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Abstract: Studies on earthquake-induced liquefaction and identification of source unit for causing
liquefaction have been a major concern in sustainable land use development especially in low to
moderate seismic areas. During the 2017 Mw 5.4 Pohang earthquake, widespread liquefaction was
reported around the Heunghae basin, which was the first ever reported case of liquefaction in the
modern seismic history of Korea. The epicentral area is one of the major industrial hubs along the
SE Korean Peninsula with no detailed liquefaction hazard map. The purpose of this study was to
determine the land damage classification on the basis of surface manifestation of liquefaction features
and carry out detailed liquefaction potential analysis to delineate the depth of liquefiable soil. This
will eventually support developing a liquefaction hazard zonation map and sustainable development
of infrastructure to minimize earthquake damages. In this present study, the southern part of the
Heunghae basin, which has more field evidences of liquefaction than the northern part, was taken
for detailed liquefaction analysis. From the detailed analysis, it was observed that the soils from
1.5 to 15 m depth with the probability of liquefaction varying from 2 to 20 are prone to liquefaction.
On the basis of land damage pattern, the epicentral area falls in orange to red zone, which means
the necessity of further detailed liquefaction analysis. This study urges more detailed liquefaction
zonation should be carried out for the epicentral area and liquefaction hazard should be included in
the multi-hazard map in the future for the sustainable land use planning.

Keywords: liquefaction hazard; Korean Peninsula; Pohang earthquake; low seismicity; sustainable
development

1. Introduction

During earthquake shaking or other rapid loadings, mostly saturated sandy/silty soil loses its
strength and stiffness and behaves as a liquid which is known as liquefaction [1–3]. The repeated/cyclic
loading under undrained conditions leads to a decrease in effective stress and a rise in pore water
pressure of the soil [4,5]. Along with earthquake magnitude, several other factors affect the liquefaction
susceptibility of the soil, such as the age of the soil, sedimentation process, the depth of the water
table, density, burial depth, ground slope, grain size distribution, etc. [6,7]. The basic understanding of
the relationship between cyclic loading during an earthquake and soil liquefaction has been largely
derived from laboratory studies, such as cyclic triaxial tests, shake table tests, resonant column tests,
centrifuge modeling, etc. [8–14].
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Liquefaction and related phenomena have caused extensive damages during the historical and
modern earthquakes around the world, such as damage occurred around San Francisco’s Marina
District during the 1989 Loma Prieta earthquake [15,16], damage along the Kobe port during the 1995
Great Hanshin earthquake [17,18], damage around Christchurch township, New Zealand during the
2010 Canterbury earthquake [19,20], liquefaction induced damages during 2016 Kumamoto earthquake,
Japan [21], liquefaction and lateral spreading related damages during the 2018 Sulawesi earthquake,
Indonesia [22,23]. Despite decades of research towards understanding the liquefaction hazard and
its mitigation criteria, the recent large magnitude earthquakes like the 2016 Kumamoto earthquake
(Mw 7.0) and 2018 Sulawesi earthquake ((Mw 7.5) and moderate magnitude earthquakes like 2009
Olancha earthquake in the United States (Mw 5.2), 2017 Pohang earthquake in South Korea (Mw 5.5)
indicate that, there is still ambiguity on reducing the liquefaction hazard during moderate to large
magnitude earthquakes [24–26].

One of the most important factors that control the liquefaction-induced ground failure is controlled
by the thickness of liquefied soil layers and non-liquefied soil layers [27]. The delineation of the
liquefaction-prone area, the liquefaction potential evaluation and estimation of liquefiable soil depth
variance for sedimentary basins covered by thick sediments play a crucial role in liquefaction hazard
mitigation [28–33]. Proper land damage mapping along with a detailed post-earthquake survey
for surface manifestations of liquefaction features will help in liquefaction mitigation, especially in
minimization or avoidance of structural damage to the buildings [34]. Liquefaction-induced damage to
the residential buildings due to soil subsidence, ground failure, and lateral spreading has been a major
concern among geotechnical engineers for sustainable urban planning, especially for areas planned to be
an urban center [19,34–39]. This was apparent during recent 2010 and 2011 Christchurch earthquakes
and the 2012 Emilia earthquake in Italy [19,39]. For reducing the risk, detailed post-earthquake
mapping of liquefaction features, making a digital database, land damage mapping, and delineation of
liquefiable soil depth are important [27,40–43]. This will assist in the areas where liquefaction is a rare
phenomenon or not mentioned in historical records, specifically for intraplate seismic regions [35,36].
The characterization of hazard-prone areas is often easier after the earthquake than before, especially
in low seismic areas like the Korean Peninsula. The land damage during the 2011 Christchurch
earthquake [19,34] along with detailed liquefaction analysis was helpful to the earthquake commission,
New Zealand Government to determine the severity of damage, land remediation after the earthquake,
and future hazard zonation with special emphasis on liquefaction.

A widely preferred methodology for the liquefaction hazard mapping is a Liquefaction Potential
Index (IL) proposed by [38] and recently developed parameter Liquefaction Severity Number (LSN)
after the Christchurch earthquakes [30,34,43–46]. For lower seismic areas like the Korean Peninsula,
where the historical records of liquefaction are almost null, site-specific liquefaction hazard mapping
is not an integral part of hazard mapping [47,48]. Lately, after the Christchurch earthquake, the
earthquake commission of New Zealand and New Zealand Government have developed a land
damage category chart to differentiate the land on the basis of surface manifestation of liquefaction
and lateral spreading for the Canterbury basin to understand the controlling factors and guide future
urban planning [19,34]. However, there are no specific land damage categories available for the Korean
Peninsula. This may be due to very rare records of liquefaction and large recurrence intervals of
seismic events.

The 2017 Pohang earthquake (MW 5.4) caused extensive liquefaction within the Heunghae basin
along with structural damages to 2165 private houses, 227 school buildings, many roads, and 11 bridges.
Several studies have been carried out immediately after the earthquake towards liquefaction zonation
and reporting the surface manifestation of liquefaction [48–51]. However, no detailed work has
been carried out to classify the land damage patterns and to obtain the depth of the source layer for
the liquefaction.

In this paper, an effort has been made for preparing a land damage map for the epicentral region
on the basis of reported liquefaction features [47–50] and detailed liquefaction potential mapping to
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define the subsurface liquefaction-prone soil depth. For this purpose, we have considered 600 cases
of surface manifestation of liquefaction features to make the land damage map. Since there are no
specific criteria available for land damage pattern categorization for the Korean Peninsula, we have
adopted the methodology applied to the Canterbury basin. Moreover, we have considered a 10 km
line along the southern part of the basin, where more localized liquefaction features were observed
during the earthquake.

2. Geological Settings

The southern part of the Korean Peninsula is located on the Eurasian Plate and its tectonic
activities are controlled by the ongoing subduction of the adjoining Pacific and Philippine Sea Plates.
Moreover, the collision between the Indian Plate with Eurasian Plate controls the tectonism of the
Korean Peninsula [47–51]. The Cenozoic deformation along the southeastern part of the Korean
Peninsula is accommodated by the Yangsan-Ulsan Fault system. The Oligocene rifting of the Korean
Peninsula in NE-SW direction has resulted in the development of several normal faults and extensional
basins [52]. The major basin is known as Pohang basin, which is subdivided into several sub-basins.
The Heunghae basin is one of the sub basins which was affected by the 2017 Pohang earthquake
(Mw 5.4) (Figure 1). There have been several reports of Quaternary faulting with surface ruptures
along the Yangsan-Ulsan Fault System [51,53]. The distribution of Quaternary faults and mechanisms
involved are consistent with the maximum principal stress direction (E-W; ENE-WSW) during the
Quaternary period [54–56]. The recorded seismic data along this area suggest that this area has
experienced four moderate magnitude earthquakes (Mw 5–6) during the last 14 years, including the
2016 Gyeongju earthquake (Mw 5.5) and the 2017 Pohang earthquake (Mw 5.4) [47–49].
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Figure 1. Geological map of the study area showing the location of the Heunghae basin, the epicenter
of the 15 November 2017 Pohang earthquake and its focal mechanism (modified from [47]).
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3. 2017 Pohang Earthquake and Observed Liquefaction Features

The Korean Meteorological Administration (KMA), United States Geological Survey (USGS),
Korea Institute of Geosciences and Mineral Resources (KIGAM) reported the main shock (Mw 5.4) and
four major aftershocks (>Mw 3.5). The focal depth of the main shock was estimated to be 4.5 km with
the depth of aftershock sequences varying from 3 to 7 km [47,49,57]. The focal mechanism solution of
the earthquake indicates that the main shock was an obliqueslip fault (reverse and dextral strike-slip)
with NE strike and dip of approximately 60◦–70◦. Post-earthquake InSAR data analysis suggests
that the area underwent 15 cm of coseismic slip during the main shock [49]. The earthquake caused
damages to more than 2,500 houses, 227 school buildings, 11 bridges, and many roads around the
epicentral area. The estimated total cost of loss is about 52 million USD.

The post-earthquake reconnaissance surveys carried out by several authors reported more than
600 cases of liquefaction along with several examples of lateral spreading [47–50]. Field photos showing
evidence of liquefaction and lateral spreading are shown in Figure 2.

Sustainability 2020, 12, x FOR PEER REVIEW 4 of 20 

3. 2017 Pohang Earthquake and Observed Liquefaction Features 

The Korean Meteorological Administration (KMA), United States Geological Survey (USGS), 

Korea Institute of Geosciences and Mineral Resources (KIGAM) reported the main shock (Mw 5.4) 

and four major aftershocks (˃Mw 3.5). The focal depth of the main shock was estimated to be 4.5 km 

with the depth of aftershock sequences varying from 3 to 7 km [47,49,57]. The focal mechanism 

solution of the earthquake indicates that the main shock was an obliqueslip fault (reverse and dextral 

strike-slip) with NE strike and dip of approximately 60°–70°. Post-earthquake InSAR data analysis 

suggests that the area underwent 15 cm of coseismic slip during the main shock [49]. The earthquake 

caused damages to more than 2,500 houses, 227 school buildings, 11 bridges, and many roads around 

the epicentral area. The estimated total cost of loss is about 52 million USD. 

The post-earthquake reconnaissance surveys carried out by several authors reported more than 

600 cases of liquefaction along with several examples of lateral spreading [47–50]. Field photos 

showing evidence of liquefaction and lateral spreading are shown in Figure 2.  

 

Figure 2. Field evidences of liquefaction observed during the Pohang earthquake. (a) Linear chain of 

sand boils observed around epicentral area. (b, d) Isolated sand boils of larger than 1 m in diameter 

observed in a rice farm and dry river beds ejecting fine sand/silty sand and coarse sand. (c) Field 

photos showing isolated/lenticular sand boil craters. (e) Water logging in the rice farms immediately 

after the earthquake. (f) Section of the sand boils where the soil samples were taken for grain size 

analysis. 

Figure 2. Field evidences of liquefaction observed during the Pohang earthquake. (a) Linear chain of
sand boils observed around epicentral area. (b, d) Isolated sand boils of larger than 1 m in diameter
observed in a rice farm and dry river beds ejecting fine sand/silty sand and coarse sand. (c) Field photos
showing isolated/lenticular sand boil craters. (e) Water logging in the rice farms immediately after the
earthquake. (f) Section of the sand boils where the soil samples were taken for grain size analysis.
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In some places, the liquefaction features were even more than 2 m in diameter (Figure 2).
The shaking was so intense that there was a report of liquefaction of gravelly soil along the dried
river beds and rice farms [47]. Due to the presence of soft ground and shallow focal depth of the
earthquake, there were several cases of ground settlements of up to 0.39 m. Some residential buildings
were tilted by an angle of 1.6◦ with differential settlement of 0.15 m [47,50]. The grain size analysis
was done as per the American Standard for Testing Materials (ASTM) D6913 [58] for the ejected soil
from the sand boil, which is classified as mostly silty sand, silt, and sandy ground (Figure 2) and falls
under liquefiable soil category [47,59,60]. Figure 3 depicts some of the typical damaged buildings
during the earthquake. Considering the observed liquefaction, ground cracks, and lateral spreading
around the epicentral area, we have proposed a local scale land damage zone as per the guideline for
geotechnical engineering practice in New Zealand [19,61]. Table 1 shows the land damage categories
in the epicentral area of the Pohang earthquake and Figure 4 shows the land damage distribution with
locations of surface manifestations of liquefaction during the earthquake. On the basis of the land
damage distribution, it was observed that most of the damaged lands are categorized as moderate to
major land damage and are confined between the Gokgang and Chogok Rivers.
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Figure 3. Photographs showing damaged buildings around the epicentral area during the Mw 5.4
Pohang earthquake. (a) Separated pipeline due to differential settlement of the building. (b) Diagonal
cracks on a wall. (c,d) Differential settlement of the foundation column of the Daeseong Apartment.

The land damage pattern suggests if a similar or higher magnitude earthquake occurs in the near
future, a similar scale of land will undergo liquefaction. This kind of repeated liquefaction was observed
during the Christchurch earthquake and Emilia earthquake. The recent paleo-liquefaction studies
from the epicentral area of the Pohang earthquake [48] also suggested that the area have experienced
liquefaction in the past. The site which shows liquefaction evidence during this earthquake has
undergone similar liquefactions within 730 to 130 years BP [48]. Therefore, detailed liquefaction analysis,
specifically the determination of liquefiable soil depth, will help in reducing liquefaction-related hazard
for future construction projects on liquefiable soil around the epicenter.
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Table 1. Land damage categories solely based on earthquake-induced land damage from the Pohang
earthquake adopted from [30,31,61,62].

Local Scale Damage Zone Descriptions Land Damage Category

No Apparent Land Damage
No apparent land damage or signs
of liquefaction evidence at the
surface

Blue

Minor Land Damage

Shaking-induced land damage
occurred, but limited to minor
cracking, no surface evidence of
liquefaction

Green

Minor to Moderate Land Damage

Minor to moderate amounts of
surface evidence of liquefaction,
small cracks from ground
oscillation with no vertical
displacement, no lateral spreading

Light Orange

Moderate Land Damage

Moderate to severe surface
evidence of liquefaction, small
cracks from ground acceleration,
limited lateral spreading

Dark Orange

Moderate to Major Land Damage
Moderate to major lateral
spreading, extensive liquefaction,
large ground cracks

Red

Major Land Damage
Extensive lateral spreading, large
open ground cracks, extensive
liquefaction

Black

4. Liquefaction Potential Analysis of Soils from the Epicentral Areas of the 2017
Pohang Earthquake

4.1. Ground Motion Data

The 2017 November Pohang earthquake data were taken for the liquefaction analysis. The ground
motion parameters recorded at the closest seismic station PHA2 were taken for the analysis.
The acceleration time history data for the Pohang earthquake used for the analysis are given in
Figure 5. The acceleration values recorded at PHA2 seismic station (0.268 g) were taken for the
liquefaction analysis. A detailed liquefaction analysis was carried out using the geotechnical borehole
data (Figure 4) collected from the Integrated Data Base Center of National Geotechnical Information,
Korea [62].
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Figure 5. Ground motion data used for the present analysis recorded at PHA2 [57] station near the
Heunghae basin. (a) Recorded ground motion at PHA2 station [57]. (b) Ground motion for the time
period of strong shaking [57].

4.2. Site Investigation and Liquefaction Assessment

From the spatial distribution of the liquefaction features in the epicentral area, it can be inferred
that the liquefaction features are mostly concentrated on the southern part of the Heunghae basin [47].
In order to analyze the subsurface soil properties of liquefied sites and determine the thickness of the
liquefaction-prone soil around the Heunghae basin, we collected the geotechnical investigation reports
from the Integrated Data Base Center of National Geotechnical Information, Korea [62]. The integrated
database compiled all the soil classification data and Standard Penetration Test (SPT-N) data sets
from the completed or ongoing road, railways, and residential construction projects. The standard
penetration test is one of the most widely used in-situ tests carried out for major geotechnical projects
due to its simple nature.

In this method, a 65 cm long thick-walled (5 cm) sampler was driven into the ground at the bottom
of the borehole with a sliding hammer of 63.5 kg, falling from a distance of 76 cm [63,64]. The number
of blows needed for each of the 15 cm sampling tube penetration is recorded. The sum of the number
of blows required for the second and third 30 cm of penetration is known as standard penetration
resistance (SPT-N) values. The SPT-N blow count can indicate the density of the soil [63,64]. Typical
geotechnical data used for the liquefaction analysis is shown in Table 2. Figure 6 shows the grain size
distribution graph for the ejected soil from the sand boils.
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Table 2. Typical soil profile data collected from the Integrated Data Base Center of National Geotechnical
Information, Korea (https://www.geoinfo.or.kr) [62], for BB-20 used for the present analysis.

Depth
(m) SPT-N Specific

Gravity
Unit Weight

(kN/m3)
Liquid

Limit (LL)%
Plasticity
Index (PI)

USCS Soil
Type

0.60 4 2.68 19.60 46.8 15.7 ML
1.10 4 2.68 19.60 46.8 15.7 ML
2.70 4 2.68 20.50 46.8 15.7 ML
8.50 2 2.69 20 78.9 24 MH

11.60 20 2.69 18 78.9 24 MH
14 40 2.69 22 78.9 24 MH
35 50 2.69 20 78.9 24 MH
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Figure 6. Grain size distribution graph for ejected sand from the sand boils during the Pohang
earthquake. The average diameter of the tested sand (D50 = 0.17 mm–0.285 mm) and the coefficient of
curvature values (Cc = 1) of the soil indicate that the ejected sands are coarse-grained and well graded.

Considering the clustered liquefaction features and closest available geotechnical datasets, we
took a 10.5 km transect to determine the liquefaction potential in terms of thefactor of safety against
liquefaction (FSL) of the soil. The variation of the depth of liquefiable soil, estimation of post
liquefaction settlement and liquefaction potential index (IL) along the southern part of the Heunghae
basin experienced more severe liquefaction than the northern part of the basin. Since there was no
detailed analysis of liquefaction potential of soils from the epicentral area, this study will help in
determining the liquefiable soil depth and the possible post liquefaction settlement in the area, which
is one of the most important factors in seismic-resistant building design.

4.3. Result of Selected SPT in the Heunghae Basin

Geotechnical investigation results from 41 boreholes covering the lateral extent of the Heunghae
basin were collected. Around the Heunghae basin, the geotechnical investigations were available for
varying depths depending upon the bedrock depth. For a better estimation of liquefaction potential

https://www.geoinfo.or.kr
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and lateral variation of liquefaction-prone soil along the basin, we considered the borehole data with
maximum depth from the Integrated Data Base Center of National Geotechnical Information, Korea
(https://www.geoinfo.or.kr), which varies from ground surface to 80 m (Figure 4). The typical bore log
and variation of SPT-N with depth for the borehole BB24, BB26, and BB 80 are presented in Figure 7.
The geotechnical data suggest that the soils are mostly CH, ML, MH, SM, SP, SW, and GW as per the
unified soil classification system (USCS). The SPT-N values for the boreholes taken for the analysis
vary from 1 to 50, which indicates the soils are in a range of very loose to very dense conditions.
The groundwater table varies from ground level to 15 m in the southern part of the basin.

Sustainability 2020, 12, x FOR PEER REVIEW 10 of 20 

log and variation of SPT-N with depth for the borehole BB24, BB26, and BB 80 are presented in Figure 

7. The geotechnical data suggest that the soils are mostly CH, ML, MH, SM, SP, SW, and GW as per 

the unified soil classification system (USCS). The SPT-N values for the boreholes taken for the 

analysis vary from 1 to 50, which indicates the soils are in a range of very loose to very dense 

conditions. The groundwater table varies from ground level to 15 m in the southern part of the basin. 

 

Figure 7. Typical bore logs showing the soil types and variation of SPT-N with depth for borehole 

BB24, BB26, and BB80. 

4.4. SPT Based Liquefaction Potential Assessment 

There are several methodologies for the estimation of liquefaction potential of the soil using in 

situ field testing parameters like SPT-N, Cone Penetration Test (CPT), shear wave velocity at 30 m 

(Vs30) as we all several laboratory testing methods such as cyclic triaxial test, resonant column test, 

shake table test, etc. [65–67]. The lab testing methods are complex and lead to difficulties associated 

with sample disturbance during sampling and testing. The empirical stress based SPT-N approach 

has gained a wide acceptance in geotechnical engineering communities [68]. Cyclic stress ratio (CSR) 

Figure 7. Typical bore logs showing the soil types and variation of SPT-N with depth for borehole BB24,
BB26, and BB80.

4.4. SPT Based Liquefaction Potential Assessment

There are several methodologies for the estimation of liquefaction potential of the soil using in
situ field testing parameters like SPT-N, Cone Penetration Test (CPT), shear wave velocity at 30 m
(Vs30) as we all several laboratory testing methods such as cyclic triaxial test, resonant column test,

https://www.geoinfo.or.kr
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shake table test, etc. [65–67]. The lab testing methods are complex and lead to difficulties associated
with sample disturbance during sampling and testing. The empirical stress based SPT-N approach
has gained a wide acceptance in geotechnical engineering communities [68]. Cyclic stress ratio (CSR)
is defined as the seismic demand of the soil, whereas the capacity of the soil to resist liquefaction is
defined as cyclic resistance ratio (CRR) [6,69–71]. These two parameters are used to determine the
factor of safety against liquefaction (FSL).

4.4.1. Estimation of Cyclic Stress Ratio (CSR)

For the estimation of cyclic stress ratio (CSR) of soil, a simplified equation proposed by [69,70] has
been used, which is given by Equation (1). The equation proposed by [68] was simplified by [70] to
estimate the CSR values.

CSR = 0.65
amax × σv

g× σ′v
× rd (1)

where amax is the peak horizontal acceleration on the ground surface, g is the acceleration due to gravity,
σv and σ’v is the total and effective stress and rd is the stress reduction factor of the soil. The stress
reduction factor was calculated using an equation proposed by [71] and given in Equation (2).

rd =

(
1.0− 0.411z0.5 + 0.04z + 0.00175z1.5

)
(1.0− 0.417z0.5 + 0.0573z− 0.0062z1.5 + 0.001216z2)

(2)

where z is the depth in meters below the ground surface.

4.4.2. Estimation of Cyclic Resistance Ratio

Cyclic Resistance Ratio (CRR) has been used by several researchers for the liquefaction potential
estimation. Several researchers have proposed equations for the estimation of CRR using SPT-N
data [69,70,72,73]. In this present analysis, the equation proposed by [69] has been used. In the [70]
method, the cyclic resistance ratio (CRR) needs fineness content correction and the (N1)60cs values are
the value of (N1)60 to an equivalent clean sand value. The equation used for CRR estimation is given
in Equation (3).

CRR7.5 =
1.0

34− (N1)60CS
+
(N1)60CS

135
+

[
50

[10× (N1)60CS + 452 −
1

200

]
(3)

Since the earthquake magnitude is different from Mw = 7.5, it is compulsory to modify the CRR
value according to the magnitude of the earthquake used so that the CRR values will be more realistic
for the earthquake used for the present liquefaction potential analysis. For the same, the magnitude
was scaled down using the following equation

MSF7.5 =
102.24

Mw2.56 (4)

4.4.3. Correction for SPT-N Blow Count

SPT-N samplings were carried out by the Korean Industrial Standard (KSF) 2307 (test method
specified for penetration test by Korean Industrial Standards) [63], which is similar to ASTM
D1586-11 [63,64]. The measured SPT-N values were corrected using the NCEER report 1997 and
2001 [70]. The measured N values were corrected for overburden correction (CN), hammer energy (CE),
Borehole diameter (CB), rod length (CR), liner correction (CS) and fines content. The corrected values
of ((N1)60cs) was calculated using Equation (5).

((N1)60CS) = N × (CN) × (CE) × (CB) × (CR) × (CS) (5)
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(N1)60cs = α × β × (N1)60 (6)

4.4.4. Factor of Safety against Liquefaction (FSL)

The liquefaction potential defined as a factor of safety against liquefaction (FSL) and can be
quantified as the ratio between cyclic resistance ratio (CRR) vs. cyclic stress ratio (CSR). The equation
used for the estimation of factor of safety against liquefaction is given as Equation (7).

FSL =
CRR

(CSR)M=7.5σ=1
(7)

If the FSL value is <1, the soil is prone to liquefaction and if the FSL is >1, the soil is safe
against liquefaction.

4.4.5. Assessment of Liquefaction Potential Index

The liquefaction potential index (IL) quantifies the severity of liquefaction and predicts whether
the liquefaction features will reach the ground surface or not [38,73–75]. The liquefaction potential
index for a specific site can be calculated by integrating the factor of safety (FSL) of a soil column with
depth [38,76]. A weighting function has been added to give more weight to the shallow layer, close to
the ground surface. In the present analysis, we estimate the liquefaction potential index (IL) using
Equation (8) given by [38] for all the boreholes taken into consideration for liquefaction analysis along
the southern boundary of the Heunghae basin.

IL =

∫ z

0
F(z).w (z)dz (8)

where z is the depth of the midpoint of the soil column taken for analysis, Dz is the differential increment
of depth. The weighting factor, w(z) and the severity factor, F(z) were calculated as:

F(z) = 1 − FSL for FSL < 1. 0; F(z) = 0 for FSL ≥ 1. 0

W(z) = 10–0.5z for z < 20 m and w (z) = 0 for z ≥ 20 m.
For the soil profile, IL was calculated using Equation (9) which is given below.

IL =
∑n

i=1
wiFiHi (9)

with Fi = 1 – FSLi for FSL < 1; Fi = 0 for FSL ≥ 1.
Where Hi is the thickness of the individual soil layer. N is the number of the total soil layer, FSL is

the factor of the safety against liquefaction, wi is the weighting factor (=10–0.5 Hz), and zi is the depth
of ith layer (m) [76,77].

4.4.6. Post Liquefaction Settlement Estimation

For the level ground, the post liquefaction settlement can be estimated from the volumetric strain
induced due to the rise in excess pore water pressure [42,77–80]. Most of these methods are analytical
and based on laboratory studies. In this present study, the methodology proposed by Ishihara and
Yoshimine [80] was used for the post liquefaction settlement estimation.

5. Liquefaction Analysis

In total, 41 borehole pieces of data (Figure 4) were taken from the epicentral area within 3 km
radius from the epicenter. The selection of the borehole was designed in such a way that it covered
the southern part of the Heunghae basin, which experienced more sand boils than the northern part
of the basin. The soil ejected to the ground surface during the liquefaction was mostly sand and
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silty sand (Figures 2f and 6). The NOVOLIQ [81] software was used for the liquefaction analysis,
which was designed for liquefaction potential analysis of layered soil. The input parameters for
the liquefaction analysis were soil type, SPT N value, unit weight, percentage of fines, earthquake
magnitude, groundwater table depth and distance from the fault, etc.

6. Results and Discussion

In total, 41 borehole pieces of data (Figure 4) were taken for the present analysis. A cross-section
covering 10 km along the E-W direction of the Heunghae basin was selected on the basis of surface
manifestation of sand boils during the Pohang earthquake. Since there were no borehole data available
passing thought the center of the basin, the southern part of the basin was taken for the detailed
liquefaction analysis as a representative section of the basin. A recent study [47] reported that the
southern part of the Heunghae basin had more reported cases of liquefaction than the northern
part. An empirical method introduced by the National Center for Earthquake Engineering Research
(NCEER) [5] was used for detailed liquefaction analysis to delineate the variation in depth of liquefaction
prone soil around the epicentral area.

From the analysis, the silty sand and sandy soil having lower SPT-N values (between 1–20) show
a factor of safety against liquefaction lower than 1. Along the 10.5 km transect, the central part of
the Heunghae basin (Figure 8) shows evidences of liquefaction at shallow depth. The silty soil, silty
sand, and sandy soil from 1.5 to 15 m show FSL lower than 1 and are prone to liquefaction. The lateral
variation of liquefiable soil layer for the southern part of the epicenter well matches with the present
analysis (Figure 8). The variation of FSL with depth for some of the boreholes with evidence of
liquefaction is shown in Figure 9.

The liquefaction potential index (IL) for each borehole was assessed using Equation (8).
The estimated IL varies from 2 to 19 for the boreholes showing FSL lower than 1 and zero for
boreholes having FSL higher than 1. The estimated IL for the boreholes are given in Table 3. In terms of
liquefaction susceptibility, the central part of the basin is more susceptible than the east and west side
of the southern part of the basin. This agrees well with the field evidence of liquefaction during the
sand boil of the earthquake. The post liquefaction settlement estimated for each borehole varies from
6 to 50 cm and was mostly caused by the soil layers from 1.5 to 15 m, showing lower FSL. The post
liquefaction settlement for each borehole is given in Table 3.

Table 3. Estimated LPI and post liquefaction settlements for the boreholes showing liquefaction.

Serial No. ID of the Borehole (Figure 4) Liquefaction Potential Index (IL) Post Liquefaction Settlement (cm)

1 BB-03 3.12 30.07
2 BB-16 12.89 20.74
3 BB-20 12 27.10
4 BB-22 3.98 9.63
5 BB-24 4.44 23.31
6 BB-26 5.52 22.85
7 BB-28 2.34 16.59
8 BB-30 1.46 13
9 BB-34 12.85 41.28

10 BB-36 9.33 26.26
11 BB-38 12.62 29.46
12 BB-40 9.63 22.82
13 BB-44 13.01 28.49
14 BB-47 2.73 32.33
15 BB-49 19.17 48.26
16 BB-54 1.66 6.45
17 BB-55 7.63 21.84
18 BB-57 10.17 27.79
19 BB-59 11.73 30.90
20 BB-61 11.05 25.90
21 BB-80 6.38 42.49
22 SB-04 7.23 19.03
23 SB-08 2.46 6.35
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Figure 8. Figure shows the elevation profile taken from the southern part of the Heunghae basin and
bore holes showing liquefaction in the present analysis. The liquefaction analysis suggests that the silty
sand, sand with gravel, and the sandy soil are prone to liquefaction. It well matches with the locations
of liquefaction during the Pohang earthquake. Dashed line joins the maximum liquefiable depth of soil
layer for each borehole.
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Figure 9. Typical plot showing the variation of FSL with depth for some boreholes in the present study.
It shows that most of the soil lying between 1.5 to 15 m is prone to liquefaction.

Understanding the spatial correlation between the liquefaction potential of soil, the probability
of liquefaction, post-liquefaction settlement and its aerial extent with exposure to the population,
buildings and infrastructures around the epicentral area will help for sustainable land use management
in the future. Since this is the first time ever liquefaction phenomenon observed in the Korean Peninsula,
detailed reconnaissance survey, land damage analysis, delineation of liquefiable subsurface soil layers
will help in addressing the liquefaction risk around the epicentral area or areas with similar geological
settings. On the basis of land damage distribution, most of the damaged lands are categorized as
moderate to major land damage and confined between the Gokgang and Chogok Rivers. This may be
due to the presence of alluvial soil at shallow depth. The land damage distribution map will help for
the quantitative hazard assessment of the areas, especially for heavy construction. This information
will also help for further detailed liquefaction hazard mapping with more geotechnical data and lead
to liquefaction sustainable land use planning.
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7. Conclusions

The paper presents the liquefaction analysis, probability of liquefaction and post liquefaction
settlement for the Heunghae basin, which has experienced extensive liquefaction during the 2017
Pohang earthquake. A detailed post-liquefaction survey was carried out immediately after the
earthquake. The result of liquefaction survey shows that the southern part has more sand boil than the
northern part. To determine the depth of liquefiable soil along the southern part of the basin, SPT-N
values were collected from the Integrated Data Base Center of National Geotechnical Information,
Korea. From the present study, it can be inferred that:

1. The liquefaction triggered during the Mw 5.4 Pohang earthquake was localized and observed
more in the southern part than the northern part of the basin. This may be due to the basin
geometry, presence of the Heunghae fault at the center of the basin and the locality lying between
the Gokgang River and the Chogok River with a shallow water table.

2. On the basis of land damage distribution, most of the damaged lands are categorized as moderate
to major land damage and confined between the Gokgang and Chogok Rivers.

3. The grain size analysis of the ejected soil suggests that the soils are silty sand, sand with gravel,
and sandy soil, which falls in the range of most liquefied soils reported in the literature.

4. A 10.5 km long profile was chosen to determine the liquefaction potential, LPI, post-liquefaction
settlement along the southern part of the basin, using SPT-N data and the Pohang earthquake
ground motion data recorded at PHN2 station. The analysis indicates that the silty soil, silty sand,
and sandy soil from 1.5 to 15 m deep are prone to liquefaction.

5. Liquefaction susceptibility of the soil based on SPT-N value showed that the soils from 1.5 to
15 m possess FSL values from 0.2 to 1.0. The liquefaction potential index (IL) estimated for the
boreholes suggests that the southern part of the Heunghae basin has a low to high liquefaction
potential index (IL) values ranging from 2 to 19, which complements with the field evidence of
sand boils during the earthquake.

6. From the post liquefaction settlement, the soils having FSL values lower than 1 show maximum
post-liquefaction settlement ranging from 6 to 50 cm.

7. This study suggests that the soils of the Heunghae basin are prone to liquefaction for earthquakes
higher than Mw 5.4 and more comprehensive geotechnical investigations are required for
better estimation of liquefiable soil depth along with the preparation of liquefaction hazard
zonation maps.

8. Similar liquefaction potential analysis must be carried out for other basins situated in close
proximity to the Yangsan and Ulsan faults, including the Pohang basin, a major industrial center
along the SE Korean Peninsula. This study will support the national disaster management
authorities in developing a sustainable guideline for liquefaction hazard mitigation.
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List of Symbols

SPT-N Standard Penetration Test
CPT Cone penetration Test
N Number of blows
CSR Cyclic Stress Ratio
CRR Cyclic Resistance Ratio
MSF Magnitude scaling factor
FSL Factor of Safety against Liquefaction
amax maximum acceleration
Vs30 shear wave velocity at 30 m
PGA Peak Ground Acceleration
LPI Liquefaction Potential Index
LL Liquid Limit
PI Plasticity Index
KSF Korean Industrial Standard
USCS Unified Soil Classification System
ASTM American Standard for Testing Materials
PHN POSEIDON seismic station at Pohang
NZS New Zealand design Standards
NCEER National Center for Earthquake Engineering Research
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