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Abstract: Building information modeling (BIM) is an emerging technique in the construction industry.
It is regarded as an effective approach for green building development; however, its effectiveness has
not been sufficiently investigated from a lifecycle perspective. To bridge this research gap, this study
investigates BIM application value in different phases of a green building through a convolutional
neural network (CNN) method. To begin with, an assessment framework was developed with
the consideration of balancing the estimation accuracy and the data size. Then, the validity
of the developed model was verified from both theoretical and practical perspectives. Finally,
the effectiveness of BIM was tested using the proposed framework. Results showed that the overall
score of the tested project was four in the five-point Likert scale, with an average relative error less
than 1%. From a value-based perspective, it is revealed that the application value of BIM represented
a descending order throughout the lifecycle of the tested project. In addition, it is found that the
functional value obtained the highest score, whereas social value was at the bottom. The findings of
this study can help decision makers to detect the weaknesses of BIM implementation during green
building development.

Keywords: green buildings; building information modeling; application value; CNN model

1. Introduction

Building-related primary energy consumption is the major driver responsible for global climate
change. Globally, it accounts for nearly half of aluminum consumption, more than 40% of steel
consumption, and 20% of commodity energy consumption [1,2]. As a consequence, mitigating adverse
environmental impact from the building sector is challenging. In China, buildings consumed nearly
28% of the country’s total energy from a life cycle perspective, with the operational stage alone
accounting for approximately one-fifth [3,4]. In this circumstance, green building (GB), which refers to
places that invest great efforts in less resource-intensive materials, techniques, devices, and services in
comparison with traditional buildings, has received growing attention from industry practitioners
and academic researchers [5–7]. To date, relevant research on GB mainly includes four aspects,
namely, (1) GB definition, which entailed great efforts in conceptualizing the function, organization,
and structure of GB from construction and environmental perspectives [8,9]; (2) GB evaluation, which
focused on developing life cycle evaluation tools for obtaining GB rating and certification [10,11];

Sustainability 2020, 12, 9988; doi:10.3390/su12239988 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://dx.doi.org/10.3390/su12239988
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/23/9988?type=check_update&version=2


Sustainability 2020, 12, 9988 2 of 20

(3) GB optimization, which aimed to improve the schedule, cost, and productivity performance and
minimizes the potential risk of GB projects [12–14]; and (4) green technology implementation, which
proposed to detect the synergy, feasibility, and effectiveness of advanced technology in promoting
GB performance [15]. Current studies feature an in-depth discussion of the notation, development,
certification, and management of green buildings with a wide range of practical demonstrations.

However, with the rapid development of information, integrating information technology with
green buildings is important. Building information modeling (BIM), which is characterized by
data-intensive and intelligent features, is a computer-based process for visualizing and simulating a
facility, with advantages in information extraction and analysis [16,17]. BIM allows the integration
and sharing of multidisciplinary knowledge that covers architecture and engineering, thus benefiting
life cycle building optimization [18]. Consequently, integrating BIM with green buildings alleviates
information isolation in the design, construction, and operation stages, which can help achieve a
balance between green technology and green management [19].

A vast body of work has focused on the challenges and opportunities toward future scenarios
brought by BIM implementation in buildings [20,21]. BIM technology takes advantages in providing
real-time and visual-aid simulation data and intuitive visualization information, so as to facilitate
knowledge exchange and sharing between departments, and to reduce the design alteration and
construction rework of a project [22]. Previous research has made intensive investigations of life cycle
benefits induced by implementing BIM [23], including planning optimization and site selection [24,25],
collaborative design efficiency improvement [26,27], dynamic onsite construction management [28],
and innovative property management [29].

Furthermore, integrating information technologies into the GB domain has raised concern
worldwide [30]. From a demand perspective, green buildings require integrated simulations with due
consideration of energy use, daylighting, and ventilation, which place the compatibility, particularly
that related to the incorporation of relevant software and data for visualization, under great pressure.
Thus, BIM implementation enables the coordination of technologies from multiple sources and
improves collaboration accuracy and efficiency among stakeholders. From a life cycle perspective, BIM
achieves integrated management among different life cycle stages, which is conceptually consistent
with the GB that is committed to achieve life cycle green management [29]. Specifically, achieving
sustainable objectives of green buildings needs a comprehensive and systematic understanding
of information for materials and devices [31]. BIM technology provides integrated solutions for
coordinating and optimizing such information to achieve energy conservation and emission reduction
of buildings. Given the similarity and feasibility of BIM in energy and environmental performance
analysis, studies attempted to apply BIM in green buildings.

Regarding research objects, Ansah, et al. [32] indicated that BIM applications in green buildings
concentrated on energy simulation, carbon emission assessment, indoor and outdoor environmental
quality analysis, light pollution assessment, and renewable materials quantification. Gao, et al. [33]
developed a BIM-based building energy modeling (BEM) method by investigating data transmission
between BIM and BEM. On this basis, Pezeshki, et al. [34] extended MEM by arguing that lacking
interoperability between BIM and BEM would impede the development and delivery of energy
projects. Jalaei and Jrade [35] developed an automatic model to investigate environmental impacts
and embodied energy use of building components by combining BIM, life cycle assessment, energy
simulation tool, and GB rating system. From a life cycle perspective, BIM applications may involve the
exchange and sharing of information in the design, production, construction, and operation stages
of green buildings. For instance, El-Diraby, et al. [36] made use of BIM-enabled GB design method
and GB analytical tools to optimize the design by simulating solar radiation, daylighting, natural
ventilation, and acoustics. Wong and Zhou [29] built a BIM-assisted supervision system for green
construction by collecting onsite management data with GIS positioning, LIDAR, and point-cloud
techniques. Chen, et al. [37] created a 3D modeling method to achieve visualized supervision and
multilayer warning during the operation of green buildings.
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However, previous research has focused on the practical and empirical application of BIM in green
buildings, and there is a lack of an in-depth understanding of the effectiveness of BIM implementation
from a lifecycle perspective. An accurate and time-efficient assessment of the application value of
BIM is beneficial for identifying practical effectiveness and realistic problems in the decision-making
process involved in projects. Thus, this study aims to evaluate the application value of BIM in different
stages of a green building.

To detect the effectiveness of technology application, traditional estimation methods such
as analytic hierarchy process (AHP), neural network method, data envelopment analysis (DEA),
and support vector machine (SVM) are normally used. Table 1 shows the basic principle and
features of each method. In fact, AHP has been widely used in effectiveness evaluation that help the
researcher facing a complex problem with multiple conflictions and subjective criteria. However, this
method relies on subjective judgment, thus suffering from biases from experts [38,39]. DEA utilizes
a linear programming method to address the joint effects of multiple input and output variables on
efficiency estimation [40]. However, this method has weaknesses in non-linear fitting. In addition,
the estimation derived from SVM is determined by the number of support vectors instead of the
dimension of data, thus being limited by convergence rate and resource availability [41]. Compared with
other counterparts, the neural network analytical method is effective in resolving non-normal non-linear
assessment issues without the restriction of rational assumptions [42]. This method has advantages in
non-linear mapping, self-learning, and generalization when encountering machine-learning-related
problems [43]. Against this backdrop, neural networks are widely adopted in estimating and predicting
the effectiveness of technology implementation [44,45].

Table 1. Comparative analysis of different assessment methods.

Method Principle Feature

AHP
A model for providing comprehensive
results by adopting paired comparisons
between items and criteria

Capable of accommodating multiobjective,
multistandard, multifactor, and multilevel
complex issues in qualitative and
quantitative systems

DEA
A linear programming method to assess
the efficiency by measuring the distance
relative to a non-parametric frontier

Capable of transferring multiple variables
into one efficiency score index without
knowing the information on
variable weights

SVM
A dualistic classification-based
generalized linear classifier by processing
data with supervised learning

Feasible for scenarios with appropriate and
representative real data without
pre-assumption of independence between
the input features

BP neural network

A multilayer dynamic feed-forward
network to predict the results by
minimizing the disparities between
estimations and the actual data

Embedded with strong learning ability and
data storage ability with the input layer,
hidden layer, and output layer

Despite the superiority of neural network in estimations, further improvements can be made from
a theoretical perspective [46]. Therefore, convolutional neural network (CNN) has been developed
by combining the advantages of deep learning, which enables to mitigate the reliance on subjective
judgment by expertise. This method is a feed-forward neural network armed with convolutional
computation allowing for shift-invariant classification [47]. To date, CNN is widely applied in image
identification, defect recognition, and object detection [48,49]. However, this method may suffer
from poor consistency between actual and predicted estimations when the training set is insufficient.
In this study, CNN is employed to automatically identify the life cycle features of BIM implementation
with a comparatively large scale of the training set.

In summary, to address the misinterpretation of real application value of BIM in green buildings,
this study employed CNN to detect life cycle performance of BIM by establishing an integrated
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assessment framework that covers the design, construction, and operation stages. The findings of
this study can provide solid foundations for value-oriented improvement strategies and deepen the
integration of BIM with green buildings, which is beneficial for achieving green and information-led
industrial transitions in the construction industry.

2. Methods and Data Collection

2.1. Framework Development

This study develops a CNN-based assessment framework for evaluating the effectiveness of
BIM application in green buildings. The whole framework can be divided into three subsystems
from a life cycle perspective, namely, design, construction, and operation subsystems (See Figure 1).
In the framework, the core values needed to be maximized, and the stakeholders involved for value
improvement vary as the stages change, which is result of the evolutionary dynamics of green
buildings [50]. Based on previous research, we have preliminarily summarized the possible actors
influencing the BIM application in green buildings. Subsequently, we took a further step to identify the
most influential actors for the BIM application by interviewing professionals and experts from academia
and industry. In this survey, 200 questionnaires were distributed and 182 of them were collected with
the response rate at 81.5%. The interviewees were firstly required to select the most influential actors
for BIM application in green buildings. Then they were required to allocate all core actors into different
lifecycle stages. As a result, the core actors influencing the application value of BIM in the design
stage of green buildings are investors, the public, and end-users. In the construction stage, the core
actors include clients, designers, contactors, and surrounding communities that are possibly influenced
by the target project. In the operation stage, the core actors consist of end-users, investors, property
companies, and the public. In general, the purpose of BIM application in green buildings is to achieve
the sustainability in building’s whole lifecycle. As a result, the values we aimed to achieve by BIM
implementation, undoubtedly, are highly related to the triple-bottom-line sustainability, namely the
intrinsically interacted economic, environmental, and social aspects of buildings [51]. Apart from this,
additional types of values should be further identified by taking into consideration the distinct features
of BIM and green buildings. To achieve this, a comprehensive literature review is taken to identify key
value factors during a building’s whole life cycle. Iacovidou et al. [52] indicated that BIM is capable of
digitalizing functional information and can enhance the safety management performance of a building
project. Barni, et al. [53] demonstrated the importance of multientity (e.g., physical) value network in
the whole value chains during digitalization process. Marefat et al. [54] demonstrated the positive
effect of BIM in managing safety in construction projects. Bosch et al. [55] emphasized the importance
of BIM for maintaining and managing the operation stage of buildings. Therefore, in addition to the
economic (EV), environmental (EnV), and social values (SV), this study also examines the functional
(FV), physical (PV), safety (SaV), and management values (MV) of BIM application in green buildings.

On the basic principles of value breakdown system, this study summarized factors that may
influence the value performance of green buildings at different stages (See Table 2). The draft factor
index was developed by reviewing previous research relevant to the effectiveness assessment of BIM
application. Then the factor index was further refined and improved by inviting professionals and
experts from industry and academia.
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Figure 1. Integrated framework for life cycle value assessment of building information modeling (BIM)
implementation in green buildings.

Table 2. Factors influencing value performance and their related actors.

Stages Factors Codes Description Actors

Design

EV

EV1 Investment return and interest payable In 1

EV2 Improve capital and resource efficiency In; P 2

EV3 Save design cost and reduce design errors In; E 3

EV4 Achieve long-term development with
low-investment risk In

FV

FV1 Improve stability, durability, and feasibility
of buildings E

FV2 Technical convenience and service quality by
using BIM E; PC 4

FV3 Technical coordination by using BIM E; Con 5

SV

SV1 Save public expenditure P

SV2 Improve public cognition of BIM P

SV3 Accelerate green building evaluation process P

EnV

EnV1
Minimize negative impacts on atmosphere,
waterbody, acoustic, and bio-ecology through
elaborated design

In; P

EnV2 Improve the surrounding natural environment In; P

EnV3 Improve the efficiency of natural resource utilization In; P

Construction

EV

EV1 Minimize construction cost C 6

EV2 Achieve profit balance between different
stakeholders D 7; Con

EV3 Improve financial performance C

PV

PV1 Optimize construction quality C

PV2 Meet the schedule of target objectives C

PV3 Achieve target design functions Con

SaV

SaV1 Ensure onsite construction safety C

SaV2 Prevent serious safety accidents C; Con

SaV3 Ensure the safety of surrounding communities SC 8
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Table 2. Cont.

Stages Factors Codes Description Actors

FV

FV1 Apply clean and new energy technology C; Con

FV2 Optimized design with room for further
development D

FV3 Drawings have good workability D

FV4 Technical innovation in construction management Con

FV5 Feasibility and maturity of new construction
technologies Con

SV

SV1 Minimize negative influence on surrounding
communities SC

SV2 Achieve coordination, cognition, and approval from
surrounding communities SC

SV3 Compensation for people harmed by the project SC

EnV

EnV1 Use of green materials Con

EnV2 No serious pollution caused in surrounding sites
during construction C

EnV3 Reduce unnecessary use of natural resources Con

EnV4 Protect local ecological and natural environment SC

Operation

EV

EV1 Desirable operational profit PC

EV2 Reduce operational cost PC

EV3 Stable operational financial support In

EV4 High investment return rate In

EV5 Price of products and services PC; E

SV

SV1 Improve technical standard and specification of BIM PC; In

SV2 Advance green building evaluation for
operational stage P; PC

SV3 Enhance certification of end-users E; P

EnV

EnV1 Improve surrounding ecological and natural
environment P

EnV2 Minimize impacts on atmosphere, waterbody,
acoustic, and bio-ecology with elaborated operation E; P

EnV3 Use of green facilities and devices PC; E

EnV4 Improve natural resource utilization efficiency PC; E; P

FV

FV1 Achieve green performance of buildings E; P

FV2 Improve renewal ability of projects PC; E

FV3 Improve operational and technical capability
of projects PC; P

MV

MV1 Building information management PC; E

MV2 Improve equipment management PC

MV3 Enhance public safety management PC 4; E 3

MV4 Improve smart management PC 4; E 3

1 In: investors, 2 P: the public, 3 E: end-users, 4 PC: property companies, 5 Con: contractors, 6 C: clients, 7 D: designers,
8 SC: surrounding communities.

2.2. Development of CNN-Based Assessment Model

The whole computational model consists of three parts. The first part involves data collection
and consolidation, which aims to obtain input data from questionnaire surveys. The survey is based
on a five-point Likert scale, in which experts are instructed to give intuitive points on all indicators.
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The second part proposes to develop a CNN-based computational model, which will be detailed in the
next section. The third part validates the feasibility of the developed model in a real case.

The traditional computational process of neural network is developed by the multiply operation of
matrix with weights automatically allocating to input, intermediate, and output variables individually.
This manipulation has undoubtedly increased the number of parameters. In contrast, CNN can
minimize the number of parameters and thus alleviate workload by integrating the convolutional
layer and pooling layer, thereby improving calculation efficiency. Applying CNN for assessment has
several advantages. First, CNN has outperformed in model robustness and fault tolerance in the
translation, rotation, and scaling of eigenvectors. Second, BIM provides a huge amount of real-time and
visual-aid simulation data and intuitive visualization information. CNN can directly consolidate the
multidimensional raw data for characteristic extraction without the data preprocessing in the traditional
neural network analysis. Third, conventional methods are restricted by the limited accessibility for
characteristic information, whereas the input variables selected in this study have a large number of
implicit features portraying application value of life cycle BIM implementation, which are inappropriate
in traditional analysis. Consequently, developing a structured and self-adaption CNN model is crucial
to achieve accurate estimations.

CNN’s advantage is in self-learning, which is beneficial for moderating the dependence of
subjective extraction of data characteristics. Consequently, this network model enables an in-depth
analysis of the mapping relationship between original input data and final assessment results via
extracting the hidden features embedded in the input information. Figure 2 shows the logic procedures
for adopting CNN in life cycle assessment of BIM implementation in green buildings, which includes
three components and 10 layers.
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Figure 2. Basic procedures of convolutional neural network (CNN) model [56].

The most important component of CNN is the feature extraction modular, which is composed of
three parts, namely, the convolutional layer, activating layer, and pooling layer. The convolutional layer
is the core of the extraction modular, which is designed for the convolutional operation of input data,
aiming to enhance data effectiveness and minimize the negative effect from data noise. Unlike the
traditional neural network analysis that requires mutual interactions between each input neuron
and output neuron, each convolutional kernel only needs partial connections, which is beneficial for
improving computational speed and prediction accuracy.

The convolutional equation can be expressed as:

M j =
n∑

i=1

Hi ×Wi j + b j (1)

where j is the number of output feature map, n is the number of the convolutional kernel, Mj is the jth
output feature map after the convolutional operation, Hi represents the ith feature map of the input
unit connected to the convolutional kernel, Wij is the weight matrix of the ith unit in all input units
connected to the jth feature map of the convolutional kernel, the symbol × represents the convolutional
operation, bj represents the jth bias term of the feature map.
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However, the aforementioned convolutional operation is normally used to describe linear changes,
which is weak to understand non-linear issues. To address this problem, CNN integrates activating
layer by introducing non-linear activating functions, such as Sin function, Gaussian function, and Relu
function. Compared with other functions, Relu function performed better in taking rapid derivative
of target variables, reducing the interdependence of parameters, and alleviating the overfitting
phenomenon [57–60]. Therefore, this study employed Relu function for further analysis.

The pooling layer functions to compress the data by minimizing the data dimension.
This manipulation can reduce calculation workload, accelerate data training speed, and avoid
overfitting in the training set. This study follows the criterion developed by Hyvarinen and Koster [61],
who successfully reduced data dimension by adopting a high-value selection system, where the entire
data pooling was divided into a set of parts in which the highest value in each pooling receptive field
was selected as the representative value to minimize data dimension.

The output layer includes five nodes in accordance with the five-point Likert scale adopted in
this study. The Softmax activating function is adopted to obtain outcomes, which can be expressed as:

Si =
eYi∑
j eY j

(2)

where Y is a binary variable with values at zero or one. Similarly, to detect the difference between
the probability distribution of estimations obtained from training process and real cases, this study
employed a log-likelihood function, where a lower value of the function indicates smaller disparities
between them. The equation can be formed as:

H = −
1
n

m∑
k=1

yi,klog
(
pi,k

)
(3)

where n is the number of samples, and m denotes the total assessment types, which is equal to five
in this study. yi,k is a binary variable with values equal to one or zero, which reflects whether the
actual grade evaluated by experts to a specific sample is in line with the kth assessment type. pi,k is the
probability of predicted sample i belonging to the kth assessment types.

Based on aforementioned layers, CNN can be used to assess the effectiveness of life cycle BIM
implementation in green buildings. On the one hand, the assessment of BIM application in green
buildings involves indicators from multiple dimensions and different lifecycle stages, which are labeled
with non-normal and non-linear features. On the other hand, CNN is feasible to address machine
learning-related quantitative assessment. This method allows better performance on non-linear
mapping, self-learning, and generalization compared with other machine learning algorithms.
As a consequence, it is efficient in processing non-normal and non-linear, and multidimensional
data obtained for assessing BIM application in green buildings [62]. CNN includes two steps, namely,
offline training and online prediction. Figure 3 shows the detailed procedures. The purpose of offline
training is to obtain parameters and form the mature model for the next-step analysis. To achieve
this goal, a large number of data are collected from field surveys among clients, investors, contractors,
designers, end-users, general public, property companies, supervisors, and people from surrounding
communities. These data are used as the input data set. Subsequently, the collected data are divided
into the training set and testing set, which are regarded as the input data for the convolution layer,
activation layer, pool layer, and full connection layer to determine the most appropriate model for
assessment. Specifically, the testing set is used to examine the difference between the estimated and
actual distributions, which aims to update model parameters. After completing the training process,
the online prediction can be achieved by importing the real data from realities.
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2.3. Model Validation

To examine the validity of the developed CNN-based assessment model for evaluating effectiveness
of life cycle BIM implementation in green buildings, this study tests the accuracy, consistency,
and reliability by adopting the comparative analysis, Kappa coefficient, and F1-Score. Specifically,
this study aims to compare estimation results derived from this study with those obtained from
BP neural network, SVM method, and an AHP-based evaluation to illustrate the accuracy of the
developed model. For the detailed computational process of the above three methods, please refer to
supplementary file Section S1.

To test the consistency between actual divisions and predicted estimations, the Kappa coefficient
is adopted on the basis of a confusion matrix with the value ranging from −1 and 1 [63], which can be
calculated as:

K =
N

∑R
i=1 xii −

∑R
i=1(xi+, x+i)

N2 −
∑R

i=1(xi+, x+i)
(4)

where R is the assessment category, xii is an element located at the diagonal, xi+ denotes the sum
of the ith row, x+i represents the sum of the ith column, and N is the sum of all elements. Finally,
the coefficient K ≤ 0 means poor consistency of estimations, 0 < K ≤ 0.4 means slight, 0.4 < K ≤ 0.55
indicates fair, 0.55 < K ≤ 0.7 means good, 0.7 < K ≤ 0.85 means very good, and 0.85 < K means excellent.

In general, the reliability of the developed CNN model is determined by precision, recall rates,
and F1 score [64,65]. Precision presents the probability of actual positive samples in the estimations that
are predicted to be positive. Similarly, recall indicates the probability of estimations that are predicted
to be positive in all the actual positive samples. However, the value of precision rate and recall rate
cannot be maximized simultaneously given their theoretical contradictions. As a consequence, F1-score
is designed to indicate the reliability of estimations by obtaining a balance between the precision rate
and recall rate.

2.4. Data Collection and Consolidation

To obtain reliable survey data, this study combines five-point Likert scale with PLanguage method.
Here 1 point means poor effectiveness of BIM application in green buildings, 2 points means slight,
3 points means fair, 4 points means good, and 5 points means excellent. Specifically, the PLanguage
method instructs the perception of assessment boundary for interviewees by providing a four-level
description with keywords including MUST, PLAN, WISH, and MAX (See Table 3). Subsequently,
the Likert scale has been assigned in the corresponding assessment intervals distinguished by
the PLanguage method (See Figure 4). According to the influencing factors listed in Section 2.1,
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a questionnaire has been designed. The corresponding strategies to avoid misunderstanding of
interviewees are adopted to enhance the validity and reliability of the questionnaire. The original
questionnaire was modified and improved by conducting a pilot survey with experts and professionals
from the industry and academia. A total of 2115 questionnaires were distributed to the targeted
interviewees, and 2000 of them were collected with a 94.6% response rate. Before the data analysis,
we need to preprocess the data to check whether there are invalid samples and outliers. If there is a
large amount of missing data or too many similar answers in the same sample, such samples should be
treated as invalid samples. After a subjective screening, 1682 questionnaires were determined valid
with a validity rate of 84.1%.

Table 3. Keywords in PLanguage method.

Keywords Description

MUST The minimum level that can prevent failure of a project
PLAN The level at which the project can achieve success
WISH A desirable level that can be achieved via available means
MAX The maximum level in which each project goal is fully achieved
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The sample set was randomly divided into the training set with 1300 questionnaires and the
testing set with the remaining 382 questionnaires. Figure S1 in the supplementary file shows the
empirical value distribution of the total questionnaire, training set, and testing set.

3. Model Training and Improving

Figure 5 represents the model fitting process with the training and testing data. Figure 5a shows
that the information losses declined sharply after 10 rounds of iterations and converged toward zero
after 20 rounds of iterations. Similarly, according to Figure 5b, the estimation accuracy rapidly improved
with the increasing of iterations, and gradually stabilized at 99.4% after 15 iterations. In summary,
the parameters of CNN achieved an equilibrium state after approximately 20 rounds of iterations,
indicating that the current CNN has labeled with the requisite features of life cycle BIM implementation
in green buildings.

The detailed results for validation process are shown in the supplementary file Section S3. In terms
of model accuracy, the CNN model outperforms in value prediction with an accuracy rate of 99.4%,
followed by BP neural network (96.4%), SVM model (95.2%), and AHP-based assessment (91.2%).
The results of consistency analysis indicate a relatively high consistency among different assessment
results with the Kappa coefficient at 72.6%. Moreover, according to Figure S3, the results of reliability
analysis reveal that the developed CNN model obtains high precision, recall, and F1 score for each
predicted score point, indicating that the developed CNN model performs with more confidence and
higher accuracy when the target project is featured with high effectiveness of BIM application.
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4. Empirical Analysis

4.1. Case Study

To verify the feasibility of the developed assessment model, this study uses an affordable housing
project located in Shenzhen as a case study. The target construction project has 64,627.52 m2 in
total gross floor area and 11,162.98 m2 in total land area. The total investment is 313.6 million RMB,
and includes 945 units of apartments. Table 4 shows the basic profile of the target project.

Table 4. Basic profile of the target project.

Category Indicator Case Project

Geographic information
Location Shenzhen

Temperature 22 ◦C
Climate Subtropical

Building information

Build type Residential
Construction period May 2015–December 2016

Structure Frame shear structure
Gross floor area (m2) 64,627.52

Basement 1 floor
Height 31–33 floors

Green Building

Rainwater collecting
√

Greening rate 30%
Green Building Evaluation Label Two stars

Pollutant concentration Class I (GB 50235-2010)

BIM
Main tools Revit, Allplan

Architectural Model
√

Structure Model
√

The reasons for selecting this construction project are listed as follows. First, this project
adopted BIM as a technical assistance during the entire life cycle of buildings, covering the design,
construction, and operation stages. Each stage has achieved the standard, modular, and systematic
management by using BIM technology. Second, this project has earned a two-star GB label for design,
which provides solid foundations for evaluating the effectiveness of life cycle BIM implementation in
green buildings. Specifically, this project adopted BIM technology to achieve an integration design
by coordinating electromechanical, decoration, architecture, and structure design, which improved
collision-detecting effectiveness. In the production stage, a BIM-assisted mold design system was
developed to facilitate the production layout in the offsite factory, which was capable of automatically
offering mapping, computation, processing, and production service. In the construction stage,
BIM was implemented to systematically simulate onsite construction process with the purpose of
improving assembly effectiveness and quality by resolving construction-related problems in advance.
In the operational stage, a BIM-integrated operational platform is adopted to sustain the basic
functions and performance of buildings, and to ensure the daily operation, maintenance, assets,
and property management of buildings. Figure 6 shows the detailed life cycle BIM implementation in
the target project.
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4.2. Results and Discussions

This study collected 300 questionnaires as testing set for the target case study by conducting
another round of field survey. The involved respondents included the investors, the public,
end-users, property companies, contractors, clients, designers, and surrounding communities. For the
interviewees involved in construction practice, the respondents should meet at least one of the
following criteria: (1) More than three years of working experience; (2) Obtain relevant qualifications
in the construction field; (3) Qualified as junior manger or above. For the interviewees from the
public, end-users or surrounding communities: (1) Have basic knowledge on building construction;
(2) Understand information technology in construction practice; (3) Be affected by the target project
implementation. Then, the previously trained CNN network is used to evaluate the value of BIM
technology applications in case projects. According to Table 3, the model results show that the overall
score for the tested project was four, with an average relative error of less than 1%. More than half of
assessments were predicted as four (58.3%), followed by two (33.0%) and five (11.0%).

From a life cycle perspective, Figure 7 summarizes the effectiveness of BIM implementation
according to different life cycle stages. The estimated application values for design stage,
construction stage, and operation stage are at five, four, and three, respectively. Such a descending
order of values indicates that BIM application value is fully achieved in the design stage but has
declined in the construction and operation stages. This fact is highly related to the dilemma of GB rating
in China, where most of certificated green buildings are efficient only in the design stage and perform
unreliably in the operational stage. Thus, the design stage receives more concerns than other life cycle
stages, because most GB projects in China are sold-led buildings, where the assurance of operational
performance is beyond the responsibility of developers. As a result, clients lack motivation to conduct
operational environmental improvements after the delivery. Moreover, BIM technology can maximize
its value by visualizing and simplifying the complexity of buildings at the design stage. Likewise, the
construction process can benefit from the parameter optimization with the assistance of 3D visualization
derived from BIM. In contrast, the operation and maintenance of buildings with BIM are supported by
reconfiguring data and information from the design and construction stages. Such maintenance faces
major challenges in multisource data integration, model simplification, and function development,
leading to a lower application effectiveness of BIM. Furthermore, to take a close examination of
score distribution with due consideration of value characteristics, this study simulates the value
distribution by reducing data dimensions using t-distributed stochastic neighbor embedding (t-SNE)
as an underlying method. The color of the dots represents the values of assessment, which is a 2D
reflection of high-dimensional assessment values. According to Figure 7b, in the construction stage, the
size of bottom-score (e.g., one point) clustering and top-score (e.g., five point) clustering are negligible.
On the one hand, this phenomenon indicates that the BIM implementation is far from ineffective, where
the embedded functions, such as conflict detection, construction simulation, and quantity survey,
are relatively mature. On the other hand, further improvements on BIM application can be made in the
construction stage. In the operation stage, the dots valued at five represent a more discrete distribution,
which indicates that multiple improvement paths exist for achieving a higher application effectiveness
of BIM.

Similarly, from a value-based perspective, functional value obtains the highest score, whereas
the social value is at the bottom with the output score at two (See Figure 8). Given the technical
advantages of BIM in realizing virtual reality and digital simulation, its big contributions to functional
improvement of green buildings are easy to understand. The lower score of social value reveals
that new technologies always face social challenges before their diffusion and popularization among
the public.

The 2D score distribution of values explores similar trends (See Figure 9), where the score
distribution of functional value (FV) is inclined to cluster and it occupied the largest area, indicating
a higher application value of BIM for function improvement. In contrast, other value categories,
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including physical value (PV), safety value (SaV), and management value (MV), represent a discrete
distribution and small concentration of low scores, indicating poorer performance than counterparts.Sustainability 2020, 12, 9988 15 of 21 
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Figure 9. Effectiveness of BIM implementation for different values. (a) 2D score distribution of
economic value (EV); (b) 2D score distribution of functional value (FV); (c) 2D score distribution of
social value (SV); (d) 2D score distribution of environmental value (EnV); (e) 2D score distribution
of physical value (PV); (f) 2D score distribution of safety value (SaV); (g) 2D score distribution of
management value (MV).
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Figure 10 shows a more detailed decomposition of score for each application value in each stage.
Functional value has occupied the top position in all stages and achieved the maximum value at the
design and construction stages. This result indicates that integrating BIM with green buildings is
beneficial for achieving the green performance of energy, material, water, and land use in the whole life
cycle. Social values perform the worst in GB life cycle stages. Thus, how to improve public awareness
of the active role of BIM in GB design, how to reduce negative impact on the surrounding environment,
and how to advance green performance during building operational stage are challenges that need to
be tackled in the near future. Furthermore, the environmental function is lowest in the operation stage,
which reemphasizes the weakness of GB rating in the operation stage.
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Figure 11 shows the 2D distribution of scores. Two obvious trends can be observed. First, although
functional value obtains a high score in all stages, a clustering trend can be found between the five-point
dots and one-point dots. That is, functional value can possibly transfer its score from high to low.
This possibility is mainly because, despite advanced technical support offered by the BIM, the relevant
working experience on BIM implementation in green buildings is also crucial for determining the
performance of functions, which is currently rare in construction practice. Second, the high-score
distribution of functional value and social value is more discrete than the other values, indicating large
disparities between eigenvectors representing excellent performance (e.g., five point). Such a variation
reveals multiple paths capable of achieving the excellence of functions. Moreover, the weakness of social
function is demonstrated by the dominant distribution of dots with low values. Therefore, improving
social function is a critical path for promoting the effectiveness of life cycle BIM implementation in
green buildings.
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5. Conclusions

This study develops a CNN-based method for assessing the application value of BIM in green
buildings. An efficient framework is developed for balancing the estimation accuracy and size of
input data, thus minimizing the time and cost for the data collection process. The validity of the
developed model has been verified from theoretical and practical perspectives. An elaborate design of
the computational framework and the field survey reveal that integrating the PLanguage method with
a five-point Likert scale can provide a clear conceptual boundary for subjective assessment, which
improves the quality of input data to a large extent. By using different assessment methods, this
study proves that the CNN model predicts higher estimation accuracy than the BP neural network,
SVM method, and AHP-based assessment. The verification of the developed model in a real case
demonstrates that this model could perform robust and reliable results even with time and sample size
constraints. The key findings of this study include the following aspects:

(1) From a life cycle perspective, the effectiveness of BIM implementation in green buildings
represents a descending order, indicating that application value of BIM is fully achieved in the design
stage but has declined in the construction and operation stages.

(2) From a value-based perspective, functional value obtains the highest score, whereas the social
value is at the bottom, indicating that BIM takes advantages in functional realization while suffering
from challenges from its diffusion and popularization among the public.

(3) A detailed examination reveals that functional value has occupied the top position in all stages
and achieved the maximum value at the design and construction stages, indicating that integrating
BIM with GBs is beneficial for achieving the green performance of energy, material, water, and land
use in the whole life cycle.

(4) Both social and environmental values perform relatively low in GB life cycle stages, which put
emphases on enhancing the public awareness of the active role of BIM in GB and promoting the BIM
application for environmental improvements.

The findings of this study can facilitate decision makers to detect weaknesses of BIM
implementation in green buildings. Specifically, the superiority of CNN method allows better
performance on non-linear mapping, self-learning, and generalization compared with other machine
learning algorithms, which is efficient in processing the multidimensional raw data obtained for
assessing BIM application in green buildings. Consequently, practitioners can obtain an in-depth
understanding of benefits and weaknesses of BIM application in green buildings even with time
and sample size constraints. The rapid development of information technology and the continued
emphasis on sustainability in China allow a deeper integration of BIM in lifecycle management of
green buildings, especially considering the accelerated development of green building certification
in China. Therefore, identifying an evolutionary path for reinforcing the effectiveness of lifecycle BIM
implementation in green buildings is crucial. Future research directions should focus more efforts
on adopting system dynamic techniques to simulate the evolutionary path. Moreover, given the
difficulties in data collection in realities, this study only verifies the developed method in the design,
construction, and operation stages of a real building case. Future research can extend the research
boundary by including the recycling and reuse phase of a building. Collecting practical data from
multiple cases is beneficial for identifying an evolutionary path for promoting the effectiveness of
lifecycle BIM implementation under different scenarios.
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