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Abstract: This study analyzes the effects of foreign direct investment (FDI), economic growth,
industrial structure, renewable and nuclear energy, and urbanization on Korean greenhouse gas
(GHG) emissions from 1981 to 2014. The cointegration relationship of the variables is examined using
autoregressive distributed lag (ARDL) bounds test. The test confirmed the long-run equilibrium
among the variables. After that, the short-run and long-run coefficients are estimated by an ARDL
error-correction model. The result shows that in the long run, economic growth and urbanization
are the main contributors to the increase of GHG emissions, while manufacturing industry share,
renewable energy and nuclear energy contributed to the reduction of GHG emissions. The inflow of
FDI has led to the increase of greenhouse gases, but the coefficients is negligible. In the short run,
economic growth has caused an increase in GHG emissions, while renewable and nuclear energy
have contributed to the reduction in GHG emissions. FDI and urbanization did not play a role in
increasing of GHG emissions in the short term.
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1. Introduction

Today, greenhouse gas (GHG) emissions are continuously increasing worldwide, although there
are different trends across countries. The damage caused by abnormal climate change due to global
warming is also increasing with the increase in GHG emissions. According to World Bank data, CO2

emissions amounted to 36,138 million tons in 2014, the highest level in history. The Intergovernmental
Panel on Climate Change (IPCC) [1] forecasts that the global average temperature will rise 3.5 ◦C by
the year 2100 compared to the pre-industrial period if there are no further mitigation efforts. In the
Kyoto Protocol, the burden of greenhouse gas reduction was only on Annex 1 countries (developed
countries including transition economies). However, in the Paris Agreement, a consensus was reached
asserting that developing countries as well as developed countries should participate in the reduction
of GHG emissions. Therefore, developing countries, including China, have set voluntary GHG
reduction targets.

According to the Intended Nationally Determined Contributions (INDCs) submitted to United
Nations, Korea has also set a goal of reducing GHG emissions by 37% compared to Business as
Usual by 2030. In addition, since 2015, Korea has been trying to reduce GHG emissions in various
sectors, including the emission trading scheme for GHG or energy-intensive industries or buildings. If
each country’s GHG reduction policy is actively implemented, the regulations on the country’s GHG
intensive industries will be further strengthened, and these industries will be relocated among other
countries. Therefore, there is a possibility that foreign direct investment (FDI) is a conduit for pollution
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havens. This is likely to be linked to economic growth in each country and affect the country’s GHG
emissions. Comprehensive research studies on FDI, GHG emissions, and economic growth have begun
in recent years. The relationship between FDI and GHG emissions is based on two hypotheses—one is
the pollution haven hypothesis, and the other is the halo effect hypothesis. According to the halo effect,
FDI can reduce GHG emissions through the host country’s advanced technology. The pollution haven
hypothesis proposes that the investing country relocates GHG intensive industries to foreign countries,
thereby increasing the GHG emissions of the host countries.

Table 1 shows for the studies on the relationship between FDI and GHG emissions. The results
vary depending on the countries and time periods studied. Recent studies supporting the pollution
haven hypothesis include Pao and Tsai [2], Seker et al. [3], Zhu et al. [4], and Behera and Dash [5], and
the studies supporting the halo effect hypothesis include Tang and Tan [6], Mert and Bölök [7], and
Abdouli and Hammami [8]. Mixed results for both the pollutant haven hypothesis and the halo effect
hypothesis are found in Merican et al. [9], Peng et al. [10], and Zhang and Zhou [11].

Table 1. The studies on foreign direct investment (FDI) and greenhouse gas (GHG) emissions.

Countries Periods Methods

Pao and Tsai [2] BRICs (Brazil, Russia, India, China) 1992–2007 Panel Vector Error Correction Model
Seker et al. [3] Turkey 1974–2010 Autoregressive Distributive Lag (ARDL)
Zhu et al. [4] ASEAN (South East Asian Nations) Countries 1981–2011 Fixed effect panel quantile regression

Behera and Dash [5] SSEA (South and Southeast Asian), 17 countries 1980–2012 Panel Vector Error Correction Model)
Tang and Tan [6] Vietnam 1976–2009 VECM (Vector Error Correction Model)

Mert and Bölök [7] 21 Kyoto Annex I Countries 1970–2010 Panel Autoregressive Distributive Lag (ARDL)

Abdouli and Hammami [8] MENA (Middle Eastern and North African),
17 countries 1990–2012 Panel VAR (Vector Auto regression)

Merican et al. [9] Malaysia, Thailand, Indonesia, Singapore,
Philippines 1970–2001 Autoregressive Distributive Lag (ARDL)

Peng et al. [10] China, 16 provinces 1985–2012 Generalized Method of Moments (GMM)
Panel granger Causality

Zhang and Zhou [11] China, 11 eastern provinces, eight middle
provinces, and 10 western provinces 1995–2010 Panel Vector Error Correction Model

Recently, studies on the role of urbanization in GHG emissions have been actively conducted.
According to Table A1, the studies on the effect of urbanization on CO2 emissions include
Martinez-Zarzoso and Maruotti [12], Zhu et al. [13], Sadorsky [14], Dogan and Turkekul [15],
Ali et al. [16], He et al. [17], Bekhet and Othman [18] and Pata [19,20]. Martinez-Zarzoso and
Maruotti [12] investigated the effects of urbanization on GHG emissions for 88 developing countries
over the period 1975–2003 using stochastic impacts by regression on population, affluence and
technology (STIRPAT) model. Zhu et al. [13] analyzed these effects for 20 emerging countries over
the period 1992–2008 using a semi-parametric panel data model. Sadorsky [14] investigated these
effects for emerging economies including South Korea for the period 1971–2009 using a STIRPAT
model. Dogan and Turkekul [15], and Ali et al. [16] analyzed these effects for the US and Singapore,
respectively, using autoregressive distributed lags (ARDL) model. In addition, He et al. [17] analyzed
these effects for China, Bekhet and Othman [18] for Malaysia and Pata [19,20] for Turkey. He et al. [17],
Bekhet and Othman [18], and Pata [19,20] used SPIRPAT, VECM, and ARDL models, respectively.
Among them, Ali et al. [16] and Bekhet and Othman [18] have shown that urbanization reduces CO2

emissions, while other studies show that urbanization increases CO2 emissions.
Higher production of renewables and nuclear energy will replace fossil fuels, resulting in lower

GHG emissions. Recently, there has been active studies on the role of renewable and nuclear energy
in reducing CO2 emissions. According to Table A2, Representative studies include Menyah and
Wolde_Rufael [21], Apergis et al. [22], Iwata et al. [23], Shafiel and Salim [24], Jaforullah and King [25],
Bilgili et al, [26], Dogan and Seker [27], Ito [28], and Zoundi [29]. Ito [28] and Zoundi [29] investigated
the effects of clean energy on GHG emissions for 42 developing countries and 25 selected African
countries, respectively. The studies on these effects for developed countries include Menyah and
Wolde_Rufael [21], Iwata et al. [23], Shafiel and Salim [24], Jaforullah and King [25], Bilgili et al. [26],
and Dogan and Seker [27]. Apergis et al. [22] investigated these effects for both developing and
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developed countries. The methodologies on this topic vary, including ARDL, STIRPAT, VAR, GMM,
and PMG. For the analysis on one country, VAR, ARDL, and VECM were used, and for the panel
analysis on multiple countries, panel VECM, STIRPAT, panel FMOLS, and panel FMOLS were used.
Most of above studies on the effects of clean energy on GHG emissions have shown that an increasing
share of renewable and nuclear energy contributes to the reduction of CO2 emissions.

Additionally, GHG emissions are affected by various factors. As the economy grows, GHG
emissions are expected to increase due to increased energy consumption. However, recently, the
decoupling between economic growth and GHG emissions has been increasing. Meanwhile, GHG
emissions are expected to increase as the proportion of the manufacturing industry increases. This
is because the manufacturing industry is regarded as being more dependent on energy than the
service industry.

Hence, this study analyzes the effects of FDI on GHG emissions in Korea, considering various
factors such as economic growth, the share of the manufacturing industry, the share of renewable
energy and nuclear energy, and urbanization. Korea has achieved high economic growth rates over
the past 30 years and has a relatively high share of the manufacturing industry compared to other
countries. In addition, the share of nuclear power generation is higher than that of other countries
and Korea possesses world-class nuclear technology. These factors are also expected to have an effect
on GHG emissions. And people’s life styles have also changed as urbanization. As foreign direct
investment has been introduced for a long time, it is important to analyze how these various factors
influenced Korea’s GHG emissions.

In this study, the autoregressive distributed lag (ARDL) method is used as in Tang and Tan [6],
Mert and Bölök [7], Ali [16], Iwata et al [23], and Fernández and Fernández [30]. This method has
been widely used in recent studies as it can produce significant results even when sample size is small
in case of one country. To date, this is the first study to analyze the effect of FDI on GHG emissions
incorporating economic growth, the share of the manufacturing industry, the share of renewable and
nuclear power generation, and urbanization using the ARDL method. Chapter 2 presents the data
and methods, and Chapter 3 presents the empirical findings. Chapter 4 concludes and discusses
policy implications.

2. Data and Methods

As shown in previous studies, CO2 emissions are affected by the various factors such as economic
growth, expansion of clean energy such as renewable energy, the share of manufacturing industry, the
progress of urbanization, and inflows and outflows of foreign direct investment. This study analyzes
the extent to which these variables affect CO2 emissions in Korea. The six variables for analysis are
CO2 emissions per capita as a proxy for GHG emissions; the net inflows of FDI as a proxy for foreign
direct investment; the share of renewable and nuclear energy in primary energy supply as a proxy for
renewable and nuclear energy; the urban population in the total population as a proxy for urbanization;
and the share of manufacturing in GDP as a proxy for industrial structure. The long-run empirical
model reflecting the effect of these exogenous variables on CO2 emissions can be specified as the
following equation as modified from the structural formula of Merican et al [9] and Talukdar and
Meisner [31].

ln(CO2)t = β0 + β1 ln GDPt + β2 ln MVt + β3 ln RNEt + β4 ln URBANt + β5 ln FDISt + εt (1)

where, ln represents the natural logarithm. CO2 denotes CO2 emissions per capita (metric tons per
capita); GDP denotes gross domestic product per capita (constant 2010 US $); MV denotes the share of
manufacturing value added in GDP (%); RNE denotes the share of renewable and nuclear energy in
primary energy supply (%); URBAN denotes the urbanization ratio, which is measured by the share of
the urban population in the total population (%); FDIS denotes the net inflows of FDI (% of GDP); εt

denotes error terms.
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ARDL model is appropriate for analyzing the long-run effects of each explanatory variables on
CO2 emissions because the analysis target is just one country and the analysis period is relatively short.
ARDL model is also applied to the previous studies as Tang and Tan [6], Mert and Bölök [7], Ali [16],
Iwata et al [23], and Fernández and Fernández [30].

ARDL cointegration methods were developed by Pesaran and Pesaran [32], Pesaran and Shin [33]
and Pesaran et al. [34]. It have been used for decades in various studies. In recent years, they were used
as test methods for the existence of long-run relationships between economic variables in the time series
analysis. Compared to other cointegration methods proposed by Engle and Granger [35] and Johansen
and Juselius [36], ARDL cointegration methods have several advantages as the follows. First, as
mentioned earlier in Shrestha and Bhatta [37], the ARDL cointegration methods can be applied when the
variables are a mixture of mixed order of integration, while Johansen cointegration methods require that
all variables have the same order of integration. Without affecting the asymptotic distribution of the test
statistic, the ARDL cointegration methods can be applied to the model with different orders of lag length
as well as the equal number of lag length for the corresponding variables (Pesaran et al. [34]). Second,
the ARDL methods yield estimates and valid t-statistics, even if autocorrelation and endogeneity exist
in the model (Harris and Sollis [38]). Third, the ARDL cointegration methods is efficient even for small
and finite sample data sizes while the Johansen cointegration methods require large data for statistical
validity. Fourth, after the long-run cointegration relationship is confirmed by ARDL cointegration
test, the short-run coefficients can be estimated by ARDL error correction model (ECM) without losing
valid long-run coefficients. Fifth, the ARDL cointegration test provide effective results in various cases
which the variables are integrated at I(0), at I(1) or mutually cointegrated, while Johansen cointegration
test requires all the variables to be I(1). (Pesaran et al. [34]).

There are two step procedures in estimating long-run relationship. The first step in estimating
long-run relationship, as in Equation (1), is the ARDL bounds test. If long-run equilibrium relationship
is identified in the first step, the second step is estimating the long-run parameters.

In the first step, the specific ARDL model is formulated as shown by Equation (2) and is called the
unrestricted ECM or “conditional ECM” (Pesaran et al. [34]).

∆ ln(CO2)t = α0 +

p∑
k=1

α1k∆ ln(CO2)t−k +

q1∑
k=0

α2k∆ ln GDPt−k +

q2α3k∆ ln MVt−k+∑
k=0

q3∑
k=0

α4k∆ ln RNEt−k +

q4∑
k=0

α5k∆ ln URBANt−k +

q5∑
k=0

α6k∆ ln FDISt−k + α7 ln(CO2)t−1+

α8 ln GDPt−1 + α9 ln MVt−1 + α10 ln RNEt−1 + α11 ln URBANt−1 + α12 ln FDISt−1 + ut,

(2)

where ∆ denotes the difference operator; α7~α12 are the long terms; and p and q1~q5 are the optimal
leg length of this model which is defined by the Akaike information criterion (AIC) or Schwarz
Bayesian criterion (SBC). The F-statistic of the lagged terms in Equation (2) is used to test the long-term
equilibrium relationship whether there is a cointegration among the variables or not. The null
hypothesis is H0 : α7 = α8 = α9 = α10 = α11 = α12 = 0, while the alternative hypothesis is
H1 : α7 , 0 or α8 , 0 or α9 , 0 or α10 , 0 or α11 , 0 or α12 , 0. This F-test depends on several conditions:
(1) whether the corresponding variables are I(0) or I(1). (2) How many the number of regressors are in
the model, and (3) whether the model contains an intercept, or a trend. The test involves asymptotic
critical value bounds, depending on whether the variables are I(0) or I(1). Two bounds are given, the
first is the lower bound that assumes all of the variables are I(0), and the second is the upper bound that
assumes all of the variables are I(1). If the computed F-statistic calculated from the model is below the
lower bound, the null hypothesis can’t be rejected and we can conclude that there is no cointegration
among the variables. If the F-statistic exceeds the upper bound, the null hypothesis can be rejected
and we can conclude that there is a cointegration relationship among the variables. If the computed
F-statistic exists between the lower bound and the upper bound, the cointegration among the variables
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is inconclusive. If the long-run equilibrium cointegration relationship among the variables is identified
through ARDL bounds test, this long-run cointegration relationships can be estimated using the ARDL
models (Fernández and Fernández [31]).

In addition, a bound t-test is performed to ensure reliability. The null hypothesis for this test is
H0: α7 = 0, while the alternative hypothesis is H1: α7 < 0. If the t-statistic is greater than I(1) bound,
we can reject the null hypothesis and conclude that there is a long-run cointegration relationship
among the variables. If the t-statistic is less than the I(0) bound, we can accept the null hypothesis and
conclude that there is no long-run cointegration relationship and the time variables are all stationary
(Pesaran et al. [34]).

If a stable long-run relationship is identified by the first step, then in the second step, the augmented
ARDL model is estimated using the following Equation (3):

ln(CO2)t = γ0 +

p∑
k=1

γ1k ln(CO2)t−k +

q1∑
k=0

γ2k ln GDPt−k +

q2∑
k=0

γ3k ln MVt−k+

q3∑
k=0

γ4k ln RNEt−k +

q4∑
k=0

γ5k ln URBANt−k +

q5∑
k=0

γα6k ln FDISt−k + vt,

(3)

Equation (3) can be reduced to the following Equation (4), which represents the long-run
equilibrium relationship. The long-run coefficients of the dependent variables are estimated from
Equation (4):

ln(CO2)t = λγ0 + λ

q1∑
k=0

γ2k ln GDPt + λ

q2∑
k=0

γ3k ln MVt + λ

q3∑
k=0

γ4k ln RNEt + λ

q4∑
k=0

γ5k ln URBANt

+λ

q5∑
k=0

γα6k ln FDISt + λvtwhere, λ =
1

1−
∑p

k=1 γ1k
,

(4)

The short-run coefficients of the explanatory variables can be estimated using the associated
ARDL-ECM. The ARDL-ECM model considering long-run equilibrium is described as follows:

∆ ln(CO2)t = δ0 +

p∑
k=1

δ1k∆ ln(CO2)t−k +

q1∑
k=0

δ2k∆ ln GDPt−k +

q2∑
k=0

δ3k∆ ln MVt−k+

q3∑
k=0

δ4k∆ ln RNEt−k +

q4∑
k=0

δ5k∆ ln URBANt−k +

q5∑
k=0

δ6k∆ ln FDISt−k + δ7ECTt−1 + ρt

(5)

If the ECTt−1 coefficients (δ7) is statistically significant and negative sign, we can conclude that
any long-run disequilibrium among dependent variable and several independent variables converges
into the long-run equilibrium.

The data used in this study covers the period 1981-2014. The data for CO2 emissions per capita
(CO2), GDP per capita (GDP), the share of manufacturing industry in GDP (MV), the urbanization ratio
(URBAN), and the net inflows of FDI in GDP (FDIS) are from the World Bank’s DataBank [39]. The share
of renewable and nuclear energy in primary energy supply (RNE) is from the Korea Energy Statistical
Information System [40] of the Korea Energy Economics Institute. The data of RNE includes nuclear
energy and renewable energy including hydropower electricity which is generated by hydropower.

Time series plots of each data in Figure 1. CO2 emissions per capita increased rapidly until 1997,
but dropped sharply in 1998 due to the Asian financial crisis. Since then, CO2 emissions per capita
have increased, but at a slower rate than before the Asian financial crisis. Since 2010, CO2 emissions per
capita have tended to decrease slightly. GDP per capita continued to increase during the period, except
both the Asian and global financial crisis period. GDP per capita decreased during those economic
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crisis period. GDP per capita decreased more during the Asian financial crisis than during the global
financial crisis.
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slightly during the Asian and global financial crisis. 

Figure 1. Time series plots for each data. CO2 denotes CO2 emissions per capita (metric tons per capita);
GDP denotes gross domestic product per capita ($1000, constant 2010 USD); MV denotes the share of
manufacturing value added in GDP (%); RNE denotes the share of renewable and nuclear energy in
primary energy supply (%); URBAN denotes the urbanization ratio, which is measured by the share of
the urban population in the total population (%); FDIS denotes the net inflows of FDI (% of GDP).

The share of manufacturing value added in GDP accounted for 15.5% of GDP in 1981, but increased
steadily to 28.8% in 2014. However, this share of the manufacturing sector also declined slightly during
the Asian and global financial crisis.

The share of renewable and nuclear energy in primary energy supply reached 18.4%, the highest
level in 1987, but declined until the mid-1990s and then increased again. Since the mid-1980s, this
share has declined because of the rapid increase in oil demand by the increase of automobiles, and
increased demand for natural gas on apartment heating. Since the mid-1990s, this share has increased
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again as the expansion of additional nuclear power plants and the supply of automobiles have reached
their limits. Since the mid-2000s, coal and gas power have increased, and this share has decreased
again. The primary energy supply by energy source is shown in Figure 2. The share of coal declined
slightly from 33.3 % in 1981 to 29.9 % in 2014, but the share of oil declined sharply from 51.8% in 1981
to 37.1 % in 2014. The share of natural gas has slowly increased since 1987, recording 16.9% in 2014.
The share of nuclear energy increased from 1.6% in 1981 to 16% in 2005 and again declined to 11.7 % in
2014. The share of renewable energy was less than 1% before 2000, but increased up to 3.9% in 2014.
According to the main features in recent years, the share of oil is decreasing and the share of natural
gas and renewable energy is increasing.
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The urbanization rate was only 58.4% in 1981, but continued to increase to 81.7% in 2010.
Since 2010, the urbanization rate has remained almost stagnant. Before 2000, the urbanization rate
increased steeply, but since then the rate of growth has slowed significantly. The net FDI inflows in
GDP showed the increasing trends. However, these trends are highly volatile because massive FDI
occurred intermittently.

3. Results

3.1. Unit root analysis

The ARDL cointegration method can be valid if the variables are stationary in the case of I(0)
or I(1) or a mixed integrating order. The most important assumption of the ARDL method is that
the variables must be integrated at I(0) or I(1) or I(0)/I(1). The two unit root tests—the augmented
Dickey–Fuller test (ADF) and the Phillips–Perron test (PP)—are usually applied to verify whether each
variable is stationary or not. Table 2 shows the results of the ADF and PP unit root tests which reveal
that the variables of the study are stationary at different order. According to the ADF test, each variable
except lnURBAN has unit root at level and doesn’t have unit root at first difference. This means that
each variable except lnURBAN are I(1). The variable lnURBAN does not have a unit root at level. The
PP unit root test also shows the same results as ADF test. Therefore, the variables lnCO2, lnGDP, lnMV,
lnRNE and lnFDIS are integrated at level I(1), lnURBAN is integrated I(0). All variables fit I(0) or I(1) as
the requirement for ARDL cointegration method, so the ARDL model can be applied in this research.
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Table 2. Result of unit root tests.

Variables ADF Test
(at Level)

ADF Test (at First
Difference)

PP Test
(at Level)

PP Test
(at First Difference)

lnCO2 −1.040 −6.063 *** −0.777 −6.825 ***
lnGDP −0.994 −5.683 *** −0.976 −13.968 ***
lnMV −2.776 −6.333 *** −2.776 −6.098 ***
lnRNE −2.750 −4.496 *** −2.766 −4.620 ***

lnURBAN −3.248 * −0.931 −3.254 * −1.189
lnFDIS −2.585 −4.165 ** −1.876 −4.029 **

Notes: *, **, *** mean the rejection of the null hypothesis at the 10%, 5% and 1% level of significance, respectively.
The null hypothesis is that each variable has a unit root. Each test has an intercept. ADF test indicates Augmented
Dickey Fuller test, and PP test indicates Phillips–Perron Test.

3.2. Lag Length Criteria

The selection of the appropriate lag length is important before applying the ARDL bounds test
because inappropriate lag lengths reduce the reliability of the model and lead to incorrect estimation
results. Here, Akaike information criteria (AIC) were used to choose the appropriate lag length.
Figure 3 shows top twenty models by AIC. The model with the lowest AIC value is ARDL (2, 1, 0,
1, 0, 0). Therefore, the appropriate lag lengths for p, q1, q2, q3, q4 and q5, corresponding to each
variable such as lnCO2, lnGDP, lnMV, lnRNE, lnURBAN, and lnFDIS in Equation (2) are 2, 1, 0, 1, 0, and
0 respectively.
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3.3. ARDL Bounds Tests

ARDL bounds test is applied to identify whether there exist a cointegration relationship among
lnCO2, lnGDP, lnMV, lnRNE, lnURBAN, and lnFDIS, when lnCO2 is the dependent variable and
other variables are the explanatory variables. The result of bounds test for ARDL (2, 1, 0, 1, 0, 0)
model is shown in Table 3. The upper bound assumes that all the regressors are I(1), and the lower
bound assumes that the regressors are I(0). Here, null hypothesis of F-Bounds test is that there is no
cointegration among variables. If the calculated F-statistic (or t-statistic) is below the lower bound, the
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null hypothesis will be accepted. If the F-statistic (or t-statistic) is higher than the upper bound, the null
hypothesis will be rejected and the cointegration among variables will be verified. If the F-statistic (or
t-statistic) lies between the upper and lower bounds, the result can’t be conclusive. The critical bound
values are different in large and small data samples. The critical bound values for a small sample are
given by Narayan [41], and the values for large sample are given by Pesaran et al. [34]. This study,
with its small sample, uses the critical bound values given by Narayan [41].

Table 3. Results of ARDL bound tests.

Selected Model: ARDL(2, 1, 0, 1, 0, 0)

F-Bounds Test H0 : α7 = α8 = α9 = α10 = α11 = α12 = 0

Test Statistic Value Significance I(0) I(1)

F-statistic 4.299 10% 1.81 2.93
K = 5 5% 2.14 3.34

1% 2.82 4.21

t-Bounds Test H0: α7= 0

Test Statistic Value Significance. I(0) I(1)

t-statistic −5.603 10% −1.62 −3.49
5% −1.95 −3.83
1% −2.58 −4.44

Since the calculated value of the F-statistic is 4.299 which is above the upper bound 4.21 at the
1% significance level, the null hypothesis is rejected. According to the t-statistic, the null hypothesis
is also rejected. These test results indicate the existence of a long-run cointegration when lnCO2 is
dependent variable and other variables are independent variables. Therefore, these results confirm
that one long-run equilibrium relationship exists among lnCO2, lnGDP, lnMV, lnRNE, lnURBAN, and
lnFDIS when lnCO2 is the dependent variable in the selected ARDL (2, 1, 0, 1, 0, 0).

3.4. Long Run Equilibrium Relationship

As shown in Table 4, the sign of the long-run coefficients of lnGDP, lnURBAN and lnFDIS are
positive. This means that the CO2 emissions increase as the economy grows, urbanization progresses,
and FDI increases. The long-run elasticities for GDP, URBAN, and FDIS are 0.776, 0.502 and 0.055
respectively, meaning a 1% increase of GDP, URBAN, and FDIS will lead to increase of 0.776%, 0.502%
and 0.055% in CO2 emissions, separately. The biggest factor driving the increase of CO2 emissions
is economic growth, followed by urbanization. The increase in FDI, although accompanied by an
increase in GHG emissions, has little effect.

Table 4. Estimated long-run coefficients using the ARDL model.

Selected Model: ARDL(2, 1, 0, 1, 0, 0); Dependent Variable is lnCO2

Variable Coefficient Standard Error t-Statistic p-value

lnGDP 0.776 *** 0.061 12.683 0.000
lnMV −0.345 ** 0.140 −2.460 0.022
lnRNE −0.405 *** 0.104 −3.902 0.001

lnURBAN 0.502 *** 0.071 7.062 0.000
lnFDIS 0.055 ** 0.021 2.666 0.014

Notes: *, **, *** mean the rejection of null hypothesis at the 10%, 5% and 1% level of significance, respectively.

Meanwhile, the sign of the long-run coefficients of lnMV and lnRNE are negative. This means
that the CO2 emissions decrease as the share of manufacturing in GDP increases, and as the share
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of renewables and nuclear energy increases. The long-run elasticities for MV and RNE are −0.345
and −0.405%, respectively, meaning a 1% increase of MV and RNE will lead to a 0.345% and 0.405%
decrease in CO2 emissions, separately. In general, CO2 emissions are expected to increase as the share
of manufacturing increases, but the results are reversed. This is related to industrial restructuring in
manufacturing. In other words, the share of the energy intensive industries within the manufacturing
industry has decreased and the share of the low carbon emission industries has increased. It also shows
that energy saving and CO2 reduction technologies are being further developed in the manufacturing
industry. In addition, CO2 reduction will occur as the proportion of nuclear power and renewable
energy increases, as expected.

3.5. Short-Run Causality

Table 5 shows results of the short-run dynamic coefficients from the ECM model Equation (5).
The error correct term (ECT(−1)) coefficient is significant at 1% significance level with the negative
sign which is between 0 and −1, implying that the model can converge back to long-term equilibrium
quickly after a short-term shock. The value of −0.564 indicates that the disequilibria from this period’s
shock can be adjusted in the next period about 56.4%. It means that any disequilibrium of CO2

emissions would converge back in about two years.

Table 5. Error correction representation for the selected ARDL model.

Selected Model: ARDL(2, 1, 0, 1, 0, 0); Dependent Variable is ∆lnCO2

Variable Coefficient Std. Error t-Statistic Probability

∆lnCO2(−1) 0.241 *** 0.078 3.107 0.005
∆lnGDP 1.345 *** 0.102 13.240 0.000
∆lnRNE −0.332 *** 0.039 −8.507 0.000
ECT(−1) −0.564 *** 0.101 −5.604 0.000

R2 0.875 Mean dependent variables 0.036

Adjusted R2 0.862 Standard Deviation
dependent variables 0.056

Standard error of regression 0.021 Akaike info criterion −4.803
Sum squared residuals 0.012 Schwarz criterion −4.620

Log likelihood 80.848 Hannan-Quinn criterion. −4.742
Durbin–Watson statistic 2.118

Notes: *, **, *** mean the rejection of null hypothesis at the 10%, 5% and 1% level of significance, respectively.

In the short run, the changes in both lnGDP and lnRNE affect the changes in lnCO2. An increase
in GDP per capita brings to an increase in CO2 emissions per capita. On the contrary, an increase in
the share of renewable and nuclear energy brings to a decrease in CO2 emissions per capita. In the
short run, although the direction is reversed, the coefficients of the changes in GDP per capita on the
changes in CO2 emissions per capita is approximately four times greater than that of the changes in the
share of renewable and nuclear energy. Meanwhile, the changes in two variables, lnURBAN and lnFDI
didn’t affect the changes in lnCO2 in the short run, although two variables would increase lnCO2 in the
long-run shown in Section 3.4. The progress of urbanization and the net inflows of FDI affect CO2

emissions per capita in the long-run but not in the short run.

3.6. Model Stability

The stability test for the estimated parameters of this selected ARDL model is required to avoid
misspecification of the functional form, which is due to the volatility of the time variables. To ensure
the stability of the ARDL-ECM model, the cumulative sum (CUSUM) and cumulative sum of squares
(CUSUMSQ) tests are usually used (Pesaran and Pesaran [31]). The statistics of the CUSUM and
CUSUMSQ tests are calculated as the cumulative sum or cumulative sum of the squares of the
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regression residuals, respectively. If the statistic lies between confidence intervals, then the estimated
coefficients is believed to be stable (Brown et al. [42]). According to Figure 4, the left plot (a) shows
CUSUM and the right plot (b) shows CUSUMSQ. Both the CUSUM and CUSUMSQ plots lie between
the critical lower and upper bounds (red lines) at the 5% significance level. The stability of this selected
ARDL model is confirmed by these two tests. Accordingly, the selected model is statistically stable and
the parameters corresponding to lnGDP, lnMV, lnRNE, lnURBAN, and lnFDIS to lnCO2 are reliable.
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4. Discussion and Conclusions

This study analyzed the effects of foreign direct investment, renewable and nuclear energy,
urbanization, industrial structure incorporating economic growth on Korean GHG emissions over
the period from 1981 to 2014. The econometric methodology used in this paper is the Autoregressive
distributed lag model because this is for one country and the data is relatively short. According to
ARDL bounds test, the long-run equilibrium among the variables is confirmed. After that, the long-run
and short-run coefficients were estimated using ARDL-ECM.

In the long run, the net inflow of FDI slightly contributed to the increase of GHG emissions.
However, the coefficient is negligible. Hence, it is difficult to conclude that Korea has become a
pollution haven or that the halo effect has occurred in Korea. Therefore, when seeking to attract FDI,
an analysis of the impact on GHG emissions should also be taken into account. So far, there is no
previous study analyzing the impact of FDI on CO2 emissions in Korea, so it is difficult to compare
these findings with previous studies. Meanwhile, the empirical results show that as urbanization
progressed, CO2 emissions in Korea increased accordingly. Comparing the results of previous studies
on other countries, these findings are similar to the results of previous studies on developing countries
as in Martinez-Zarzoso and Maruotti [12], Zhu et al. [13], and Sadorsky [14]. The lifestyle changes
due to urbanization have played a role in increasing CO2 emissions. As previously predicted, the
renewable and nuclear energy have played an important role in the reduction of CO2 emissions. These
findings are consistent with most previous studies on other countries as shown in Table A2. Especially
in Korea, this result seems to be due to the high proportion of nuclear energy. However, the increase
in the share of the manufacturing industry has resulted in the reduction of CO2 emissions, which is
the opposite of what was predicted earlier. This may be related to changes in the industrial structure
of manufacturing industry, not just an increase in CO2 emissions as a result of increased share of the
manufacturing industry in GDP.

In the short run, economic growth has caused an increase in greenhouse gases, while renewable
and nuclear energy have caused a reduction in CO2 emissions. Urbanization industrial structure
and FDI did not cause CO2 emissions in the short run. Therefore, the policies relating to industrial
restructuring and net FDI inflows aimed at GHG emissions reduction should be made with long term
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view. As shown in the analysis results, the roles of renewable energy and nuclear energy are important
for CO2 emissions reduction. According to the Third Energy Basic Plan established in 2019, the Korean
government decided to increase the share of renewable energy in the power generation sector by
30~35% by 2030. However, this plan didn’t provide a concrete vision for the share of nuclear power.
To reduce CO2 emissions, long-term targets for renewable energy and nuclear energy should be set. In
order to reduce CO2 emissions, the energy efficiency of the industrial sector should be continuously
improved, and the manufacturing sector should be upgraded to a low carbon industry. Recently, Korea
is trying to improve the energy efficiency of the manufacturing sector by expanding factory energy
management system. In particular, in order to prevent the increase of CO2 emissions caused by FDI
inflows, the level of CO2 emissions should be considered when attracting FDI. This study considered
various factors affecting GHG emissions including foreign direct investment, renewable and nuclear
energy, urbanization incorporating economic growth and industrial structure. However, the use of
eco-friendly vehicles such as electric vehicles and hydrogen vehicles is increasing in Korea. In future
analysis, the proportion of eco-friendly cars in transportation sector should be considered as one of
factors affects GHG emissions. This will be left for further study.
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Appendix A

Table A1. The studies on urbanization and GHG emissions.

Countries Periods Methods

Martinez-Zarzoso and
Maruotti [12] 88 developing countries 1975–2003

Stochastic Impacts by Regression on
Population, Affluence and Technology

(STIRPAT) model
Zhu et al. [13] 20 emerging economies 1992–2008 semi-parametric panel data model
Sadorsky [14] Emerging economies 1971–2009 STIRPAT model

Dogan and Turkekul [15] USA 1960–2010 Autoregressive distributed lags (ARDL)
Ali et al. [16] Singapore 1970–2015 Autoregressive distributed lags (ARDL)
He et al. [17] China, regional 1995–2013 STIRPAT model

Bekhet and Othman [18] Malaysia 1971–2015 VECM
Pata [19] Turkey 1974–2013 Autoregressive distributed lags (ARDL)

Pata [20] Turkey 1974–2014 Autoregressive distributed lags (ARDL),
FMOLS

Table A2. The studies on clean energy and GHG emissions.

Countries Periods Methods

Menyah and Wolde_Rufael [21] US 1960–2007 Vector Auto regression

Apergis et al [22] 19 developed and developing
countries 1984–2007 Panel error correction model

Iwata et al. [23] France 1960–2003 ARDL
Shafiel and Salim [24] 29 OECD 1 countries 1980–2011 STIRPAT model

Jaforullah and King [25] US 1965–2012 VECM
Bilgili et al [26] 17 OECD countries 1977–2010 Panel FMOLS, Panel DOLS

Dogan and Seker [27] European Union 1980–2012 Panel Dynamic Ordinary Least Squares
Ito [28] 42 developing countries 2002–2011 GMM and PMG

Zoundi [29] 25 selected African countries 1980–2012 Panel cointegration
(Dynamic OLS, System GMM, etc.)

Notes: 1 OECD means Organization for Economic Cooperation and Development.
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