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Abstract: To stay competitive in a business environment, continuous performance evaluation based
on the triple bottom line standard of sustainability is necessary. There is a gap in addressing
the computational expense caused by increased decision units due to increasing the performance
evaluation indices to more accuracy in the evaluation. We successfully addressed these two gaps
through (1) using principal component analysis (PCA) to cut the number of evaluation indices,
and (2) since PCA itself has the problem of merely using the data distribution without considering
the domain-related knowledge, we utilized Analytic Hierarchy Process (AHP) to rank the indices
through the expert’s domain-related knowledge. We propose an integrated approach for sustainability
performance assessment in qualitative and quantitative perspectives. Fourteen insurance companies
were evaluated using eight economic, three environmental, and four social indices. The indices
were ranked by expert judgment though an analytical hierarchy process as subjective weighting,
and then principal component analysis as objective weighting was used to reduce the number of
indices. The obtained principal components were then used as variables in the data envelopment
analysis model. So, subjective and objective evaluations were integrated. Finally, for validating the
results, Spearman and Kendall’s Tau correlation tests were used. The results show that Dana, Razi,
and Dey had the best sustainability performance.

Keywords: analytic hierarchy process (AHP); data envelopment analysis (DEA); sustainability;
insurance companies; principal component analysis (PCA)

1. Introduction

In the era of Industry 4.0, global concern about sustainable development has been increasing
due to serious ecological degradation caused by industrial growth. The effect of industrialization has
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been studied in different societies. Corporations can have a critical role in attaining environmental
sustainability [1]. Sustainability is development which satisfies the current needs without restraining
subsequent generations from satisfying their own needs [2]. Various methods have been used to
evaluate sustainability in different disciplines [3–10]. Several methods to assess the sustainability
performance of firms and companies have been developed [11–14]. These comprise analyzing the
impact of technological innovation and innovation management on firm sustainability performance [14],
environmental footprint [15], the Environmental Sustainability Index [16], driving force, pressure, state,
exposure, effect, action model [17], and others. Büyüközkan and Karabuluthave provided an overview
of these approaches [18]. Hellström studied the structure and concepts of environmentally-sustainable
innovation as eco-innovation [19]. Cavallaro et al. proposed an intuitionistic fuzzy algorithm to
assess the sustainability of concentrated solar power (CSP) technology [20,21]. Cavallaro developed a
sustainability index of biomass based on the Takagi–Sugeno fuzzy inference system [22]. Nilashi et al.
proposed a neuro-fuzzy approach for measuring country’s sustainability performance [23].

One of the effective approaches to assess the sustainability performance is to use multi-criteria
decision making (MCDM) methods, specially data envelopment analysis (DEA) and AHP. In the next
section, we propose a critical evaluation of the literature.

2. Literature Review

Many studies are conducted on performance assessment and sustainability performance
assessment using MCDM methods. We conduct a critical evaluation of the literature on MCDM
methods, including DEA, AHP, and PCA. Singh et al. proposed a model to build an integrated
sustainability performance index for steel industries [24]. Tsolas used an integrated DEA–AHP
approach to develop environmental sustainability indices in mineral processing using economic and/or
environmental combined indices [25]. Similar frameworks have been developed in the mining and
minerals industry [26], design and manufacturing [27], medicine and chemical industry [28], water
resource management [29], and country-level sustainability performance [30–32]. The majority of
studies have utilized the environmental performance of enterprises as the indicator of firm sustainability
performance [33–35]. Another group of studies have somewhat concentrated on corporate social
responsibility inside a certain industry, like financial and banking services [34], renewable energy [32],
or supply chain [36,37]. Some studies investigated the sustainability performance of the energy
sector for long-term time horizons [38–42]. Some of the papers studied the relationship between an
enterprise’s environmental and economic performance [35,43–45] or the influence of stakeholders
as part of the social dimension [46,47]. Putzhuber and Hasenauer developed 15 indices to measure
economic, social, and environmental impacts using governmental data. They found that the available
public data show that there are specific impact measures over specific locations [48].

Hatami-Marbini and Kangi [49–54] studied the environmental and social externalities related to
the semiconductor industry and concluded that the sustainability performance of the related industries
can increase because of the more prevailing use of semiconductor equipment within diverse industries.
Halkos and Tzeremes [54] studied the sustainability efficiency of 20 countries using a two-stage DEA
during 1990–2011. They found that a country’s high production efficiency does not ensure a high
eco-efficiency performance. Tajbakhsh and Hassini [55] investigated the sustainability efficiency of
fossil-fuel-based electricity generation facilities in two-stage DEA. They found that that neither existing
two-stage DEA models nor traditional efficiency ratios sufficiently accounted for the environmental
and social impacts of fossil-fuel power generation sources. Wu et al. [56] developed a DEA model
to assess the sustainability efficiency of a two-stage system with undesired outputs. The two-stage
system consisted of two sub-systems: a production subsystem and a pollution treatment subsystem.
Based on their proposed DEA model, three theorems were established to show the relationships
between the interest preference parameter and the change in efficiency scores. They captured the actual
characteristics of the studied real-world two-stage system and generalized to explore the efficiency level
of other similar two-stage systems as well. The study in [57] proposed an adaptable cross-efficiency
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assessment approach using a DEA model to find the best supplier performance in a semiconductor
industry. Hatami-Marbini et al. Reference [58] proposed a four-stage bounded fuzzy DEA model,
in a way that all the inputs and outputs are presumed to be fuzzy numbers. They demonstrated the
efficiency of the proposed model in evaluating the safety and sustainability performance of various
semiconductor manufacturers. Hsu [51] developed a hybrid DEA and improved grey relational analysis
to assess environmental efficiency, while Chen et al. [59] developed a new indicator, as a non-disposal
degree and a new semi-disposability assumption. They used the new indicators in a traditional DEA
approach, replacing the assumptions of strong and weak disposability in environmental assessments.
Tsai et al. [52] used conventional DEA models to investigate benchmark industries. Li et al. [60]
generalized a three-stage DEA model to measure sustainability performance with a focus on the
efficiency of innovation by evaluating the scale, technical efficiency, and pure technical efficiency of
innovation in China’s semiconductor manufacturing during 2009–2014.

Tourais et al. suggested that sustainability performance can be measured by investigating the
interaction of environment and organizations [61], They also proposed that the environmental data can
be more comparable if they are standardized. Liu introduced a general measure for measuring
sustainability for renewable energy systems, which includes many fundamental sustainability
indices [62]. Nonetheless, few studies have studied experiential profiles of firm-level corporate
sustainability or evaluated firm-level variations in sustainability over time. Insurance companies are
one of the areas which have not been studied enough. These firms rely on performance evaluation
and constant adaptation to stay solvent and competitive. In addition to firm-oriented evaluations,
a sector-wide evaluation of the entire insurance sector is conducive to inform mesoscale decision-making
in an economy. Such a sustainability evaluation generates a ranking of the insurance companies,
providing indicators on the sustainability, transparency, efficiency, and competitiveness of the sector.
Besides policymakers, it benefits the rest of the actors in the economy, including stakeholders,
consumers, managers, investors, and banks. The main target of ranking insurance companies is to
discover their reliability and sustainability. The ranking facilitates unraveling the present and future
status of a company in a multidimensional manner, focusing primarily on sustainability, financial, and
management aspects.

In addition, because of fast economic growth, the ever-increasing impacts of environmental
pollution have absorbed huge attention all around the world [63–68]. There are different models
within the literature with respect to evaluating sustainability performance [69–72]. Sueyoshi and
Yuan [72] adopted a DEA intermediate method to assess the sustainability performance of Asian
countries. Production with pollutant byproducts and pollution assumed as a two-step system have
provoked growing attention in the sustainability management field. Undesirable aspects have been
considered when evaluating the performance of suppliers [73–81], eco-efficiency [82–91], and resource
and environmental [92–97] efficiency. Some studies also introduced DEA efficiency evaluation by taking
into account unwanted issues, and unwanted factors can be considered inputs or unwanted outputs in
the DEA models [98–104]. Scientists have introduced various methods to address unwanted outputs
in DEA [105]. Unwanted outputs are unavoidably generated together with desirable outputs [106].

Several approaches can be utilized for evaluating business sustainability. These evaluations
usually primarily make use of data envelopment analysis (DEA), accompanied by other analytical
tools, including analytic hierarchy process (AHP), and principal component analysis (PCA).

AHP is a qualitative and quantitative analysis of multi-attribute decision analysis methods, created
by [107] to organize and quantify human judgment. Using AHP, the decision-makers can make pure
pairwise judgments to prioritize alternatives.

Pearson proposed the principal component analysis approach in 1901. This statistical method
can handle problems with multiple variables. The aim of using this method is mainly to deal with
data with high dimensions. In the published literature many advantages have been mentioned for the
principal component analysis method, two of which are more cited: first, its strength in revealing the



Sustainability 2020, 12, 789 4 of 24

hidden patterns in the data and finding the similarities and dissimilarities in the data; second, it makes
the data smaller while keeping the important and valuable features [108].

On the other hand, the data envelopment analysis method has been widely used in the performance
assessment of various subjects [109,110]. It has been mainly used in assessing the functionalities of
educational units, like schools and universities, healthcare units, like clinics and hospitals, financial
units, like banks, and so forth. These units in DEA literature are called decision-making units
(DMUs) [111,112]. One of the biggest advantages of the DEA method is to enhance the relative
efficacy of the decision-making units through optimizing the share of the weighed sum of the outputs
to the weighted sum of the inputs [113–121]. DEA has a strong discerning ability in finding the
valuable information in data [122–125]. This strength has a direct negative relationship with the
number of variables, which means when the variables are more, DEA cannot reveal the useful
patterns effectively [126]. Additionally, DEA’s discerning ability decreases when the number of
DMUs is not considerable and the number of variables is high [108,127]. In the case of these
constraints and difficulties, the currently-used DEA approaches typically produce solutions with
a huge number of DMUs. Therefore, there are huge efforts going on to enhance DEA’s power in
discerning. For instance [128], proposed a DEA model which uses multiple criteria to leverage the
discerning ability in assessing the efficiencies of investments firms using a multi-objective linear
programming framework. In another study, an approach was developed to enable weight restriction
in their domain directly [129]. They defined the notion of an assurance region (AR) to investigate the
efficacy of the linear production likelihood set. In their proposed AR, several linear homogeneous
constraints are imposed on the input and output multipliers. They found that AR can diminish
the number of options for the overall efficacy if it is applied in technically efficient organizations.
Reference [130] used a pessimistic–optimistic method of DEA to take into account both pros and cons of
the decision-making units to decrease the impact of a high number of variables. They used this method
in performance evaluation in the revenue distribution process. In another study, [131] introduced
a method based on maximum variance to reduce the dimension of the data via the Gram–Schmidt
method. The selected Gram–Schmidt factors were then inserted in the developed DEA approach with
a natural AR. The study in [132] proposed an adjusted network data envelopment analysis (NDEA)
model for assessing the sustainability performance of an energy supply chain in Iran from production to
distribution stages. The study in [133] added economic dimensions such as corruption and population
to the DEA model to increase the discerning power of the DEA model. Thus, it is necessary to reduce
the data dimensionality or the number of variables in the DEA structure, especially in the presence of
large dimensionality of the data set.

There have been DEA studies that improved the methodology by reducing the number of
input/output variables. Reference [134] described a systematic multivariate statistical approach to
omit some inputs and outputs that are highly correlated with the retained ones and decide which
of the original correlated variables can be omitted with least loss of information and which can be
retained. They concluded that even omitting variables that are highly correlated, and thereby contain
little additional information on performance, could have a significant influence on the computed
efficiency measures. Using PCA, [135] suggested a methodology that produces uncorrelated linear
combinations of original inputs and outputs to improve discrimination in DEA with minimal loss of
information. The study in [136] applied similar data reduction methods and evaluated deregulated
airline networks to measure the quality of Western European airports. Reference [137] proposed a new
DEA framework to evaluate the healthcare performance of different districts in Istanbul, Turkey. They
suggested an imprecise data envelopment analysis approach, which sets forth a more realistic decision
methodology for evaluating the relative health-care performance and enables the determination of the
best district in terms of health-care performance in Istanbul. Reference [138] implemented DEA to
evaluate the economic performance of 18 cities in China. The results indicate that there is the same rank
of performance by using either the PCA or constant returns to scale (CRS) model in DEA. The PCA
procedure adopted by [138] was slightly modified in [139] study by incorporating other important
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featured of ranking that [138] did not consider. The study in [140] changed the undesirable outputs
to be desirable ones and then performed PCA on the ratios of a single desirable output to a single
input. Finally, the transformed principal components were treated as outputs into DEA models with
an assurance region (AR). Reference [141] suggested that the variables could be divided into groups
based on their logical composition concerning the production process to reduce data dimension using
PCA as a means of weighting inputs and outputs and summarizing them parsimoniously rather than
selecting them.

Most of the studies in the literature conducted evaluations of insurance companies using DEA
models, and [142] evaluated 22 insurance companies over the period 1999–2004 to study the technical
efficiency of China’s insurance industry. First, they calculated the efficiency scores, and then they
conducted a regression analysis to identify the critical determinants of efficiency. The study in [143]
measured the efficiency of the insurance industry in China from 1999 to 2006 based on the multistage
DEA model and showed that the efficiency scores of insurance firms are underestimated if the
endogenous risk factors are not considered. References [144,145] employed a two-step procedure of
the DEA process to evaluate the efficiency in the Greek insurance industry. Reference [146] applied a
variant of the DEA model to examine the active insurance companies in the life insurance sector in
India. Their results indicate a significant imbalance in the levels of cost efficiency during the years
1982–2001. The study in [147] used a two-stage DEA approach to evaluate 24 non-health insurance
companies in Taiwan. Grmanova and Strunz [148] identified the relationship between the technical
efficiency and profitability of insurance companies. They analyzed 15 commercial insurance companies
in Slovakia in the period of 2013–2015 using a DEA model. Malyovanyi et al. [149] estimated the
influence of social expenditures and their structure on economic growth in the OECD countries for the
years 1980–2015. They improved the functioning of non-state social insurance institutions in Ukraine.
Horsch et al. [150] conducted a detailed survey of deposit insurance systems in post-Soviet countries
since 2017. They collected and covered 15 post-Soviet countries’ insurance systems completely. They
found that post-Soviet countries are on their way to developing deposit insurance systems that can
effectively protect clients and help establish a stable financial system. Simionescu [151] studied the
Romanian insurance market, considering ten representative insurance companies, taking into account
the qualitative changes in the legislative basis after Romania’s entry into the European Union and the
global economic crisis. They used a panel autoregressive-model (PVAR) model for the ten insurance
firms during 2004–2017. They found that the indemnities paid by the insurance firms negatively
influenced the liquidity, but with a lag of two periods after changes in indemnities. Jurickova et al. [152]
evaluated the technical efficiency of the National Innovation System within a sample of European
Union (EU) countries using DEA. Trynchuk [153] identified the role of universities in spreading social
responsibility practices in the insurance market. Nesterchuk and Prokopchuk [154] investigated the
existing state and projections for future growth of the Ukrainian agrarian insurance system based
on developing the strategy of development of the latter with maximum attention to the needs and
interests of all its contributors.

In addition to the classical application of DEA, several studies extended the DEA models.
For example, Reference [155] evaluated and examined a set of Japanese life insurance companies in
the two aspects of production yield and productivity change using a nonparametric DEA model by
using panel data from 1988–1993. Reference [156] provided new empirical evidence on the efficiency
of frontier measures in the international insurance industry. In their study, the efficiency scores of 6462
insurance companies in 36 countries were computed using the Stochastic Frontier Analysis (SFA) and
DEA models.

Classic PCA determines the weight of the principal components based only on objective survey
data. Hence, some studies combined AHP with PCA and built weighted PCA. Weighted PCA uses
AHP to identify the weight of each assessment criterion. For example, [157] used the modified AHP
to identify the weights of primary indexes. Then, instead of the primary indicators of the pervasive
principal component index, for each principal component, they used the linear weighted value as
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a pervasive assessment. Compared with other evaluation methods, weighted PCA, which is the
integrated AHP–PCA model, is more efficient in reducing dimension and the calculation load. It also
retains the most information of the original data.

The aim of this paper is to measure the performance and efficacy of insurance firms based on
different economic aspects whose values may cause economic recession or growth. Our contribution
is to use principal component analysis and analytic hierarchical process techniques to improve the
discerning power and effectiveness of the conventional DEA. These modifications of the conventional
DEA, along with utilizing the optimal set of indices, leads to an increase in the accuracy of the
performance assessment. In other words, we successfully address one of the limitations of conventional
DEA. That is, the computational expense caused by increased decision units due to increasing the
performance evaluation indices (for more accuracy in the evaluation). To accomplish this goal, we use
PCA to cut the number of evaluation indices, and since PCA itself has the problem of merely using
the data distribution without considering the domain-related knowledge, we utilize AHP to rank the
indices through the expert’s domain-related knowledge.

Multiple criteria decision-making (MCDM) methods are used in this study for finding the
“appropriate” pair of weights. We use analytic hierarchy process (AHP), which is a qualitative and
quantitative analysis of multi-attribute decision analysis methods created by [107], to identify the
“optimal” weights in the model. Using AHP, the decision makers can make pure pairwise judgments
to reach the overall priorities for the alternatives [158,159]. Because of its simplicity, ease of use, and
great flexibility, the AHP has been studied extensively and used in nearly all applications related to
MCDM since its development [160–163].

Also, we use principal component analysis (PCA), which was proposed by [164] as a multivariate
statistical approach to reduce data dimensionality. The advantage of PCA is that it defines a mapping
from the original space to the principal coordinates, and hence that if a new point x arrives, its projection
onto the principal coordinates defined by the original n data points can be computed [165–168].

The data compression is done by transforming the original data into a new set of variables, the new
principal components, which are uncorrelated with each other. Based on the degree of importance, the
principal components will be in descending order, and only the first several most important ones can
be retained. Using PCA, we minimize the limitations of the previous studies, e.g., multicollinearity,
subjectivity, and high computation requirement, and it has strong objectivity.

Then, we evaluate a numerical example of this methodology. The remainder of this paper is
structured as follows: Section 2 introduces the methodology of the proposed model; in Section 3,
the case study and running algorithm of the proposed model are presented; Section 4 shows the results
and discussion; and finally, the conclusion is summarized in Section 5.

3. Method

Our case study had a large number of input and output variables in comparison to the number
of DMUs. PCA was used to reduce the number of input and output variables, and then this
dimension-reduced data was entered in a modified DEA to improve DEA’s discrimination power.
We also used expert judgment to rank both objective and subjective results. Usually, there are two
different approaches to determine the weight of indicators, namely, subjective weighting and objective
weighting. Subjective weighting is a way to give indicator weights based on the judgment of experts,
who subjectively determine that specific indicators are more important than the others. As shown
in Figure 1, we obtained the weights of inputs and outputs by AHP and integrated AHP with PCA,
and the number of variables was reduced by weighted principal component analysis (WPCA), then
the input-oriented DEA model was used to get the ranks of each DMU. Finally, the results of the two
approaches were verified and validated by the Spearman and Kendall tau correlation experiment.
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3.1. AHP–PCA Model

We integrated AHP and PCA to convert the linguistic judgments into numerical scales, simplify our
complex evaluation problem focusing on their interest in comparison of just two criteria, and improve
their consistency. MCDM methods can support decision-makers in this process [169,170], and can be
used for finding the appropriate pair of weights. In other words, we looked to identify the optimal
weights for the sustainability performance. The analysis of complex decisions involved the evaluation
of activities using multiple criteria to determine the best alternative action [171,172]. AHP is the
popular method in decision-making, which only needs the decision-makers to compare each pair of
objects and provide their preference values.

This can happen since the main thought of AHP is to decompose the complex problems into
sub-problems, to classify these sub-problems by dominance relationship, and to construct an orderly
hierarchy. According to a particular percentage scale for assigning the relative importance of evaluating
elements, a pairwise comparison allows the conversion of subjective assessments into numerical scales,
breaks down the problem into a two-choice comparison, and enhances their reliability. The importance
level of one element in this paper is expressed as a scale of 1–9, as shown in Table 1. Scale 1 means the
two elements are of equal importance, and scale 9 means one is hugely more important than the other.
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Table 1. Pairwise comparison scale for analytic hierarchy process (AHP) preferences.

Verbal
Judgments of
Preferences

Extremely
Preferred

Very
Strongly to
Extremely

Very
Strongly
Preferred

Strongly
to Very

Strongly

Strongly
Preferred

Moderately
to Strongly

Moderately
Preferred

Equally to
Moderately

Equally
Preferred

Numerical
rating 9 8 7 6 5 4 3 2 1

According to [138–140], PCA was applied to evaluate and rank the performance of n decision
making units (j = 1, 2, . . . , n) with m inputs (i = 1, 2, . . . , m) and s outputs (r = 1, 2, . . . , s), for which
the ratio between every output and every input is as in Equation (1):

d j
ir =

yrj

xi j
r = 1, 2, . . . , s i = 1, 2, . . . , m (1)

The bigger d j
ir is, the better the performance of DMU j regarding the output and the ith inputs.

Now, let d j
k = d j

ir, e.g., k = 1 corresponds to i = 1, r =1 and k = 2 corresponds to i = 1, r = 2, etc., where

k = 1, 2, . . . , p and p = m*s. We need to find some weights that combine those p individual ratios of d j
k

for DMU j. Consider the following n*p data matrix composed by d j
k in Equation (2):

D =
[
d1, d2, . . . , dp

]
n∗p

(2)

Each row represents p individuals’ ratios of d j
k for each DMU and each column represents a specific

output/input ratio. That is, dk =
[
d1

1, d2
2, . . . , dn

k

]T
. PCA was employed to search for a component

structure by factoring the sample correlation matrix D and finding out new independent measures,
which are different linear combinations of d1, . . . , dp. Principal components can be combined by their
eigenvalues to obtain a weighted measure of d j. The PCA process D was carried out as follows.

Step 1: Normalize the ratio matrix.
To normalize the ratio matrix (D), Equation (3) is used:

D̃ =
[
d̃1, d̃2, . . . , d̃p

]
n∗p

=
[
d̃ j

k

]
n∗p

(3)

where d̃ j
k =

(
d j

k − dk
)
/√skk, the sample mean dk =

1
n
∑n

j=1 d j
k, and sample variance skk = ∑n

j=1

(
d j

k − dk
)2/(n− 1).

Step 2: Calculate the sample correlation matrix.
To calculate the sample correlation matrix (R), Equation (4) is used:

R = [rki]p∗p (4)

where rki = (n− 1)ski/
√

skksii and ski = 1/n− 1
∑n

j=1

(
d j

k − dk
)(

d j
k − di

)
.

Step 3: Solve the following equation:
∣∣∣R− λIp

∣∣∣ = 0, where i is a p × p identity matrix. We obtain
the ordered p characteristic roots (eigenvalues) λ1 ≥ λ2 ≥ . . . ≥ λp with

∑p
k=1 λk = p and the related p

characteristic vectors (lk1, lk2, . . . , lkp) (k = 1, . . . , p). Those characteristic vectors compose the principal
components pck. as in Equation (5):

PCk = D̃
[
l1, . . . , lp

]
=
[
PC1, . . . , PCp

]
n∗p

(5)

Step 4: Select the principal component by defining ρ = ∑M
k=1 λk/

∑p
k=1 λk =

∑M
k=1 λk/p. The first M

components may be selected by satisfying, e.g., ρ > 90%, i.e., the first M principal components account
for 90% of the contribution to the total sample variance (the other proposal to select the principal
components can be λ > 1).

Step 5: Establish the principal of weighted PCA.
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In this step, we create the weighted standardized PCA. The weighted standardized index is D∗k,
and it is shown in Equation (6).

D∗k = wkD̃ (6)

where wk is on behalf of the important weigh of index k determined by AHP. So, the new principal
component is established as in Equation (7).

PCM = D∗k
[
l1, . . . , lp

]
(7)

Reference [173] showed that ranking by PCA may not be reliable. So, the chosen principal
component was considered as the output of the DEA. However, the output of the original DEA
model should be highly positive, but some of the principal component values can be negative.
References [174,175] proved that the following linear equation could be used to fix this problem.
Reference [140] also used the linear equation. Therefore, the following linear equation was used to
achieve positive data, as in Equations (8) and (9):

Z jk = pc j
k + q (8)

Q = −min
{
PC j

k

}
1≤k≤M,1≤ j≤n

+ 1 (9)

By this linear equation, the entire chosen principal component increases with the same rate. Since
the nature of the principal components is increasing, all input variables were considered as outputs
for DEA.

3.2. Modified DEA Model

Reference [176] proved that the input-oriented (Banker, Charnes, and Cooper) BCC model is
output translation invariant. Reference [177] further proved that an input-oriented Charnes, Cooper,
and Rhodes (CCR) model with a single constant input (or dummy) coincided with the input-oriented
BCC model. To evaluate the operational efficiency of DMUo, a simplified input-oriented CCR model
was proposed, as follows in Equation (10):

Max wo =
M∑

k=1
pkzko

s.t.
M∑

k=1
pkzkj ≤ 1, j = 1, 2, . . . , n; pk ≥ 0; k = 1, . . . , M

(10)

In the model (10), the possibility of a resolution between the DMUs is weak. It is possible for some
DMU to achieve the same performance. Fixing this problem using the assurance region (AR) is essential.
A similar AR for the weight constraints was successfully applied to rank voting by [140,178,179]. The
model proposed by [180] is as follows in Equation (11):

Max wo =
M∑

k=1
pkzko

s.t.
M∑

k=1
pkzkj ≤ 1, j = 1, 2, . . . , n; j , 0

pk − pk+1 ≥ εk k = 1, 2, . . . , M− 1

ε =

{
0 λk = λk+1
ε > 0 λk > λk+1

pk ≥ 0 k = 1, 2, . . . , M
.

(11)
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In model Equation (11), pk is the weight assigned to outputs zkj, j = 1, 2, . . . , n, and the weight
constraints pk − pk+1 ≥ εk represent the fact that the kth principal component carries the total dispersion
more than the kth one does. To obtain the efficiency of the DMUs, model Equation (11) must be
calculated separately for each DMU. Therefore, a new model is proposed to save time and calculate the
efficiency easily in this paper. The proposed model is as follows:

MAX (1− do)

s. t.
M∑

k=1

pkzko + do = 1

∑M

k=1
pkzkj ≤ 1, j = 1, 2, . . . , n; j , 0 (12)

pk − pk+1 ≥ εk k = 1, 2, . . . , M− 1

ε =

{
0 λk = λk+1
ε > 0 λk > λk+1

pk ≥ 0 k = 1, 2, . . . , M

do ≥ 0

where wo = 1− do. For all DMUs, the model Equation (12) was converted to the model Equation (13)
as follows:

MAX
∑

o
(1− do)

s. t.
M∑

k=1

pkozko + do = 1

∑M

k=1
pkozkj ≤ 1, j = 1, 2, . . . , n; ∀o , j (13)

pko − p(k+1)o ≥ εko k = 1, 2, . . . , M− 1

ε =

{
0 λk = λk+1
ε > 0 λk > λk+1

pko ≥ 0 k = 1, 2, . . . , M

do ≥ 0 ∀o.

4. Empirical Study

To demonstrate the efficacy of our proposed method, Iranian insurance companies were used
as an example to be evaluated and ranked during 2019. The data for public and private insurance
companies were retrieved from the Iran Central Insurance database. The private companies were Dana,
Asia, Alborz, Moallem, Persian, Toseeh, Razi, Karafarin, Sina, Mellat, Dey, Saman, Novin, Pasargard,
and only the Iran Insurance company was a public (governmental) company. In Iran, the insurance
companies can operate in both the health and non-health insurance industries. We used indicators
generated using both health and non-health insurance companies’ statistics.

The primary step in the performance evaluation was selecting the indices. The indices were
divided into two overall subsets. The first type of indices evaluated the performance in financial aspects,
and were based on the equities: operating costs, investment costs, rights of equities, the premium of
insurance issued, total assets, net profit, investment income, and total debt. The second type evaluated
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performance in managerial aspects: number of agents, number of branches, number of employees,
number of issued insurances, and total payable compensations. In this paper, the input and output
variables were as shown in Table 2.

Table 2. Input and output variables.

Variable Sustainability Aspect Description

I1: Number of agents Econ Individuals or corporates that can provide
insurance services

I2: Number of branches Econ/soc Providers of insurance services, inspection,
control, support, and brokers

I3: Investment in green
projects Env Sum of total investment in environmentally

friendly projects.

I4: Operating costs Econ All official, personnel, public expenses, and
commission fees.

I5: Investment costs Econ/Env/Soc
Premiums received from insurers cannot be consumed

for compensations immediately and remain in
companies for a while.

I6: Total assets Econ These assets include tangible fixed assets and
intangible assets.

I7: corporate social
responsibility Soc

Corporate social responsibility encompasses investments
as the company’s charitable contributions and role in

the community.

O1: Premium of
Insurance issued Econ/Env/Soc

Direct premiums are received by insurance companies or
branches, while indirect ones are presented by brokers of

insurance companies.

O2: Net profit Econ Subtractions of the number of incomes with operating
costs and tax.

O3: Investment income Econ The total proceeds from short-term and
long-term investments.

O4: Total debt Econ Total debt to representatives, brokers, and
other companies

O5: Number of issued
insurances Econ Penetration rate of insurance policies and all types

of insurances.

O6: Total payable
compensations Econ Compensations during the review period paid by

insurance companies are called payable compensation.

Note: Econ: Economic, Env: Environmental, Soc: Social.

As shown in Table 2, there were seven input variables, three of which were purely economic
variables, one was purely social, one was purely environmental, and two were environmental. The third
input variable included zero energy buildings, developing renewable energies, and sustainable
agricultural and industrial projects. Operating costs are expenses that are given to personals, sale
networks, and all factors relating to insurance rights.

Investment costs are the total of premiums, which become large cash that will be invested in
addition to collected deposits and other financial resources of insurance companies. These amounts
were considered as indexes of long-term and short-term investment costs.

With respect to the sixth input variable, total assets, total receivable claims were considered as
assets of insurance companies.

In calculating the total debt, we considered whether corporate or legal individuals were included
or not.

In calculating the number of issued insurances, we considered the total number of the issued
insurance—that is, insured by companies, including individuals and groups in any field. In this
adjoined issued insurance, previously issued was not included.
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In calculating the total payable compensations, we considered the statistics of the total payable
compensation as representing the number of cases which insurance companies have paid. This also
showed the volume of the activities of insurance companies allocated to compensation in the entire
insurance field for a year.

The values for ranking and implementation of the model’s algorithm relating to 14 insurance
companies for seven input and six output variables are presented in Table 3.

Table 3. The values for input and output variables.

I1 I2 I3 I4 I5 I6 I7 O1 O2 O3 O4 O5 O6

Iran 5538 4614 205 1,736,982 1,472,429 23,795,357 593,449 2,831,972 320,291 332432 3,258,517 1,562,637 2,198,107
Dana 952 1581 54 3,191,983 763,081 37,756,571 157,684 5,152,121 69,739 30,922 5,025,753 1085032 1,703,533
Asia 1924 2699 89 4,016,051 2,018,250 36,501,402 684,520 6,665,153 127,191 276,430 7,127,567 3,670,365 391,057

Alborz 1501 1302 51 1,858,603 1,638,024 36,881,628 883,040 3,530,870 262,414 341,119 4,429,534 1,850,647 206,050
Moalem 791 638 39 921,117 575,624 37,944,028 516,386 900,379 45,484 99,297 1,995,053 444,989 315,901
Parsian 1497 659 39 224,8568 1,679,712 36,839,940 199,779 3,622,715 506,228 321,737 5,473,480 2,407,920 254,405
Toseie 1607 440 32 920,430 1,476,394 37,043,258 554,768 2,126,782 199,932 147,008 2,249,591 1,585,899 111,615
Razi 577 459 28 653,290 643,645 37,876,007 345,151 844,021 15,311 667,55 1,285,289 1,045,294 75,427

Karafarin 1072 534 26 990,953 1,392,337 37,127,315 472,436 1,813,073 80,495 176,130 2,802,203 628,401 41,311
Sina 142 350 80 894,794 324,842 38,194,810 494,335 1,671,061 44,782 38,640 2,278,848 170,750 354,580
Dey 561 312 34 342,660 643,930 37,875,722 663,702 601,800 34,753 71,696 806,664 151,087 43,425

Saman 671 378 16 205,445 516,421 38,003,231 408,974 809,493 96,110 53,548 982,730 418,116 28,637
Novin 1216 338 31 601,038 769,237 37,750,415 290,191 1,160,416 95,833 125,504 1,280,979 1,109,931 133,316

Pasargard 993 299 33 275,321 109,278 37,426,875 728,682 1,042,748 159,726 128,464 1,164,519 1,168,666 39,580

In the DEA model, the number of DMUs was approximately three times the number of variables.
Therefore, the PCA model was applied to reduce data. In PCA, as mentioned in the methodology,
a single output was divided into a single input, and the resulting ratios were considered PCA indicators.
These ratios were normalized as the first step of PCA. The output/input ratios and data normalization
were just calculated and not mentioned here to prevent data excess. Next, the correlation matrix was
calculated, and Eigenvectors and their corresponding Eigenvalues were obtained from the correlation
matrix. According to the ascending order, the first column includes a vector corresponding to the largest
Eigenvalue, and the last vector is corresponding to the smallest Eigenvalue. In PCA, for calculating
principal components, eigenvectors obtained in the previous step are multiplied by the standard matrix.
In this paper, for incorporating the expert judgments in the results, the AHP weights were imported to
the PCA model. The AHP weights provided from the insurance experts’ preferences by using Super
Decision software are shown in Table 4.

Table 4. The AHP weights for inputs and outputs.

Indices I1 I2 I3 I4 I5 I6 I7 O1 O2 O3 O4 O5 O6

Weights 0.02608 0.0208 0.03304 0.08705 0.05368 0.06844 0.21478 0.11029 0.1738 0.13898 0.04208 0.01689 0.01409

As described in the PCA model, according to Equation (1), input and output must be converted to
a single ratio. Thus, the input and output weights that were obtained from AHP should be converted to
a single weight ratio (dk). It was assumed that the ratio weights should be obtained by dividing outputs
weights to inputs weights, but a simple example shows the weakness of this procedure. We recommend
that the weights of inputs and outputs should be multiplied together as follows:

wd14 =
wO2

wI7

=
0.1738
0.21478

= 0.8092, wd30 =
wO5

wI2

=
0.01689
0.0208

= 0.812

As shown above, the single ratio d14 included two important indexes in comparison to d30. However,
wd30 was more important than wd14 , which has inconsistency with the decision-maker (DM) view.
In contrast, by multiplying the input and output weights, the results obtained for d14 and d30 were
more reasonable, as shown below:

wd14 = wO2 ∗ wI7 = 0.1738 ∗ 0.21478 = 0.0373, w30 = wO5 ∗ wI2 = 0.01689 ∗ 0.0208 = 0.000351
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So, the single ratio weights were calculated by multiplying the input and output weights. Then, to
achieve the final weight, the weights obtained were normalized by using w̃dk

=
wdk∑p

k=1 wdk

. The results

are shown in Table 5.

Table 5. The AHP weights for ratio indicators.

Indices d1 d2 d3 d4 d5 d6 d7 d8 d9

Weights 0.00960667 0.0075 0.01250 0.03647744 0.02241847 0.02749435 0.10391165 0.01622057 0.012664
Indices 10 d11 d12 d13 d14 d15 d16 d17 d18
Weights 0.02111 0.06159103 0.03785289 0.04642336 0.17545161 0.01249634 0.009757 0.016263 0.047449
Indices d19 d20 d21 d22 d23 d24 d25 d26 d27
Weights 0.02916191 0.03576460 0.13516809 0.00327214 0.002555 0.004258 0.012424617 0.007635978 0.0093649
Indices d28 d29 d30 d31 d32 d33 d34 d35 d36
Weights 0.03539345 0.0011668 0.000911 0.001518 0.00443043 0.00272288 0.003339 0.01262078 0.0009218
Indices d37 d38 d39 d40 d41 d42
Weights 0.00072 0.0012 0.00350018 0.00215115 0.00263821 0.00997079

Then, the weights were used with the PCA method. According to Equation (6), each index’s
weight was multiplied first with the standard matrix, and then the result was multiplied by the
Eigenvectors matrix to find the principal components. The results were sorted in descending order by
coding WPCA in MATLAB software and displayed in Table 6.

Table 6. The negative principle components obtained from WPCA.

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5

Iran −0.2915 0.05842 0.07073 0.02801 0.10622 Sina 0.07800 0.02444 −0.1039 0.01313 −0.04603
Dana 0.04090 0.20939 0.15311 −0.0719 0.00982 Dey 0.08962 −0.05341 −0.0731 0.03889 −0.01485
Asia 0.01852 0.0453 0.04547 0.07397 −0.0126 Saman 0.02535 −0.0763 −0.0317 −0.1202 0.031898

Alborz −0.0380 −0.0043 0.02141 0.02407 −0.0048 Novin −0.0278 −0.00923 0.05027 0.01689 0.000952
Moalem 0.06831 −0.0163 −0.0526 0.07582 −0.0368 Pasargard 0.00546 −0.11215 −0.0248 −0.1379 0.054345
Parsian −0.0491 −0.0207 −0.0469 −0.0414 −0.0504 Eigenvalue 15.3556 11.93489 4.54013 3.90396 2.090281
Toseie −0.0195 −0.0094 0.02708 −0.0392 −0.0017 VCR (%) 36.56 28.42 10.81 9.3 4.98
Razi 0.087259 −0.01891 −0.0399 0.08253 −0.033 CVCR (%) 36.56 64.98 75.79 85.08 90.06

Karafarin 0.01259 −0.01689 0.00493 0.0575 −0.0031

Note: VCR: Variance contribution rate, CVCR: Cumulative variance contribution rate.

There were 42 principal components. The principal components that have the highest proportion
of total variance are the most important. Based on their proportion, several principal components were
selected to satisfy ρ > 90%. In fact, at this stage, reducing dimension was done, and the condition of
running DEA with high discrimination was available. By selecting the first five principal components,
we could satisfy ρ > 90%. These five major components were considered output variables for DEA
Equation (13). However, these principal components included negative values, which cannot be used
in DEA. So, by using Equation (9) Q = −min

{
PC j

k

}
+ 1, 1 ≤ k ≤M, 1 ≤ j ≤ n, a total of five principal

components were positive and ready to enter the DEA model. The positive five principal components
are shown in Table 7.

Table 7. The positive principal components obtained from WPCA.

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5

Iran 1 1.349975 1.362292 1.319567 1.397775 Razi 1.378818 1.272651 1.25165 1.374092 1.25856
Dana 1.332463 1.500943 1.444667 1.219567 1.301373 Karafarin 1.304147 1.274666 1.296486 1.349058 1.288459
Asia 1.310081 1.336888 1.337025 1.365533 1.278937 Sina 1.36956 1.315998 1.187669 1.304684 1.245532

Alborz 1.253526 1.287289 1.312964 1.315628 1.286779 Dey 1.38118 1.238148 1.21847 1.330447 1.276709
Moalem 1.359872 1.27522 1.238946 1.367385 1.254797 Saman 1.316908 1.215256 1.259825 1.171331 1.323457
Parsian 1.242379 1.270878 1.24459 1.25014 1.24113 Novin 1.263836 1.282326 1.341828 1.308451 1.29251
Toseie 1.272032 1.282173 1.31864 1.252318 1.289895 Pasargard 1.297014 1.179404 1.266761 1.153614 1.345904

To achieve the final ranking of the insurance companies, the resulting positive indicators were
used in DEA Equation (13). For further evaluation and validation of the model, the ranking was done
without using the AHP method, just by applying the PCA–DEA model. The results obtained from
Lingo software are shown in Table 8.
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Table 8. The final ranks from the different models.

PCA–DEA AHP–PCA–DEA

DMU Insurance
Company W0 Rank DMU Insurance

Company W0 Rank DMU Insurance
Company W0 Rank DMU Insurance

Company W0 Rank

1 Iran 0.7332 13 8 Razi 0.9477 5 1 Iran 0.9446 13 8 Razi 1.006 2
2 Dana 1.2905 1 9 Karafarin 0.8474 8 2 Dana 1.0732 1 9 Karafarin 0.969 7
3 Asia 0.8967 6 10 Sina 0.9582 4 3 Asia 0.9790 6 10 Sina 0.999 4
4 Alborz 0.8220 10 11 Dey 1.0189 2 4 Alborz 0.9492 11 11 Dey 1.001 3
5 Moalem 0.9826 3 12 Saman 0.8928 7 5 Moalem 0.9897 5 12 Saman 0.959 8
6 Parsian 0.6903 14 13 Novin 0.8314 9 6 Parsian 0.9259 14 13 Novin 0.954 9
7 Toseie 0.7824 12 14 Pasargard 0.7965 11 7 Toseie 0.9491 10 14 Pasargard 0.947 12

5. Results and Discussion

Table 7 shows the results of the models. According to the results of the AHP–PCA–DEA model,
three units had an efficiency score W0 greater than one. Three DMUs, namely DMU2 (Dana), DMU8
(Razi), and DMU11 (Dey), showed the highest performance. Among them, DMU2 (Dana) was the
most efficient, and it achieved the best ranking. Also, in the PCA–DEA model, two units, DMU11
(Dey) and DMU2 (Dana), had an efficiency score higher than one. In this model, DMU2 (Dana) was
dedicated to the best ranking too. At the end of 2018, Dana insurance company was converted to a
private company. Therefore, with changing management strategy during 2019, it increased by 73.1% in
attracting premiums, which shows public confidence in the company in the insurance market. In fact,
this company can get 9% of the market share in this index. Also, it increased its performance in rights
of equities and investment income by about 50% and in d7 (32.7), which is very important, it had the
highest performance. All of these indicators are important for decision makers and play a vital role in
the ranks of DMUs. Therefore, Dana insurance company is the most sustainable company according to
the indicators.

As shown in the right-hand side of Table 7, we integrated two different MCDM models, including
AHP and DEA. According to the results, DMU8 in the PCA–DEA model achieved rank five, but in
the AHP–PCA–DEA model it improved its rank to be second. This subject indicates that DMU8 is
a more sustainable unit, based on the indicators that are important for decision makers. As evident
from the results, two DMUs, namely DMU1 (Iran) and DMU6 (Persian), had low ranks in both of
the models. Although DMU1 (Iran) was the only national insurance company and has a significant
market share in the insurance industry of Iran, it was confronted with high, increasing operating
costs and total payable compensations in 2019. Also, it faces decreasing its stock value in the stock
market. Besides this, the results of AHP–PCA–DEA show a considerable variation in efficiency scores,
ranging from 0.9259 to 1.0732. The mean of the efficiency scores for all the firms in the AHP–PCA–DEA
model was 0.9995, which shows that insurance companies have excellent performances and work
in a perfectly competitive market. We also used two statistical tests, Spearman and Kendall Tau.
The results of the Spearman test of DEA–PCA and DEA–PCA–AHP concluded by showing meaningful
correlation between them. In addition, the Kendal Tau test showed the same result, which means
a meaningful correlation between the two methods’ results. The value obtained by the Spearman
test (i.e., 0.96) illustrates a rigorous direct correlation between the two models. Similarly, the value
obtained by the Kendall Tau test (i.e., 0.87) reveals a rigorous correlation between the results of the two
ranking methods.

According to the analysis given above, similar conclusions can be reached by comparing the
distribution of the number of efficient DMUs in different years, indicating that there is great potential for
improvement in the sustainability performance. It is also worth noting that sustainability performance
scores in the traditional DEA approach tend to form a higher assessment, so the insurance sector may
be overestimating its performance in the development of environmental protection.

We now compare the decision of the weights in this study with previous studies. The sustainability
performance was computed, for instance, as the arithmetic average of sustainability performance
weight [181], or over a set weight ofα= 0.5 [182], a mutual set of weights [82]. Previous studies illustrated
the differences between the sustainability performance scores and weights [183]. Nevertheless, the
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average sustainability performance scores vary based on changing weights. The overall sustainability
performance changes must reflect variation in the weights, and we suggest using the newly-defined
overall performance sustainability after the calculations are performed. Decision-makers can choose
the appropriate weights to maximize the new overall sustainability performance score [184]. From the
prior literature, one can obtain insights concerning the overall score as a function of the score of the
entire set of decision-making units. Under the PCA modification and the weights of the AHP method,
we investigated whether any unique sustainability performance decomposition exists. We assumed the
overall sustainability performance of a multi-dimensional network is the product of the sustainability
performance of each decision-making unit. In other words, our approach provides a comprehensive
view of the relationship between the overall sustainability performance and the varying weights. This
indicates unique a sustainability performance index, and the new overall sustainability performance
is uniquely determined. References [158,159,169,170,178] noted that the information on the overall
sustainability performance modifications from the conventional DEA, along with utilizing the optimal
set of indices, leads to an increase in the accuracy of the performance assessment. However, they
did not address the computational expense caused by increased decision units due to increasing the
performance evaluation indices (to more accuracy in the evaluation). In other words, we successfully
addressed one of the limitations of conventional DEA. That is, to accomplish this goal, we used PCA
to cut the number of evaluation indices, and since PCA itself has the problem of merely using the
data distribution without considering the domain-related knowledge, we utilized AHP to rank the
indices through the expert’s domain-related knowledge. This is the exciting aspect of the differentiation
between previous analyses that only used AHP to help the DEA process and increase the computational
expense, while our approach managed the computational expense by reducing the dimensionality
through PCA.

6. Limitations

In this article, we designed an integrated MCDM model and used the AHP weighting method.
Then, we demonstrated the sustainability performance assessment problem using an example of
insurance companies. However, there were some limitations in our approach which must be addressed
in the future. The developed MCDM model used an integration of AHP, PCA, and DEA methods by
analyzing a specific example of Iranian insurance companies, and it was not validated in a generalized
scheme. In other words, to understand if the evaluation results are valid, a long-run and more general
tracking study may be needed. For instance, sustainability performance assessment in other insurance
companies in other countries needs to be studied. Also, other firms need to be studied using the same
study framework.

In addition, in the AHP weight computation process, we invited nine experts (six from academia,
three from industry) to create the pairwise comparison matrix. The elements of the matrix (priorities of
the criteria) were identified by compromising their arguments, and the element adjustment step was
conducted in the same manner when the consistency test failed. Nevertheless, the AHP weighting
outcome would be more reliable if more experts were involved, through the integration approaches
of group decision [185] or statistics [186]. This means that inviting more experts from more diverse
disciplines may stabilize biases and the incompleteness of their knowledge.

Furthermore, in the AHP process, we chose the elements of the comparison matrix in a specific
way which was exclusive to our specific problem, and so the distribution may differ with the particular
evaluation problems because of the decision-makers’ judgements, as they always have their own
preferences for specific criteria. Various distributions are also acceptable with various elements.
Measuring the uncertainty of the attribute value is also another future direction of study which is
worthy of investigation and was not dealt with in this article.

It is a non-trivial task to evaluate the sustainability performance of the existing insurance companies
with MCDM approaches because the non-uniqueness of the evaluation outcome is not only due to the
change in the type of the MCDM method but also due to the complexity of finding a proper criteria
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set. For the evaluation of the insurance companies’ sustainability performance, we just considered the
operational level in this study. Moreover, the chosen social and environmental indices were closer
to socio-economic or eco-economic aspects and were not purely social aspects. Therefore, another
future direction of our research would be selection of purer social and environmental aspects of the
sustainability performance evaluation.

7. Conclusions

This paper proposed an integrated AHP–PCA–DEA model to rank Iranian insurance companies.
Fourteen insurance companies were evaluated using 13 sustainability performance indices as a practical,
real-world problem. The proposed model made a quick evaluation of the sustainability performance
possible, which saved a tremendous amount of computation expense by reducing the number of
indices required for an accurate sustainability performance evaluation. The PCA method was used to
reduce the number of dimensions of the original dataset. The obtained principal components were
then applied as variables in the DEA model. To avoid absolute objectivity or absolute subjectivity and
take the advantages of both approaches, the AHP and PCA models were integrated. Our contribution
is to incorporate AHP and PCA to conventional DEA to modify the over-objective results of DEA and
use the effective set of indices to evaluate the insurance companies more accurately. In other words,
one of the limitations of the DEA is that by increasing the sustainability performance evaluation indices
(more accuracy in the evaluation), the number of decision units should be increased, which is more
computationally expensive. So, we first used PCA to decrease the number of evaluation indices. PCA
itself has the drawback of only using the distribution of data and it does not consider the domain
knowledge. So, we used AHP to weigh the indices by using the experts’ domain-related knowledge.

Finally, for validating the results, two Spearman and Kendall’s Tau correlation tests were used.
The results showed that Dana, Razi, and Dey had the best sustainability performance, with Dana being
the most efficient and achieving the best ranking. In the standard DEA model, to obtain the efficiency
of DMUs, the model must be calculated separately for each DMU. In this paper, we calculated the
values for all the DMUs simultaneously using a linear equation. This is the first contribution of this
paper. Also, increasing discrimination power in the conventional DEA model is a challenging problem
which causes computational expense. So, using PCA as a dimensionality reduction method to reduce
this computation cost/time is the second contribution of this paper. Additionally, the output of the
original DEA model should be highly positive, and this is not possible when we use PCA. So, this
linear equation also enables us to achieve positive data, which is the third contribution of this paper.
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30. Krajnc, D.; Glavič, P. A model for integrated assessment of sustainable development. Resour. Conserv. Recycl.
2005, 43, 189–208. [CrossRef]

31. Alizadeh, R.; Maknoon, R.; Majidpour, M.; Salimi, J. Energy Policy in Iran and International Commitments
for GHG Emission Reduction. J. Environ. Sci. Technol. 2015, 17, 183–198.

32. Alizadeh, R.; Soltanisehat, L.; Lund, P.D.; Zamanisabzi, H. Improving renewable energy policy planning and
decision-making through a hybrid MCDM method. Energy Policy 2019. in Press, No. 111174. [CrossRef]

33. Tahir, A.C.; Darton, R. The process analysis method of selecting indicators to quantify the sustainability
performance of a business operation. J. Clean. Prod. 2010, 18, 1598–1607. [CrossRef]

34. Hsu, C.-H.; Chang, A.-Y.; Luo, W. Identifying key performance factors for sustainability development of
SMEs–integrating QFD and fuzzy MADM methods. J. Clean. Prod. 2017, 161, 629–645. [CrossRef]

35. Crutzen, N.; Zvezdov, D.; Schaltegger, S. Sustainability and management control. Exploring and theorizing
control patterns in large European firms. J. Clean. Prod. 2017, 143, 1291–1301. [CrossRef]

36. Closs, D.J.; Speier, C.; Meacham, N. Sustainability to support end-to-end value chains: The role of supply
chain management. J. Acad. Mark. Sci. 2011, 39, 101–116. [CrossRef]

37. Beynaghi, A.; Moztarzadeh, F.; Shahmardan, A.; Alizadeh, R.; Salimi, J.; Mozafari, M. Makespan minimization
for batching work and rework process on a single facility with an aging effect: A hybrid meta-heuristic
algorithm for sustainable production management. J. Intell. Manuf. 2019, 30, 33–45. [CrossRef]

38. Alizadeh, R.; Lund, P.D.; Beynaghi, A.; Abolghasemi, M.; Maknoon, R. An integrated scenario-based
robust planning approach for foresight and strategic management with application to energy industry.
Technol. Forecast. Soc. Chang. 2016, 104, 162–171. [CrossRef]

39. Alizadeh, R.; Khodaei, R.; Maknoon, R. A Combined Model of Scenario Planning and Assumption-Based
Planning for Futurology, and Robust Decision Making in the Energy Sector. Q. J. Energy Policy Plan. Res.
2016, 2, 7–32.

40. Alizadeh, R.; Majidpour, M.; Maknoon, R.; Kaleibari, S.S. Clean development mechanism in Iran: Does it
need a revival? Int. J. Glob. Warm. 2016, 10, 196–215. [CrossRef]

41. Alizadeh, R.; Majidpour, M.; Maknoon, R.; Salimi, J. Iranian energy and climate policies adaptation to the
Kyoto protocol. Int. J. Environ. Res. 2015, 9, 853–864.

42. Abolghasemi, M.; Alizadeh, R. A Bayesian Framework for Strategic Management In The Energy Industry.
Int. J. Sci. Eng. Technol. 2014, 3, 1360–1366.

43. Nigri, G.; Del Baldo, M. Sustainability Reporting and Performance Measurement Systems: How do Small-and
Medium-Sized Benefit Corporations Manage Integration? Sustainability 2018, 10, 4499. [CrossRef]

44. Jassem, S.; Azmi, A.; Zakaria, Z. Impact of Sustainability Balanced Scorecard Types on Environmental
Investment Decision-Making. Sustainability 2018, 10, 541. [CrossRef]

45. Hristov, I.; Chirico, A.; Appolloni, A. Sustainability Value Creation, Survival, and Growth of the Company:
A Critical Perspective in the Sustainability Balanced Scorecard (SBSC). Sustainability 2019, 11, 2119. [CrossRef]

46. Chung, C.-C.; Chao, L.-C.; Chen, C.-H.; Lou, S.-J. A balanced scorecard of sustainable management in the
Taiwanese bicycle industry: Development of performance indicators and importance analysis. Sustainability
2016, 8, 518. [CrossRef]

47. Barrena Martínez, J.; López Fernández, M.; Romero Fernández, P.M. Corporate social responsibility: Evolution
through institutional and stakeholder perspectives. Eur. J. Manag. Bus. Econ. 2016, 25, 8–14. [CrossRef]

48. Putzhuber, F.; Hasenauer, H. Deriving sustainability measures using statistical data: A case study from the
Eisenwurzen, Austria. Ecol. Indic. 2010, 10, 32–38. [CrossRef]

49. Hung, S.-W.; He, D.-S.; Lu, W.-M. Evaluating the dynamic performances of business groups from the
carry-over perspective: A case study of Taiwan’s semiconductor industry. Omega 2014, 46, 1–10. [CrossRef]

50. Hatami-Marbini, A.; Kangi, F. An extension of fuzzy TOPSIS for a group decision making with an application
to Tehran stock exchange. Appl. Soft Comput. 2017, 52, 1084–1097. [CrossRef]

http://dx.doi.org/10.1108/fs-06-2019-0048
http://dx.doi.org/10.1080/15567036.2018.1476934
http://dx.doi.org/10.1016/S0921-3449(04)00120-X
http://dx.doi.org/10.1016/j.enpol.2019.111174
http://dx.doi.org/10.1016/j.jclepro.2010.07.012
http://dx.doi.org/10.1016/j.jclepro.2017.05.063
http://dx.doi.org/10.1016/j.jclepro.2016.11.135
http://dx.doi.org/10.1007/s11747-010-0207-4
http://dx.doi.org/10.1007/s10845-016-1223-0
http://dx.doi.org/10.1016/j.techfore.2015.11.030
http://dx.doi.org/10.1504/IJGW.2016.077913
http://dx.doi.org/10.3390/su10124499
http://dx.doi.org/10.3390/su10020541
http://dx.doi.org/10.3390/su11072119
http://dx.doi.org/10.3390/su8060518
http://dx.doi.org/10.1016/j.redee.2015.11.002
http://dx.doi.org/10.1016/j.ecolind.2009.04.019
http://dx.doi.org/10.1016/j.omega.2014.01.003
http://dx.doi.org/10.1016/j.asoc.2016.09.021


Sustainability 2020, 12, 789 19 of 24

51. Hsu, L.-C. Using a decision-making process to evaluate efficiency and operating performance for listed
semiconductor companies. Technol. Econ. Dev. Econ. 2015, 21, 301–331. [CrossRef]

52. Tsai, C.-H.; Wu, H.-Y.; Chen, I.-S.; Chen, J.-K.; Ye, R.-W. Exploring benchmark corporations in the
semiconductor industry based on efficiency. J. High Technol. Manag. Res. 2017, 28, 188–207. [CrossRef]

53. Zhou, H.; Hu, H. Sustainability evaluation of railways in China using a two-stage network DEA model with
undesirable outputs and shared resources. Sustainability 2017, 9, 150. [CrossRef]

54. Halkos, G.E.; Tzeremes, N.G.; Kourtzidis, S.A. Measuring sustainability efficiency using a two-stage data
envelopment analysis approach. J. Ind. Ecol. 2016, 20, 1159–1175. [CrossRef]

55. Tajbakhsh, A.; Hassini, E. Evaluating sustainability performance in fossil-fuel power plants using a two-stage
data envelopment analysis. Energy Econ. 2018, 74, 154–178. [CrossRef]

56. Wu, J.; Yin, P.; Sun, J.; Chu, J.; Liang, L. Evaluating the environmental efficiency of a two-stage system
with undesired outputs by a DEA approach: An interest preference perspective. Eur. J. Oper. Res. 2016,
254, 1047–1062. [CrossRef]

57. Hatami-Marbini, A.; Agrell, P.J.; Tavana, M.; Khoshnevis, P. A flexible cross-efficiency fuzzy data envelopment
analysis model for sustainable sourcing. J. Clean. Prod. 2017, 142, 2761–2779. [CrossRef]

58. Hatami-Marbini, A.; Tavana, M.; Gholami, K.; Beigi, Z.G. A bounded data envelopment analysis model in a
fuzzy environment with an application to safety in the semiconductor industry. J. Optim. Theory Appl. 2015,
164, 679–701. [CrossRef]

59. Chen, L.; Wang, Y.-M.; Lai, F. Semi-disposability of undesirable outputs in data envelopment analysis for
environmental assessments. Eur. J. Oper. Res. 2017, 260, 655–664. [CrossRef]

60. Li, H.; He, H.; Shan, J.; Cai, J. Innovation efficiency of semiconductor industry in China: A new framework
based on generalized three-stage DEA analysis. Socio Econ. Plan. Sci. 2019, 66, 136–148. [CrossRef]

61. Tourais, P.; Videira, N. Why, how and what do organizations achieve with the implementation of
environmental management Systems?—Lessons from a comprehensive review on the eco-management and
audit scheme. Sustainability 2016, 8, 283. [CrossRef]

62. Liu, G. Development of a general sustainability indicator for renewable energy systems: A review.
Renew. Sustain. Energy Rev. 2014, 31, 611–621. [CrossRef]

63. Chen, L.; Lai, F.; Wang, Y.-M.; Huang, Y.; Wu, F.-M. A two-stage network data envelopment analysis approach
for measuring and decomposing environmental efficiency. Comput. Ind. Eng. 2018, 119, 388–403. [CrossRef]

64. De Clercq, D.; Wen, Z.; Caicedo, L.; Cao, X.; Fan, F.; Xu, R. Application of DEA and statistical inference to
model the determinants of biomethane production efficiency: A case study in south China. Appl. Energy
2017, 205, 1231–1243. [CrossRef]

65. Pham, M.D.; Zelenyuk, V. Weak disposability in nonparametric production analysis: A new taxonomy of
reference technology sets. Eur. J. Oper. Res. 2019, 274, 186–198. [CrossRef]

66. Essid, H.; Ganouati, J.; Vigeant, S. A mean-maverick game cross-efficiency approach to portfolio selection:
An application to Paris stock exchange. Expert Syst. Appl. 2018, 113, 161–185. [CrossRef]

67. Chen, L.; Wu, F.M.; Wang, Y.M.; Li, M.J. Analysis of the environmental efficiency in China based on the DEA
cross-efficiency approach under different policy objectives. Expert Syst. 2019. [CrossRef]

68. Amirteimoori, H.; Amirteimoori, A.; Amirteimoori, A. Sustainability assessment in the presence of undesirable
factors over time: A case on gas companies. Expert Syst. 2018, e12316. [CrossRef]

69. Sueyoshi, T.; Goto, M. The intermediate approach to sustainability enhancement and scale-related measures
in environmental assessment. Eur. J. Oper. Res. 2019, 276, 744–756. [CrossRef]

70. Wu, M.-Q.; Zhang, C.-H.; Liu, X.-N.; Fan, J.-P. Green supplier selection based on DEA model in interval-valued
Pythagorean fuzzy environment. IEEE Access 2019, 7, 108001–108013. [CrossRef]

71. Sueyoshi, T.; Li, A.; Liu, X. Exploring Sources of China’s CO2 Emission: Decomposition Analysis under
Different Technology Changes. Eur. J. Oper. Res. 2019, 279, 984–995. [CrossRef]

72. Sueyoshi, T.; Wang, D.D. Rank dynamics and club convergence of sustainable development for countries
around the world. J. Clean. Prod. 2019, 119480. [CrossRef]

73. Azadi, M.; Jafarian, M.; Saen, R.F.; Mirhedayatian, S.M. A new fuzzy DEA model for evaluation of efficiency
and effectiveness of suppliers in sustainable supply chain management context. Comput. Oper. Res. 2015,
54, 274–285. [CrossRef]

74. Jauhar, S.K.; Pant, M. Integrating DEA with DE and MODE for sustainable supplier selection. J. Comput. Sci.
2017, 21, 299–306. [CrossRef]

http://dx.doi.org/10.3846/20294913.2013.876689
http://dx.doi.org/10.1016/j.hitech.2017.10.007
http://dx.doi.org/10.3390/su9010150
http://dx.doi.org/10.1111/jiec.12335
http://dx.doi.org/10.1016/j.eneco.2018.05.032
http://dx.doi.org/10.1016/j.ejor.2016.04.034
http://dx.doi.org/10.1016/j.jclepro.2016.10.192
http://dx.doi.org/10.1007/s10957-014-0559-x
http://dx.doi.org/10.1016/j.ejor.2016.12.042
http://dx.doi.org/10.1016/j.seps.2018.07.007
http://dx.doi.org/10.3390/su8030283
http://dx.doi.org/10.1016/j.rser.2013.12.038
http://dx.doi.org/10.1016/j.cie.2018.04.011
http://dx.doi.org/10.1016/j.apenergy.2017.08.111
http://dx.doi.org/10.1016/j.ejor.2018.09.019
http://dx.doi.org/10.1016/j.eswa.2018.06.040
http://dx.doi.org/10.1111/exsy.12461
http://dx.doi.org/10.1111/exsy.12316
http://dx.doi.org/10.1016/j.ejor.2019.01.032
http://dx.doi.org/10.1109/ACCESS.2019.2932770
http://dx.doi.org/10.1016/j.ejor.2019.06.037
http://dx.doi.org/10.1016/j.jclepro.2019.119480
http://dx.doi.org/10.1016/j.cor.2014.03.002
http://dx.doi.org/10.1016/j.jocs.2017.02.011


Sustainability 2020, 12, 789 20 of 24

75. Dobos, I.; Vörösmarty, G. Green supplier selection and evaluation using DEA-type composite indicators.
Int. J. Prod. Econ. 2014, 157, 273–278. [CrossRef]

76. Zhou, X.; Pedrycz, W.; Kuang, Y.; Zhang, Z. Type-2 fuzzy multi-objective DEA model: An application to
sustainable supplier evaluation. Appl. Soft Comput. 2016, 46, 424–440. [CrossRef]

77. Shabanpour, H.; Yousefi, S.; Saen, R.F. Future planning for benchmarking and ranking sustainable suppliers
using goal programming and robust double frontiers DEA. Transp. Res. Part D Transp. Environ. 2017,
50, 129–143. [CrossRef]

78. Yousefi, S.; Soltani, R.; Saen, R.F.; Pishvaee, M.S. A robust fuzzy possibilistic programming for a new network
GP-DEA model to evaluate sustainable supply chains. J. Clean. Prod. 2017, 166, 537–549. [CrossRef]

79. Badiezadeh, T.; Saen, R.F.; Samavati, T. Assessing sustainability of supply chains by double frontier network
DEA: A big data approach. Comput. Oper. Res. 2018, 98, 284–290. [CrossRef]

80. Luthra, S.; Govindan, K.; Kannan, D.; Mangla, S.K.; Garg, C.P. An integrated framework for sustainable
supplier selection and evaluation in supply chains. J. Clean. Prod. 2017, 140, 1686–1698. [CrossRef]

81. Rashidi, K.; Cullinane, K. A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection:
Implications for sourcing strategy. Expert Syst. Appl. 2019, 121, 266–281. [CrossRef]

82. Mavi, R.K.; Saen, R.F.; Goh, M. Joint analysis of eco-efficiency and eco-innovation with common weights in
two-stage network DEA: A big data approach. Technol. Forecast. Soc. Chang. 2019, 144, 553–562. [CrossRef]

83. Liu, X.; Guo, P.; Guo, S. Assessing the eco-efficiency of a circular economy system in China’s coal mining
areas: Emergy and data envelopment analysis. J. Clean. Prod. 2019, 206, 1101–1109. [CrossRef]

84. Wang, X.; Ding, H.; Liu, L. Eco-efficiency measurement of industrial sectors in China: A hybrid super-efficiency
DEA analysis. J. Clean. Prod. 2019, 229, 53–64. [CrossRef]
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