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Abstract: Vigorously developing efficient water-saving agricultural technologies using the Yellow
River Water is an important way to achieve sustainable use of water resources. In order to clarify
the fluid movement characteristics inside the flow path of the emitter under complicated water
quality conditions in a drip irrigation system using the Yellow River Water, the optimal simulation
turbulence model for the flow field in the flow path of the emitter was determined by comparing
the macroscopic hydraulic characteristics with the microscopic fluid motion characteristics of the
fluid in the emitter. On this basis, the two-phase flow model was used to calculate and analyze the
characteristics of water flow movement and particle transport in the emitter. The results show that
the RNG (Re- normalization group) k-ε turbulence model was the most suitable for the simulation of
the flow field in the emitter, considering the macroscopic hydraulic performance and microscopic
anti-clogging ability of the emitter synthetically, and both the comprehensive calculation accuracy
and the calculation efficiency. The pressure showed a step-like uniform decrease along the direction
of water flow. The fluid flow showed the regional movement characteristics of the mainstream and
non-mainstream regions. The energy dissipation mainly occurred at the sudden change sites of the
flow path structure. The particle phase velocity was slightly lower than that of the water phase.
The velocity at the near-wall surface was relatively lower than that at the center, and the velocity
distribution along the depth direction of the flow path was relatively uneven. The sediment was
mainly deposited in the first half of the flow path. This study can provide a theoretical basis for
solving the emitter clogging in the drip irrigation systems applying water from the Yellow River.
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1. Introduction

Water is the basic material condition related to the survival and social development of mankind,
is a limited and irreplaceable valuable resource, and is also an important guarantee to realize the
sustainable development of economy and society. While the world’s economy has rapidly grown and
great achievements have been made in various fields of construction, great resource and environmental
costs have been paid. Water pollution is one such cost, which makes the already severe shortage of
freshwater resources more insufficient. Combined with the unreasonable use of water, the world is
facing a water crisis. These water problems are threatening the survival and development of mankind.
Therefore, only by insisting on sustainable development and saving water resources can we make the
economy develop well and quickly. Since the 18th National Congress of the Communist Party of China,
General Secretary Xi Jinping has conducted on-site inspections of various tasks in the Yellow River
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Basin. In September 2019, at the symposium on ecological protection and high-quality development in
the Yellow River Basin, General Secretary Xi Jinping put forward the main goals and tasks of ecological
protection and high-quality development in the Yellow River Basin. One of them is to vigorously
promote agricultural water saving.

Drip irrigation technology has become one of the most widely used modern high-efficiency
water-saving irrigation technologies due to its precision and controllability [1,2]. The emitter is the
core component of a drip irrigation system. It can be easily clogged by particles, chemical precipitation,
dissolved salts, dissolved organic matter, microorganisms, and other impurities in the water due to its
narrow flow channel (0.5–1.2 mm) [3–5]. Emitter clogging can lead to reduced irrigation uniformity
of the drip irrigation system and even destroy the entire drip irrigation system. Emitter clogging
has become an international problem in the field of drip irrigation [6–8]. This problem is especially
prominent in drip irrigation systems applying water from the Yellow River. The Yellow River is famous
for its high sediment content. The average annual sediment content in the main stream is as high as
35 kg/m3 [9]. In addition, with the rapid social and economic development of the Yellow River Basin
in recent years, sewage discharge has increased and water pollution has become increasingly serious.
Under such complicated water quality conditions, the sediment particles of the Yellow River will also
have a series of microdynamic behaviors with the microorganisms, nutrients, and organic pollutants,
which results in the Yellow River sediments mainly existing in the form of microbial flocs or attached
by a layer of biofilm (consisting of solid particles, microorganisms, and viscous polymers secreted by
them) [10–12]. These Yellow River sediments undoubtedly make the clogging process of the emitter
more complex. The clogging process is significantly different from the simple physical blockage that
many scholars recognize under normal circumstances. A large number of scholars have improved the
emitter clogging problem by various methods such as a reasonable configuration of filters [13–15] or
chemical addition of acid and chlorine [16–18]. However, the emitter clogging problem has not yet
been effectively solved. Some of the main reasons are that the clogging mechanism is unknown, and
the self-clogging resistance ability is also not high. Under the complex water quality condition, the
core and key of solving the clogging problem is to ensure the movement characteristics of the clear
water flow and particulate matter in the flow path of the emitter [19,20].

The computational fluid dynamics (CFD) method has become one of the main means to visualize
the internal flow of irrigation devices. This is mainly due to its functions of internal flow prediction,
numerical experiment, flow diagnosis, and the advantages that designers can easily evaluate and select
multiple design solutions in the fastest and most economical way, and this method can greatly reduce the
workload of physical experiments and testing [21,22]. Although some experts and scholars have studied
the selection of suitable CFD simulation turbulence models and obtained some meaningful research
results [23,24], it is rare to report about the selection of the model considering the macrohydraulic
characteristics and microflow characteristics in the flow path of the emitter based on the typical
solid–liquid two-phase complex turbulent motion.

Based on this, this study first determined the optimal turbulence model of the flow field in the
flow path of the emitter by comparing the macrohydraulic characteristics and microfluid motion
characteristics of the fluid in the flow path of the emitter. On this basis, the water flow movement
characteristics and particulate matter transport characteristics in the flow path of emitter were calculated
and analyzed, which provides a theoretical basis for solving the problem of the emitter clogging in the
drip irrigation system applying water from the Yellow River.

2. Materials and Methods

2.1. Emitter Selection

The laminar emitter of the DRIPLINE series from Netafim Company in Israel, which is recognized
as one of the best companies in the field of drip irrigation at home and abroad, was selected as the
physical prototype. Its rated flow is 1.38 L/h. The laminar emitter mainly includes inlet, flow path, and
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outlet, shown in Figure 1a. The flow path consists of a sawtooth unit shown in Figure 1b, including
tooth heel and tooth tip. The size of the flow path is obtained by the high-precision CT scanning
technique. The measurement accuracy was 0.001 mm. The specific structural characteristics and
parameters of the path are shown in Figure 1b.scanning technique. The measurement accuracy was 0.001 mm. The specific structural characteristics 
and parameters of the path are shown in Figure 1b. 

 
(a) Emitter product prototype of DRIPLINE series. 

 
(b) Specific structural characteristics and parameters of the specific path. 

Figure 1. The structure and size of the flow path of the DRIPLINE series emitter from Netafim 
Company. Note: h—teeth height; ϴ—teeth angle; s—distance between tooth; w—path weight; d—path 
depth; l—path length (the length of path center line). 

2.2. Calibration Method of the Optimal Simulation Model by CFD 

Large eddy simulation model (LES) and Reynolds-averaged Naiver–Stokes equations (RANS) 
(including standard k-ε model and Re- normalization group (RNG) k-ε model) were selected for 
comparative analysis due to the relatively widely application in non-direct numerical simulation. The 
accuracies of different turbulence models for overall calculation were verified by flow–pressure 
relationship curves from a macroscopic point of view. And the accuracies of different turbulence 
models for calculating the fine motion characteristics of the internal fluid in the structural units of the 
flow path were verified by the results obtained with the digital particle image velocimetry (DPIV) 
technique from a microscopic point of view [25].  

The hydraulic performance curve of the emitter was obtained by the experiment according to 
the requirements of “technical specification and test method of agricultural irrigation equipment 
emitter (GB/T17187–1997)” [26]. The flow state index and flow coefficient were calculated by the least 
square method based on changing the flow–pressure relation formula into a linear relation curve by 
logarithm, and it was used as a regression equation [27]. 

2.3. Method for Simulation and Analysis of the Internal Flow of the Emitter 

2.3.1. Physical Model Establishment and Meshing 

A high-precision CT (Computed Tomography) scanning technique was used to accurately test 
the geometric parameters of the physical prototype of the emitter, and the three-dimensional 
mapping software UGS NX10.0 was used to establish a three-dimensional physical model of the flow 
path of the emitter. Meshing is the basis of numerical simulation. The quality of the mesh has an 
important impact on the accuracy and speed of the numerical simulation. In this study, ANSYS ICEM 
was used to mesh. The physical model was meshed by a hexahedral mesh with good quality and 
simple data structure. The near-wall surface and the corner of the tooth tip were encrypted to more 
accurately simulate the flow characteristics in the dramatic changes of the fluid motion region. 

2.3.2. Solving Method and Boundary Conditions 

The finite volume method was adopted to separate the governing equations in the numerical 
simulation, and the second-order upwind was adopted to separate the parameters such as the 

Figure 1. The structure and size of the flow path of the DRIPLINE series emitter from Netafim Company.
Note: h—teeth height; θ—teeth angle; s—distance between tooth; w—path weight; d—path depth;
l—path length (the length of path center line).

2.2. Calibration Method of the Optimal Simulation Model by CFD

Large eddy simulation model (LES) and Reynolds-averaged Naiver–Stokes equations (RANS)
(including standard k-ε model and Re- normalization group (RNG) k-ε model) were selected for
comparative analysis due to the relatively widely application in non-direct numerical simulation.
The accuracies of different turbulence models for overall calculation were verified by flow–pressure
relationship curves from a macroscopic point of view. And the accuracies of different turbulence
models for calculating the fine motion characteristics of the internal fluid in the structural units of the
flow path were verified by the results obtained with the digital particle image velocimetry (DPIV)
technique from a microscopic point of view [25].

The hydraulic performance curve of the emitter was obtained by the experiment according to the
requirements of “technical specification and test method of agricultural irrigation equipment emitter
(GB/T17187–1997)” [26]. The flow state index and flow coefficient were calculated by the least square
method based on changing the flow–pressure relation formula into a linear relation curve by logarithm,
and it was used as a regression equation [27].

2.3. Method for Simulation and Analysis of the Internal Flow of the Emitter

2.3.1. Physical Model Establishment and Meshing

A high-precision CT (Computed Tomography) scanning technique was used to accurately test the
geometric parameters of the physical prototype of the emitter, and the three-dimensional mapping
software UGS NX10.0 was used to establish a three-dimensional physical model of the flow path of
the emitter. Meshing is the basis of numerical simulation. The quality of the mesh has an important
impact on the accuracy and speed of the numerical simulation. In this study, ANSYS ICEM was used
to mesh. The physical model was meshed by a hexahedral mesh with good quality and simple data
structure. The near-wall surface and the corner of the tooth tip were encrypted to more accurately
simulate the flow characteristics in the dramatic changes of the fluid motion region.
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2.3.2. Solving Method and Boundary Conditions

The finite volume method was adopted to separate the governing equations in the numerical
simulation, and the second-order upwind was adopted to separate the parameters such as the convection
terms. The coupling of speed and pressure was solved by the SIMPLE (Semi-Implicit Method for
Pressure Linked Equations) algorithm. For the turbulence model, the RNG k-ε two-equation turbulence
model was selected after a comparative analysis of the flow change law with pressure and the velocity
distribution inside the emitter measured by DPIV (Digital Particle Image Velocimetry) and simulated
by the standard k-εmodel, RNG k-εmodel, and LES model. In the flow field calculation, the initial
conditions are that the inlet of the emitter was set as a pressure inlet with 0.1 MPa and the outlet was set
as a pressure outlet with 0 MPa. Except for the inlet and outlet of the calculation domain, all other fluid
and solid surfaces were wall-type boundaries and set to non-slip boundaries. Standard wall functions
were used to solve the near-wall flow. The multiphase flow model of standard Euler–Lagrange model
was used to simulate particle motion. The sediment density was set to 2500 kg/m3, the volume fraction
was 0.03, and the particle size was 100 µm.

2.3.3. Convergence Judgment and Postprocessing

The flow of the outlet and the residual value were used to judge the convergence. When the flow
of the outlet was basically stable and the residual value was less than 10−5, the iteration was considered
to converge. Tecplot 360 2011 was used for postprocessing the data.

2.3.4. Analysis Method of the Motion Characteristics of Water Flow and Particles

The pressure field, velocity field, and turbulence intensity distribution characteristics of the water
flow in the emitter were mainly analyzed, and the particle motion of the full field, the velocity of the
characteristic section, and the sand volume distribution were also analyzed.

3. Results

3.1. Optimal Simulation Model Calibration of CFD

The flow change law with pressure and the velocity distribution inside the emitter are shown in
Figures 2 and 3 measured by DPIV and simulated by the standard k-εmodel, RNG k-εmodel, and LES
model. Compared with the measured values, the flow coefficient errors simulated by the standard
k-ε model, RNG k-ε model, and LES model were 8.9%, 2.1%, and 1.4%, respectively; and the flow
index errors were 3.8%, 0%, and 1.9%. In general, the calculation error of the Standard k-ε model
was the greatest, and the calculation results of the LES model and the RNG k-ε model were relatively
small. In Figure 3, the most accurate distribution position of the vortex area was simulated by the LES
model, and the distribution position simulated by standard k-εmodel had the farthest deviation from
the position measured by DPIV. The characteristic flow velocity values simulated and measured in
the characteristic area of the interior of the emitter (vortex center area, mainstream area, sharp angle
disturbance area) are shown in Table 1. The velocity value errors between the values measured and
calculated by the standard k-ε model, RNG k-ε model, and LES model in the center of the vortex were
12.50%, 8.33%, and 4.17%, respectively; in the mainstream area were 7.12%, 1.95%, and 1.30%; and the
average speed errors at sharp angles area were 11.31%, 7.69% and 4.07%, respectively. The calculation
error simulated by the LES model was the smallest, and the calculation error simulated by the Standard
k-εmodel was significantly larger than that simulated by the other two models.
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Figure 2. The hydraulic characteristic curve measured and simulated by different models. 

 
Figure 3. Velocity distribution. LES—large eddy simulation model. 
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the Teeth Tip (m/s) 

Standard k-ε model 0.27 3.29 2.46 
RNG k-ε model 0.26 3.13 2.38 

LES model 0.25 3.11 2.30 
DPIV test 0.24 3.07 2.21 
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Figure 3. Velocity distribution. LES—large eddy simulation model.

Table 1. The characteristic velocity values in the featured area.

Model Type The Velocity in Center
of Vortex Zone (m/s)

Maximum Velocity in
the Main Zone (m/s)

The Velocity Near the
Teeth Tip (m/s)

Standard k-ε model 0.27 3.29 2.46
RNG k-ε model 0.26 3.13 2.38

LES model 0.25 3.11 2.30
DPIV test 0.24 3.07 2.21

Through macro and micro verification, the simulation accuracy by the LES model was the greatest,
the one by the RNG k-ε model was in second place, and the one by the Standard k-εmodel was the
lowest. Although the simulation accuracy by the LES model was the highest, the LES model required
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more special mesh scale. The mesh must be encrypted enough to distinguish turbulent structures. The
LES model was a non-steady-state calculation method. It took a long time to calculate the fluid motion
and had high requirements for computer performance. Therefore, the LES model was not the main
method for solving the complex turbulent flow field of the emitter. By the comprehensive analysis of
the calculation accuracy and calculation efficiency, the RNG k-ε turbulence model was most suitable
for the simulation of the flow field in the emitter.

3.2. Analysis of the Motion Characteristics of Water Flow and Particles in the Emitter

3.2.1. The Motion Characteristics of Water Flow

Distribution of Pressure Field

At 0.1 MPa, the cloud map and contour map of pressure distribution of the water flow inside the
emitter are shown in Figures 4 and 5, respectively. The pressure of the water flow in the flow path
showed a uniform downward trend along the flow direction. The pressure at the beginning of the flow
path was the largest. After the water flowed through the entire flow path, the pressure dropped to 0
when it reached the outlet at the end of the flow path. The pressure change was more obvious at the
location where the tooth tip of the flow path or the sites of the water flow changed rapidly.
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Figure 5. The contour map of pressure distribution of the water flow inside the emitter.

At 0.1 MPa, the pressure distributions of the water flow along the flow direction at the longitudinal
sections with the depth of 0.01 mm away from the cross-section of z = 0.5D of the emitter flow path are
shown in Figure 6. The pressure showed a step-like uniform decrease along the flow direction, and the
pressure sharply dropped at the sudden change of the flow path structure.
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Distribution of Pressure Field 

At 0.1 MPa, the cloud map and contour map of pressure distribution of the water flow inside 
the emitter are shown in Figures 4 and 5, respectively. The pressure of the water flow in the flow path 
showed a uniform downward trend along the flow direction. The pressure at the beginning of the 
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to 0 when it reached the outlet at the end of the flow path. The pressure change was more obvious at 
the location where the tooth tip of the flow path or the sites of the water flow changed rapidly. 
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Figure 7. The streamline and velocity vector distributions at the cross-section with depth of 0.5D in the
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Distribution of Turbulence Intensity

The turbulence intensity can be used as an indicator for characterizing the hydraulic and
anti-clogging performance of the emitter. The cloud map and contour map of the turbulent intensity
distribution in the middle longitudinal section (z = 0.5D) of the flow path are shown in Figure 8. The
turbulence intensity fields all showed the obvious intensity gradients. The turbulence intensity in the
mainstream region was higher, and the turbulence intensity in the non-mainstream region was lower.
The extremum of turbulence intensity appeared near the sudden change position of the flow path
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structure, which illustrates the fluid was the most disturbed and the fluid has the strongest turbulence
ability, and it gradually decayed along the flow direction. This is consistent with the distribution
results of the velocity field and pressure field inside the emitter measured by DPIV.
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accompanied by the generation of vortices. The velocity distribution among different structural units 
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Seven representative cross-sections were selected in the flow path structural unit (shown in
Figure 9), and the contour maps of the velocity distribution of water and particulate matter at the
different cross-sections are shown in Figure 10. The velocity distributions of the two phases were
relatively close, and the velocity of the particle phase was slightly lower than that of the water phase.
The velocity near the wall of each section was lower. The velocity distribution along the depth of the
flow path was relatively uneven, with the maximum velocity and the largest change gradient at the
tooth tip.

Distribution of the Sand Phase

The particle volume distributions along the flow path depth direction and different cross-sections
are shown in Figure 11. Under certain hydraulic condition and particulate matter conditions, the
amount of particulate matter that the water stream can carry was limited. With the increase of the
depth of the flow path, the volume fraction of the particle phase at the same position of the flow path
showed an increasing trend, indicating that during the forward movement of the water flow, the
particles were continuously deposited under the action of gravity. Sediment was mainly deposited in
the first half of the flow path.

According to the particle phase volume fractions at different cross-sections of the flow path, the
particle content distributions were very uneven along the depth direction of the flow path. Along the
movement direction of water flow, the particulate matter contents in the area of the tooth tip facing
water (B area) and the area of the tooth heel dorsal water (C area) were the highest, and the particulate
matter contents were the lowest in the area of the tooth heel facing water (D area) and the area of the
tooth tip dorsal water (A area). Therefore, the structure of the A and C areas needs to be optimized to
make the sediment hard to deposit and easy to discharge outside the emitter.
tooth tip dorsal water (A area). Therefore, the structure of the A and C areas needs to be optimized 
to make the sediment hard to deposit and easy to discharge outside the emitter. 

 
Figure 10. The contour maps of velocity distribution of water and particulate matter at the different 
cross-sections of the flow path. 

 
Figure 11. The particle volume distributions along the flow path depth direction and at different cross-
sections. 

4. Discussion 

Figure 10. The contour maps of velocity distribution of water and particulate matter at the different
cross-sections of the flow path.



Sustainability 2020, 12, 1319 10 of 12

tooth tip dorsal water (A area). Therefore, the structure of the A and C areas needs to be optimized 
to make the sediment hard to deposit and easy to discharge outside the emitter. 

 
Figure 10. The contour maps of velocity distribution of water and particulate matter at the different 
cross-sections of the flow path. 

 
Figure 11. The particle volume distributions along the flow path depth direction and at different cross-
sections. 

4. Discussion 

Figure 11. The particle volume distributions along the flow path depth direction and at
different cross-sections.

4. Discussion

In this paper, the RNG k-ε turbulence model was determined as the optimal simulation turbulence
model of the flow field in the emitter flow path by comparing the macroscopic hydraulics and microfluid
motion characteristics. Based on this model, the flow characteristics of fluid and particulate matter
transport were calculated and analyzed. Through the analysis of the flow characteristics of the flow
movement inside the emitter flow path, the pressure was reduced from the maximum to 0 after flowing
through the whole flow path. This is due to the continuous energy dissipation effect of each structural
unit of the flow path. When the fluid flowed through the whole path, its energy was eventually
consumed, resulting in the formation of water droplets [28]. In addition, according to the distributions
of the pressure field, velocity field, and turbulence intensity, it can be seen that there were significant
changes of the pressure and velocity at the abrupt change of the flow path structure, and the fluid
was greatly disturbed. This is because the abrupt change of the flow path structure (tooth tip) caused
the fluid movement to be sharply adjusted, the flow velocity distribution to be reorganized, and
the flow line to be denser. In this process, the relative motion between the viscous liquid particles
was strengthened and the internal friction was increased, and then the energy loss was more serious.
Therefore, the abrupt region of the flow path structure was the main area of the energy dissipation,
and the effect of energy dissipation was the most significant [29].

By the analysis of the internal fluid flow and particle movement characteristics in the emitter
flow path, it can also be found that the flow in the flow path presented the mainstream area and the
non-mainstream area, and there were vortices. The formation of a low-speed vortex in the non-main
zone is because of the following three factors: the fluid velocity differences between two zones at
the junction of the mainstream zone and the non-main zone, the fluid viscosity, and the obstruction
of the flow path wall. Due to the low velocity in the vortex zone, it is easy to deposit the clogging
material, which is also the essential reason for the emitter clogging [30]. Therefore, it is necessary to
improve the flow path structure of the emitter to make the vortex fully developed as far as possible, to
increase the velocity of the vortex zone and its scouring effect on the inner wall of the emitter, and to
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make the clogging material not deposit and easily discharge with the water flow. This is also the most
fundamental way to improve the anti-clogging performance [31].

5. Conclusions

The following conclusions can be got:
(1) The RNG k-ε turbulence model was the most suitable for the simulation of the internal flow

field of the emitter based on the macroscopic hydraulic performance and the microclogging resistance
of the emitter, the comprehensive calculation accuracy, and the calculation efficiency.

(2) The pressure showed a step-like uniform decrease along the flow direction in the flow path
of the emitter. The fluid flow presented regional motion characteristics—the mainstream region and
non-mainstream region. The abrupt change sites of the flow path structure were the most important
part of the energy dissipation of the emitter.

(3) The velocity of particle phase was slightly lower than that of the water phase. The near-wall
velocity was lower than that in the center of the flow path, and the velocity along the depth of the flow
path and the volume distribution of the sand phase were relatively uneven. The sediment was mainly
deposited in the front half of the path.

The research in this paper only studies the water flow and particulate matter movement
characteristics of a certain kind of emitters and the flow path structure under the condition of
drip irrigation from the Yellow River. The most important thing is that the water quality of the Yellow
River is complex, and the impact of complex water quality on the simulation results is not fully
considered in the simulation process. Therefore, in future research we suggest:

(1) Simulating the fluid motion characteristics of various emitter products and flow path structures
under the condition of drip irrigation from the Yellow River.

(2) In determining the CFD simulation model, consider the impact of water quality on
model selection.
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