricity by the source in Italy determines that the main percentage
belongs to the renewable ones because of the massive amount of water usage in hydropower generation.
However, the hydropower plants′ water consumption depends on the local climate and surface size of
the reservoirs [12,34].

2.2. The Experimental Site

The analysis is based on the experimental data collected in 2016 on an extensive green roof located
at the University of Calabria (Southern Italy, Mediterranean climate). The selected experimental green
roof area is equal to 55 m2, and the type of green roof is extensive, covered with native Mediterranean
plant species. The different layers and thickness are described in Figure 1. The total thickness is
220 mm.
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Figure 1. The experimental extensive Green Roof.

Several papers discussed various aspects of our experimental set up of the green roof. More
in detail, Palermo et al. (2019), described the hydrological monitoring and experimental elements
of the green roof [51]. A deepening on the flow measurement device can be found in Piro et al.
(2019) [54]. Garofalo et al. (2016) examined through a statistical regression analysis the most influencing
hydrological parameters [66], and Maiolo et al. (2020) analyzed the temperature fluctuations in different
layers of the green roof [56].

2.3. The Analysis Method

The analysis flowchart is presented in Figure 2. The evaporation from the soil media and
evapotranspiration from the green roof will decrease the roof and indoor temperature, and in this
cooling mechanism, water will be used. The amount of water usage in the green roof for thermal
reduction in the bellowed area has been compared with the corresponded water footprint for electricity
reduction in the same area. In fact, we used actual water consumption by plants through measurements,
which also depends on the weather conditions and changes daily, and the actual water consumption
for thermal purposes and electric consumption. In this regard, the result would be more accurate than
other analyses by calculations of each element′s water footprints during the life cycle but missing the
role of climate factors.

The analysis method for calculations is as follows:

• The differences among the roof temperature with or without the green roof analyzed to demonstrate
the impact of the green roof in summer and winter;

• The calculations of the water withdrawal and consumption for producing electricity, based on the
data presented in Table 1 (which is the water consumed for the LCA) and Table 2 (which is the
water withdrawal and consumption in power plant cooling systems during operation);

• The calculations of water and power consumption for air conditioners are based on the data
presented in Table 3;

• The calculations for different power plants are based on Italy’s electric production data by the
source presented in Table 4. We used the 2016 data because that same year was considered for the
green roof data analysis;

• The amount of thermal energy reduction by the green roof is based on the results of modeling
by TRNSYS (energy simulation software) for the same green roof by Mazzeo et al. (2015) [64]



Sustainability 2020, 12, 10178 7 of 16

and Bevilacqua et al. (2020) [53]. In this regard, the considered reductions in the energy value in
summer and winter are 64% and 37%, respectively;

• Water consumption by the green roof in a continuous period, i.e., during 2016, is given by the
difference between the inflow (precipitation plus irrigation) and runoff. Therefore, it was calculated
on the basis of water balance on the experimental green roof and not the evapotranspiration
values (water consumption of the green roof = precipitation + irrigation − runoff);

• The conventional roof is a standard roof located beside the same size extensive green roof;
• The daily hours that the thermal system is turned on is 14 h (from 5 a.m. to 7 p.m.);
• The number of inhabitants and heat islands is not the topic of this paper and is not considered.
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3. Results and Discussion

3.1. The Impact of the Green Roof on Roof Surface Temperature

The average, maximum, and minimum daily roof temperature differences with and without the
green roof in summer and winter are presented in Figure 3. The analysis shows the differences between
the surface temperatures (for a conventional roof) and the bottom of the green roof. Summer and
winter analysis comparing conventional and green roofs determined that the roof surface temperature
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moderation is notable. In summer, the maximum roof temperature on the conventional roof was 72 ◦C,
while under the green roof it was 30.3 ◦C. In winter, the minimum roof temperature on the conventional
roof was −8.6 ◦C, while under the green roof it was 7.4 ◦C. The maximum difference was about 38 ◦C
in summer and 16.5 ◦C in winter. Moreover, the conventional roof temperature fluctuations were very
high, whereas the maximum and minimum values were close to each other in the green roof.

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 18 

• The conventional roof is a standard roof located beside the same size extensive green roof; 
• The daily hours that the thermal system is turned on is 14 h (from 5 a.m. to 7 p.m.); 
• The number of inhabitants and heat islands is not the topic of this paper and is not considered. 

3. Results and Discussion 

3.1. The Impact of the Green Roof on Roof Surface Temperature 

The average, maximum, and minimum daily roof temperature differences with and without the 
green roof in summer and winter are presented in Figure 3. The analysis shows the differences 
between the surface temperatures (for a conventional roof) and the bottom of the green roof. Summer 
and winter analysis comparing conventional and green roofs determined that the roof surface 
temperature moderation is notable. In summer, the maximum roof temperature on the conventional 
roof was 72 °C, while under the green roof it was 30.3 °C. In winter, the minimum roof temperature 
on the conventional roof was −8.6 °C, while under the green roof it was 7.4 °C. The maximum 
difference was about 38 °C in summer and 16.5 °C in winter. Moreover, the conventional roof 
temperature fluctuations were very high, whereas the maximum and minimum values were close to 
each other in the green roof. 

  

(A) average daily roof surface temperature with and without green. 

  

(B) maximum and minimum daily roof temperature. 

Figure 3. Thermal impact of green roof in summer and winter. 

3.2. The Footprint of Water for Cooling and Heating Systems with and without a Green Roof 

Figure 3. Thermal impact of green roof in summer and winter.

3.2. The Footprint of Water for Cooling and Heating Systems with and without a Green Roof

We calculated and present in Table 5 water and power consumption for thermal systems for an
area of 55 m2 (the size of green roof) with and without the green roof together with the correlated water
footprints for the different types of power plants.
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Table 5. Water and power consumption systems for an area of 55 m2 in summer and winter with and without a green roof.

Season Type of Roof Type of Air
Conditioner

Direct Water
Consume

(m3)

Power
Consume

(kW)

Type of
Power
Plant

Indirect Water
Consumed in

Power Plants (m3)

Total Water
Consumed

(m3)

Water Withdrawal
(m3)

Re-Circulating Once-through

Summer

Without green
roof

Evaporative air
conditioner,
3500 (m3/h)

530 W

45.6 690 *

C 0.19–5.22 71.2 2.22 90.57
NG 0.19–3.07 70.1 0.57 35.54
CO 0.53–2.95 70.4 - -
HP 3.73–57.27 100.7 0.75–2111
GT 0.02–1.89 69.3 2.42 N/A
W 0–0.03 68.4 N/A N/A
PV 0.02–0.75 68.7 N/A N/A

Compression air
conditioner,

1100 W
N/A 1432 **

C 0.40–10.83 5.82 4.61 188.0
NG 0.39–6.37 3.58 1.17 73.8
CO 1.10–6.12 4.16 - -
HP 7.73–118.87 67.17 1.55–4382
GT 0.04–3.91 1.99 5.01 N/A
W 0–0.06 0.03 N/A N/A
PV 0.03–1.56 0.81 N/A N/A

With green
roof

Evaporative air
conditioner,
3500 (m3/h)

530 W

16.4 248

C 0.07–1.88 25.6 0.80 32.6
NG 0.07–1.11 25.2 0.20 12.8
CO 0.19–1.06 25.3 - -
HP 1.34–20.62 36.3 0.27–760
GT 0.01–0.68 25.0 0.87 N/A
W 0–0.01 24.6 N/A N/A
PV 0.01–0.27 24.7 N/A N/A

Compression air
conditioner,

1100 W
N/A 516

C 0.15–3.90 2.10 1.66 67.7
NG 0.14–2.29 1.29 0.42 26.6
CO 0.40–2.20 1.50 - -
HP 2.78–42.79 24.18 0.54–1577
GT 0.01–1.41 0.72 1.80 N/A
W 0–0.02 0.01 N/A N/A
PV 0.01–0.56 0.29 N/A N/A
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Table 5. Cont.

Season Type of Roof Type of Air
Conditioner

Direct Water
Consume

(m3)

Power
Consume

(kW)

Type of
Power
Plant

Indirect Water
Consumed in

Power Plants (m3)

Total Water
Consumed

(m3)

Water Withdrawal
(m3)

Re-Circulating Once-through

Winter

Without green
roof

Electrical Heater N/A 1084

C 0.31–8.19 4.40 3.49 142.2
NG 0.29–4.82 2.71 0.89 55.8
CO 0.84–4.63 3.15 - -
HP 5.85–89.93 50.82 1.17–3315
GT 0.03–2.96 1.51 3.79 N/A
W 0–0.05 0.02 N/A N/A
PV 0.02–1.18 0.62 N/A N/A

With green
roof

Electrical Heater N/A 682

C 0.19–5.16 2.77 2.19 89.5
NG 0.19–3.03 1.70 0.56 35.1
CO 0.53–2.91 1.98 - -
HP 3.68–56.61 31.99 0.74–2087
GT 0.02–1.86 0.95 2.39 N/A
W 0–0.03 0.01 N/A N/A
PV 0.02–0.74 0.39 N/A N/A

* 690 KW (Power consumed in summer by evaporative air conditioner) = (530 W × 14 h × 31 Days × 3 Months)/1000. ** 1432 KW (Power consumed in summer by compression air
conditioner) = (1100 W × 14 h × 31 Days × 3 Months)/1000.
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In Table 5, the indirect water consumed in power plants and total water consumed are calculated
according to the data presented in Table 1, and water withdrawal is based on two cooling systems of
the powerplants based on the data presented in Table 2.

The differences between the consumptions with and without the green roof allow the calculation
of the water footprint for reduced energy in Summer and Winter. The results are presented in Table 6.

Table 6. The total amount of power and water reduction in summer and winter by the green roof.

Season Type of Air
Conditioner

Type of
Power Plant

The Total Reduction
in Power

Consumption (kW)

The Total Reduction
in Water

Consumption (m3)

The Total Reduction in
Water Withdrawal (m3)

Re-Circulating Once-through

Summer,
energy

reduction
equal to 64%

Evaporation
air conditioner

C

442

45.5 1.4 58.0
NG 44.8 0.4 22.7
CO 45.0 - -
HP 64.5 0.5 1351.3
GT 44.4 1.5 N/A
W 43.8 N/A N/A
PV 44.0 N/A N/A

Compression
air conditioner

C

916

3.72 2.95 120.30
NG 2.29 0.75 47.21
CO 2.67 - -
HP 42.99 0.99 2804.60
GT 1.28 3.21 N/A
W 0.02 N/A N/A
PV 0.52 N/A N/A

Winter,
energy

reduction
equal to 15%

Electrical
Heater

C

402

1.63 1.29 52.70
NG 1.00 0.33 20.68
CO 1.17 - -
HP 18.83 0.43 1228.49
GT 0.56 1.41 N/A
W 0.01 N/A N/A
PV 0.23 N/A N/A

3.3. Water Consumption of Green Roof

Water consumption and water balance of the experimental green roof are shown in Figure 4.
The irrigation period in the green roof was from June to October (June 2016 to October 2016). The water
consumption amount also changed monthly. The total consumption can be calculated by multiplying
the values of Figure 4 by the surface area of the experimental green roof (55 m2).
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3.4. Comparison between Water Consumption by Different Systems

The water consumption by the green roof for summer and winter was compared with the water
footprint for reducing thermal values after using the green roof, and the results are presented in
Figure 5. The total water consumption by the green roof was 8.2 m3 in summer and 7 m3 in winter.
In Figure 5, we considered each type of powerplant role separately, and in Figure 6, the share of
each type in the total power production. The minimum water consumption corresponds to the wind
powerplant and the next one to the photovoltaic powerplant. The analysis demonstrated that the
evaporative air conditioner′s water usage in summer is higher than the green roof. This is because
the share of the direct water usage in the evaporative air conditioner is much higher than the water
footprint for the electric consumption in the powerplants. In the case of using the compression air
conditioner, the green roof′s water consumption was more than for all types of powerplants except
the hydropower. This might be because the evaporation from the dam’s reservoirs is larger than the
evapotranspiration by plants. In winter, the green roof′s water consumption was higher than the water
footprint of the electric heater for all types of powerplants except the hydropower.
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Figure 6 shows the thermal water footprint according to the share of each powerplant in total
electrical production in Italy.

The result shows that in summer, the thermal reduction′s water footprint due to the use of
the green roof in the case of the evaporative air conditioner was 48 m3, and for the compression
air conditioner was 8.9 m3, whereas in the green roof, the value of water consumed was 8.2 m3.
This indicates that by using water directly for green roofs in summer, less water has to be used in
the power plants because the water footprint for the thermal reduction is larger. In winter, the water
consumption by green roofs was higher than the water footprint in the powerplants; however, we recall
that the green roof requires irrigation only in summer and for the winter uses precipitation.

4. Conclusions

This study proposes a comprehensive experimental analysis of the different thermal impacts and
water consumption of green roofs in a Mediterranean climate. The measurements were carried out
on an extensive green roof with a total thickness of 22 cm. Direct water consumption by green roofs,
and direct and indirect water consumption by cooling and heating systems were analyzed. The results
of the study showed that when using the green roofs in the buildings and to analyze the water and
energy correlation, many factors must be considered, such as type of power plants in the region, type of
the cooling systems in the power plants, the type of the cooling and heating systems in the building
and finally the water consumption by the green roof. The analysis demonstrated that comparing the
water consumption by green roofs and the water footprint of thermal systems in the buildings can
provide the basis for choosing the optimum system.

The study demonstrated a novel method in the analysis of thermal water footprint by considering
the real water consumption by plants through measurements, which also depends on the weather
conditions and changes daily, and the water consumption for producing electricity in the power plants.
In this regard, the result would be more accurate than calculations of each element′s water footprint as
the role of climate factors cannot be considered.

The roof temperature analysis results show that the green roof temperature fluctuations decrease
and moderates the roof surface temperature, with a remarkable impact in the summer. Moreover,
the green roof makes the thermal requirement decrease. This thermal reduction′s water footprint
was less than the required water for irrigation of the green roof in summer. In winter, the water
consumption by green roofs was higher than the water footprint in the power plants, but the green
roof needs only irrigation in summer because, in winter, it uses precipitation.

In conclusion, the experimental analysis shows the impact of green roofs in decreasing the heat
and electricity consumption in summer and winter and reducing the water footprint for electricity
production in summer. Therefore, it seems that instead of using water for the production of electricity,
less water might be used directly in the green roof, whilst still providing the same thermal behavior for
the buildings.
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