o ey z
<@ sustainability ﬂw\p\py

Article

Mapping Urbanization and Evaluating Its Possible
Impacts on Stream Water Quality in Chattanooga,
Tennessee, Using GIS and Remote Sensing

Jonah Hall 12 and A. K. M. Azad Hossain >*

Skytec LLC, Chattanooga, TN 37415, USA; jhall@Skytecllc.com

Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga,
Chattanooga, TN 37403, USA

*  Correspondence: azad-hossain@utc.edu; Tel.: +1-423-425-4404

2

check for
Received: 14 January 2020; Accepted: 27 February 2020; Published: 5 March 2020 updates

Abstract: Impervious surfaces (IS) produced by urbanization can facilitate pollutants” movement
to nearby water bodies through stormwater. This study mapped and estimated the IS changes in
Chattanooga, Tennessee, using satellite imagery acquired in 1986 and 2016. A model was developed
utilizing the Normalized Difference Vegetation Index coupled with density slicing to detect and map
urbanization through IS growth. Urban growth was quantified at USGS HUC12 watershed level
including stream riparian areas. The obtained results show a net growth of 45.12 km? of IS with a
heterogeneous distribution. About 9.96 km? of this growth is within 90 m of streams, about 6% of the
study site’s land cover. The Lower South Chickamauga Creek watershed experienced the largest
urban growth with a change from 24.2 to 48.5 km?. Using the riparian zone percent imperviousness,
a stream risk assessment model was developed to evaluate potential stream impairment due to this
growth. Approximately 87, 131, and 203 km lengths of streams identified as potentially at high, very
high, and extreme risks, respectively, to be impaired due to urban growth from the last 30 years.
These findings would benefit to proactively implement sustainable management plans for the streams
near rapidly urbanizing areas in the study site.
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1. Introduction

Urban areas are often defined by anthropogenically created impervious surfaces such as concrete,
asphalt, and metal [1,2]. Global urbanized areas, as of 2014, contain 54% of the global population and
are estimated to increase to 66% by 2050. The rates of urbanization are not globally uniform. For
example, in North America, 82% of the population resides in urban areas compared to other continents
such as Africa and Asia with 40% and 48%, respectively. On the other hand, increases in urbanization
are not consistent. The fastest growing areas are in Africa and Asia and are estimated to increase to
56% and 64%, respectively, with more urbanized areas such as Northern America growing at slower
rates [3]. While slower than other areas globally, North America, and specifically the continental United
States, is still experiencing significant growth both in urban population and urban development.

With urbanization continuing to increase, it has been imperative to monitor, manage, and research
issues that could be associated with urban growth. An immense quantity of scientific literature has
demonstrated the negative impacts of urban growth on resources such as agriculture, timber, surface
and groundwater quality, and energy resources [4-17].
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1.1. Urbanization and Surface Water Quality

As urban areas continue to densify and expand into their surrounding environment, their new
development can alter the nearby landscape dynamics. Often these expanding urban areas encompass
or encroach nearby surface water resources [18]. This spatial relationship between urban areas and
water resources has long had the attention of the scientific community, whose work has shown that
urban development can impact local surface water resources [19-22], especially the quality of water, as
we can see in Table 1. All parameters listed in Table 1 have been found to be adversely affected by the
listed land use types; with measured parameter levels all being higher than natural levels, (except
dissolved oxygen which is found to be lower). Overall, urbanized watersheds have been found to
have significant impacts on surface water resources including degraded water quality, habitat and
biota. It is, therefore, crucial to monitor and investigate the quality of surrounding water resources
near rapidly urbanizing areas to proactively implement water resource management plans.

Table 1. Selected water quality variable associations with urbanized land cover types.

Water Quality Variable Land Cover Association C Paramete.r Literature
oncentration
Total suspended solids (TSS) General Urban, IS + [23-25]
Turbidity General Urban + [25-27]
Dissolved solids Commercial + [20,25,28]
. General Urban, IS,
Dissolved oxygen (DO) Residential, Commercial - [18,29-31]
General Urban, Residential,
Heavy metals Commercial, Industrial + [32-54]
General Urban, IS,
Conductivity Commercial, Residential and + [29,35,36]
Agricultural
Temperature General Urban, IS + [36-38]
pH General Urban, IS + [36,39,40]
. Commercial, Residential and
Total nitrogen (TN) Agricultural + [26,29,30]
Total phosphorus Residential + [28,29,31]
Ammonia General Urban + [33,41,42]
E. coli General Urban, IS + [36,43,44]
Algae (chlorophyll) Urban General, IS + [45-47]
General Urban, IS,
Fecal coliform Commercial, Residential and + [24,29,43]
Agricultural

Note: The relationship is given by the general impact of the land cover on the parameter. A positive (+) or negative (-)
symbol shows the parameter concentration response to increases in specified land cover. IS = Impervious Surfaces.

1.2. Land Use and Land Cover Change (LULC) and Urbanization

Urban growth is the change in LULC for and by anthropogenic activities such as residential,
commercial and industrial development. It is commonly quantified through LULC detection and
analysis of selected classes such as agricultural, open field, urban, forest, wetland, and barren areas.
Quantitatively assessing urban growth requires defining which LULC categories should be considered
urban. For the USGS National Land Cover Database [48-50], urban land cover is defined by spatial
intensity of developed land, which is the percentage of impervious surface (IS) per unit area. Other
efforts to map urban growth involve using the amount of detectable IS to measure urban extent [51-54].
Impervious surfaces are defined as being composed of materials such as asphalt, concrete, and metal
that slow or inhibit water infiltration to topsoil. Therefore, these surfaces include building rooftops,
sidewalks, parking lots, and roads, and the amount of land cover composed of IS can then be related to
urban growth.



Sustainability 2020, 12, 1980 3 of 46

Remote sensing has been established as an effective method for investigating urban growth
due to the differing visible and spectral differences between LULC classes [55-59]. Urban growth
detection using remote sensing has been used to investigate changes across a range of temporal and
spatial scales due to the advantages offered by various remote sensing technologies. Through these
investigations, numerous image processing techniques have been developed or utilized to improve
LULC research precisions including: Tasseled Cap Transformation (TCT), Normalized Difference
Built-Up Index (NDBI), Index-based Built-Up Index (IBI), Normalized Difference Vegetation Index
(NDVI), and supervised classification schemes such as density slicing [56,60-66]. Impervious surface
growth has been investigated using remote sensing and is often paired with water quality investigations
due to the established relationship between the two variables [67-69].

1.3. Urban Growth and Riparian Areas

The land immediately surrounding water resources is considered riparian areas. These zones
can be described as a range of area adjacent to water resources including areas 100 m away and
further [70]. The conservation and protection of forest riparian land is critical as they act as buffers
between the flows of matter from upland areas into hydrologic resources and have a strong influence
on the surrounding water resource quality [71]. They are attributed with mitigating the flow of
sediment and nutrients from surface and groundwater into adjacent water resources [72], effects on
fish assemblages [73], and other physiochemical water quality variables [74,75]. As with other critical
habitats, LULC development poses a significant threat to riparian areas by compromising the buffer’s
ecological integrity and altering buffer areas’ landscape [76,77]. Research has suggested that vegetated
buffers of a minimum of 30 m is needed to act as a functioning non-point source pollutant control [78].

Acting as a non-point source pollutant, IS proximity to water resources and the respective riparian
buffer have also been found to affect water quality [78-80]. Riparian buffer LULC can have a better
ability to predict stream surface water quality leading to an increase in research and government
attention to understanding and protecting these corridors [81,82]. Other research has found that the
composition of riparian land cover has a slightly better ability to predict stream water chemistry than
watershed land cover [83]. Threshold percent imperviousness values for stream riparian zones that
have been found to begin indicating stream impairment begin at 10% cover [84].

1.4. Mapping Urban Growth

Traditional methods for investigating LULC change has been primarily through in situ surveying
with measurements conducted by aerial photographs. These methods can provide accurate, detailed
information but are limited temporally and spatially due to resources. Remote sensing and geographic
information systems (GIS) provide useful techniques for mapping and analysis of historical and current
LULC across larger areas than traditional methods [85]. Remote sensing data acquisition also have the
ability for routine temporal data collection of the same area of interest, which allows for more efficient
change detection analyses [86]. Since remote sensing and GIS acquisition and analysis of LULC data
has been established, it presents a more temporal and fiscal affordable option for studying urbanization.

Acquisition of LULC data is primarily conducted by satellite-based optical sensors due to the
ability to differentiate different types of LULC classes by their spectral responses in the EMS [87,88].
The partnered USGS and NASA Landsat mission is noteworthy for its frequent use in LULC studies
with the Landsat mission starting in 1972 and continued sensor improvements [89]. Data from the
Landsat missions have been used for the creation of a National Land Cover Database (NLCD) by the
Multi-Resolution Land Characteristic Consortium (MRLC) to generate an accurate nationwide land
cover map every five years.

Optical satellite sensors, including Landsat, have been well established for mapping urban growth,
including impervious surfaces (IS) [19,51,90-92]. While optical sensors are the primary data source
used for LULC detection, there have been efforts to use active sensor technologies such as Synthetic
Aperture RADAR (SAR) or light Detection and Ranging (LiDAR) for urbanization investigations due
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to the unique physical characteristics of many primary land cover features associated with urban areas
such as buildings and roads [93,94]. Studies combining the two sensing technologies have found that
the data fusion can increase model accuracy and information extraction [95,96].

Impervious surface (IS) mapping using multispectral remote sensing technologies has been used
successfully for many years [19,68,97]. The use of NDVI is common for IS mapping by finding threshold
values for water and vegetation in an attempt to isolate IS [98-100]. Supervised and unsupervised
classification algorithms to extract spectral signature classes that can be assigned LULC values are also
commonly used, however, traditional classification algorithms can confuse IS with other LULC classes
such as bare or dry soils, shadowed areas caused by oblique image collection, and wetlands due to
similar spectral signatures [98]. Image spectroscopy-based techniques such as linear spectral unmixing
and multiple endmember spectral mixture analysis have been found successful for IS mapping but
require significant data collection and processing for accurate results [101-105].

1.5. Analysis Techniques

The use of remote sensing and GIS can be highly beneficial;, however, current image processing
and geospatial analysis techniques may not be sufficient for accurately characterizing non-linear or
complex urban growth relationships or predicting future urban growth [106-110]. Regression models
and machine learning algorithms are therefore used in these applications to increase modeling and
information extraction accuracy and offer better predictive capabilities. Regression models have been
used successfully to relate historic urban growth to various socioeconomic variables [24,111], changes
in water quality parameters [112,113], and predict future urban growth [114,115]. Machine learning
is a type of artificial intelligence-based computer program that uses a pre-determined algorithm
to be optimized on training datasets such as the target dataset, which it analyzes for algorithm
parameter optimization. The result is a trained algorithm for a specific task that can be used for
regression or classification analyses either by supervised or unsupervised methods [116-118]. Machine
learning-based algorithms using support vector machines, decision tree, random decision forest
(random forest)-based classification, and regression tree algorithms have been found to be very efficient
and accurate when used for urban growth studies [108,119,120]. Although found successful for urban
growth research, machine learning algorithms often require large datasets for training and validation,
which can be very expensive and time-consuming for some research.

1.6. Statement of the Problem and Scope of the Study

The City of Chattanooga, Tennessee, has grown substantially during the last several decades
and has become the center of a series of urbanized sub-watersheds. This significant recent growth
necessitates a much-needed effort to be aware of the location of the growth and its relationship to the
surrounding water resources since the environmental impacts, especially the quality of surface waters
due to this growth, have become a major concern for the sustainable developments of the greater
Chattanooga area [17,121].

Chattanooga’s water quality has been the topic of a few studies in recent years. Schorr et al. [122]
conducted an assessment of water quality and aquatic biota in Chattanooga area streams partnering
with the municipal Stormwater Management office. Long and Schorr [35] investigated urban land use
at the watershed scale in the Chattanooga area and its effects on selected streams. They found that
urbanized watersheds were negatively correlated with fish species diversity and biotic integrity and
that this negative correlation was related, in part, to high levels of sedimentation. Other than Long and
Schorr [35] and Schorr et al. [122] to date, there have not been any published attempts to quantitatively
map urban growth and analyze the development’s relationship to water resources in the Chattanooga,
Tennessee, area.

Therefore, this study was designed to investigate the potential impact of present urban growth on
water quality in and around the City of Chattanooga, Tennessee, using satellite observed geospatial
data. The investigation was conducted by accomplishing the following three sequential and related
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objectives: (1) mapping the net impervious surface (IS) change in the study site between 24 January 1986
and 26 November 2016 using satellite imagery from NASA’s Landsat satellite missions, (2) performing
a quantitative analysis of the obtained IS changes in relation to local water resources, and (3) developing
a risk assessment model to identify the potential areas of concern for surface water quality in the study
site due to the proximity and quantity of IS growth.

This study can be considered as the first attempt to quantitatively map urban growth in the
Chattanooga, Tennessee, area and analyze the development’s spatial relationship to local water
resources. Through the utilization of remotely sensed data and GIS analyses, this research aims to
better understand if/how urbanization has impacted the land use, land cover and landscape dynamics
of the greater Chattanooga area.

2. Materials and Methods

2.1. Study Site

The City of Chattanooga is a growing metropolitan area on the southeastern border of Tennessee
(Figure 1). It is settled along the Tennessee River. The city has a strong relationship with its surrounding
environment, relying on it for utilities, commerce, recreation and tourism. Downtown Chattanooga
lies directly adjacent to the Tennessee River, and has several major parks and trails following along the
riverfront. The parks, along with other attractions such as the 120-million-dollar downtown Riverwalk,
have earned Chattanooga multiple national awards for the best outdoor city [123,124]. The city of
Chattanooga reported that tourism alone generated 1 billion dollars for the economy in 2015, with the
largest attraction, the city’s Aquarium, being along the Tennessee River [125]. These awards and the
revenue generated by tourism reflect the impact that the environment and outdoor attractions have on
the suitably nicknamed “Scenic City”.

‘Watershed 1]

Challanocga Creek A

Spring Creek B

Lowwer South Chickamauga Creek C
Tennessee River-Mickajack Lake Upper D
Waorth Chickamauga Creek Lower E
Tennessee River-Chickamawga Lake Lower ¥
Blue Spring Creek-Chickamauga Lake G

@ Hamilton County

Hamilton County

Streams
- Tennessee River
[[] HUC-12 Watershed

Tennessee

Georgia [yl 20 Kilometers
I

Figure 1. Map of the study site shows the selected HUC-12 watersheds within Hamilton County.

The city’s legacy with water resource issues is tied to its industrial history with several large
industries being on or nearby local waterways and causing heavy, historic contamination of the
local water resources [126]. The most significant example of Chattanooga’s historic impact on local
waterways is Chattanooga Creek. This waterway is currently listed as an EPA superfund site and has
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been since 1995 due to extensive industrial dumping. Since listing, the EPA, along with regional and
local agencies and potentially responsible parties, have conducted several projects to clean up and
restore the creek. However, Chattanooga Creek is still currently listed as a superfund site and a fish
consumption advisory is still in place [127-129]. Other local Chattanooga waterways (e.g., Stringers
Branch) have also had issues with historic pollution [130].

In recent years, the city of Chattanooga has experienced a steady rate of population growth,
primarily due to the rapid economic growth in its six-county metropolitan area in southeastern
Tennessee and northwestern Georgia [131]. Chattanooga is home to several large organizations such
as Volkswagen, Unum, Tennessee Valley Authority, Blue Cross Blue Shield, Wacker, and Amazon that
are driving the area’s economic growth. The economic growth of the city is heavily attributed to the
implementation of the fiber optic internet by the City’s Electric Power Board (EPB) having 1 gigabit
and now 10 gigabytes of service. With multiple large corporations continuing to expand, a nationally
ranked internet infrastructure, and a supported nickname as the “Scenic City”, Chattanooga’s economic
and social environment is becoming increasingly attractive to startup businesses. The city has also
designated a 140-acre portion of the downtown area for startups, small businesses, nonprofits and
government offices called the “Innovation District” [132].

The study site of this research includes seven USGS Hydrologic Unit Code 12 (HUC-12) watersheds
located in Hamilton County, Tennessee, as seen in Figure 1. These watersheds were selected as the
stream networks within them feed into the Tennessee River. Thus, having the potential for sediments
to move from within the HUC-12 watersheds to the Tennessee River.

Hamilton County, located in the southeastern portion of Tennessee, occupies part of the
Appalachian Valley and is bisected by the Tennessee River. The total areas covered by land and water
within the county are of 1403.8 km? and of 86.3 km?, respectively [133]. The elevation of the areas within
the study site ranges from 191 m to 655 m [134]. The study site lies in a complex geologic sub-region
that is primarily composed of carbonate rock such as limestone and dolomite; however, there is a
considerable amount of shale, including Chattanooga shale, sandstone and other rock types [135].

Previous studies found that the watershed characteristics such as geology, topography, soil
type, and land use and land cover (LULC) had noticeable effects on the quality of surface water
in Hamilton County [136]. However, it is also reported that since the Tennessee Ridge and Valley
ecoregion’s geology, topography, and soil composition remained unchanged for the past 50 years,
spatiotemporal changes in surface water quality should, therefore, be associated with changes in LULC.
This is also supported by the USGS National Water Quality Assessment that concludes that sediment
contamination of surface stream water quality is persistent, and nutrient loadings in sub-basins for the
Upper Tennessee River Basin are primarily influenced by land use and streamflow [137].

2.2. Data Collection and Processing

A pair of satellite imagery acquired by NASA’s Landsat missions was used in this study. The first
scene was acquired by Landsat 5 Thematic Mapper (TM) on 24 January 1986 and was used to study the
land use and land cover (LULC) of 1986. The second scene was acquired by Landsat 8 Operational
Land Imager (OLI) on 26 November 2016 and was used to study the LULC of 2016. The processing
and analysis of the imagery and the overall methodological scheme are explained in Figure 2.

Both satellite images in the Red Green Blue (RGB) and Near Infra-Red (NIR) spectrums have a
spatial resolution of 30 m. The true color displays of Landsat 5 TM and Landsat 8 OLI images for the
study site can be seen in Figures 3 and 4, respectively. Since the two images were collected by different
Landsat sensors with a significant temporal gap between acquisitions, atmospheric correction was
needed to convert both images into the same radiometric scale [138]. The conversion of the image
values to represent the surface reflectance requires the correction of atmospheric effects on exiting
electromagnetic radiation, which is an important image pre-processing step [139,140]. The Landsat 5
TM scene reflectance values were generated using NASA’s Landsat Ecosystem Disturbance Adaptive
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Processing System (LEDAPS) software [141]. For the Landsat 8 OLI scene, NASA’s Landsat Surface
Reflectance Code (LaSRC) was used to generate the values [142].

a. Impervious Surface Mapping

Multispectral Satellite

Stream Network and

Imagery Watershed Boundary
\—> Data Acquisition 4—‘
v
Data Processing and
Image Analysis
Shadow areas NDVI Water areas

l

Density Slicing
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Data Integration
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Impervious Surface

v

Data
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b. Streams Risk Assessment
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Change Data

A 4

Stream Segmentation
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in Riparian Zones
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Figure 2. Data processing and methodological scheme: (a) Impervious surface mapping and (b) Stream

risk assessment.



Sustainability 2020, 12, 1980 8 of 46

Watershed D
Chattannogs Creek A
Spring Creek B n G

South Chick amauga Creek
e River Mickajack Lake

Low

per
mauga Creek Lowes
ver-Chick amauga Lake Lower

Blue Spring Creek-Chicksmauga Lake

[ ] Huc-12 Boundary
0 5 10 20 Kilometers

Figure 3. Landsat 5 TM image acquired on 24 January 1986 over the study site.
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Figure 4. Landsat 8 OLI image acquired on 26 November 2016 over the study site.
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A one-meter resolution multispectral aerial photograph acquired by the United States National
Agricultural Imagery Program (NAIP) in 2014 over the study site was obtained for the accuracy
assessment part of the study. The obtained NAIP imagery included both RGB and NIR bands. The
Tennessee county and state boundary data were collected from the Tennessee State government GIS
data server and the U.S. Census Bureau’s data server, respectively. The watershed data were collected
from the USGS National Hydrography Dataset Plus (NHDplus) and the City of Chattanooga Water
Quality Program. The stream location data were collected from NHDplus and the City of Chattanooga
GIS Office.

2.3. Mapping Impervious Surfaces

The satellite data used for this research were pre-processed including geo-rectification and
restoration [143]. Once the Landsat data and NAIP imagery were collected, necessary bands for each
dataset were masked to the study site and stacked to create the Red Green Blue (RGB) and Near
Infra-red (NIR) composite imagery. The model designed for mapping impervious surfaces (IS) is based
on the application of Normalized Difference Vegetation Index (NDVI) due to the breaks in values for
different land covers, which can be used to isolate impervious surface (IS) areas. To assist in land
cover isolation, the NIR band was used to separately classify water resources, and the green band for
shadows in both images. The model developed for detecting and mapping impervious surfaces is
represented by Equation (1).

ISDatu = ISNDVI - ShudowGreen - WaterNIR (1)

where ISnpyr represents a NDVI image that has been classified into IS and vegetated areas, Shadowyee,
represents shadows (detected by the green band of a Landsat sensor), and Wateryr represents surface
waterbodies (detected by the NIR band of a Landsat sensor).

All image processing and analyses were conducted using ArcGIS Pro GIS software [144]. The
statistical tests applied were conducted in the Jupyter Notebook environment using Python scripting
language [145].

2.4. Normalized Difference Vegetation Index (NDVI)

The primary component of the developed IS mapping model is NDVI. This index, seen in
Equation (2), uses the NIR and red (R) portions of the EMS.

(pNIR — PR)

NDVI =
(pNiR + PR)

@)
where pnjr is the surface reflectance value of NIR and pg is the surface reflectance value of R.

The Normalized Difference Vegetation Index was originally developed to map green vegetation,
which has a sharp contrast in the amount of absorption of red wavelengths compared to near
infrared [62]. Green vegetation has a high absorption of light in the red portion of the Electromagnetic
Spectrum (EMS) while reflecting a significant portion of the NIR portion; this response is driven
primarily by the vegetation’s photosynthetic activity [146]. This difference in EMS absorption causes
areas of healthy, green vegetation to have large, positive values from NDVI. This index can also be
used to map other non-vegetated land covers, primarily water and IS, due to each land cover’s distinct
interactions with red and NIR wavelengths [55]. Where IS have close to equal reflection of both red and
NIR light, they generate NDVI values close to 0 [146]. Negative NDVI values indicate non-vegetated
areas often consisting of water [146]. A NDVI was generated for each image, to separate the vegetated
and non-vegetated areas [64]. This concept of mapping vegetation to subsequently extract exposed IS
has been previously established as an alternative method for estimating IS [147].
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The Landsat 5 TM NDVI equation can be seen in Equation (3) and the Landsat 8 OLI NDVI

equation can be seen in Equation (4).
(pBs — pB3)
PB4 = PB3) 3)

Landsat 5 TM NDVI =
(pBa + pB3)

where pps and pp;3 represent the reflectance values of NIR and R, respectively.

Landsat 8 OLI NDVI — P55 — P5s)
(pB5 + PB4)

4)

where pp5 and ppy represent the reflectance values of NIR and R, respectively. Figure 5 shows the
NDVI image generated for 1986 and Figure 6 shows the NDVI image generated for 2016.
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Figure 5. NDVI image of the study site for 24 January 1986.



Sustainability 2020, 12, 1980 11 of 46

Watershed 1
Chattanooga Creek A
Spring Creak B
Lower Scuth Chidcamauga Creek c
Ternessee River Nickajack Lake Upper ]
E
F
[}

Merth Chickarnauga Cresk Lower
Terresses River-Chickamaugs Lake Lower
Blug Spring Crask-Chick amauga Lake

[ Huc-12 Boundary|
NDVI Value
0.20

z:u Kilometers 0.8

Figure 6. NDVI image of the study site for 26 November 2016.

2.5. Image Classification

To classify desired land covers, density slicing classification was performed. This classification
method requires the researcher to determine the spectral response range of desired variables from a
single layer image. This is conducted by an initial manual or statistical-based classification of an image
based on the distribution of the pixel values. Then, continued re-classification is conducted by adjusting
pixel value threshold until the desired land cover has been effectively isolated. Reclassification and
verification can be improved using reference location data, which can be colored imagery and/or
pre-labeled reference areas. Density slicing technique was applied on the generated Landsat 5 and
Landsat 8 Normalized Difference Vegetation Index (NDVI) images to classify them into impervious
surface (IS) and vegetated areas. Density slicing was also used to categorize waterbodies using the NIR
band and shadows with the green band for each date. To assist in classification for each date, the true
color Landsat image was used as a visual reference for each date. Reference polygons were used to
assist in determining IS land cover threshold values for both 1986 and 2016. Figures 7 and 8 show the
density slicing reference locations used. Figure 9 shows examples of reference polygons for both 1986
and 2016 with the NDVI image and true color image for comparison. During density slicing, repeated
inspection of these anchor points were conducted to gauge the effectiveness of the used pixel threshold
values. Table 2 gives the threshold values determined for each class.
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Table 2. The threshold values for density slicing classification for the 1986 Landsat 5 Thematic Mapper
(TM) and 2016 Landsat 8 Operational Land Imager (OLI) images.

Land Cover Type Year Data Threshold Value
Shad 1986 Green Band (142, 330)
adows 2016 Green Band (33, 225)
Vesetation 1986 NDVI (0.255873, 0.790147)
& 2016 NDVI (0.385, 0.902)
Wat 1986 NIR Band (38, 350)
ater 2016 NIR Band (4, 190)
S 1986 NDVI (—0.02992, 0.255873)
2016 NDVI (—0.09, 0.385)

[ Reference Location
NDVI Value
0.90

. -0.98

] 5 10 20 Kilometers

Figure 7. NDVI of the study site for 24 January 1986. Red boundaries denote the location of reference
areas for density slicing classification.
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[ Reference Location
NDVI Value
0.90

l -0.98

0 5 10 20 Kilometers

1 1 1 L 1 1 L L 1

Figure 8. NDVI of the study site for 26 November 2016. Red boundaries denote the location of reference
areas for density slicing classification.

2.6. Data Integration

Using raster algebra, the final IS dataset for each date was created by combining the classified
NDVI, green band and Near Infra-Red (NIR) band datasets using a nested conditional statement
executed with the ArcGIS raster calculator tool. The conditional statement isolated each desired
land covers from each dataset and returned a single dataset containing all the classified classes. The
resulting datasets were then reclassified into two classes: (1) impervious surfaces and (2) pervious and
other surfaces. This reclassified thematic image represents the final IS dataset. The IS dataset is seen in
Figures 10 and 11 for 1986 and 2016, respectively.
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Figure 9. Density slicing classification reference location comparisons using NDVI and true color images
for 1986 and 2016. (A) shows a reference polygon used for the 2016 classification. (B) shows a reference
polygon used for the 2016 classification. (C) shows a reference polygon used for 1986 classification.

2.7. Accuracy Assessment

The accuracy assessments of the resulting impervious surface (IS) datasets were conducted using
two different techniques: (1) Zonal Statistics and (2) Kappa Statistics.

2.7.1. Zonal Statistics

Zonal statistics was used for the accuracy assessment of the (IS) models for both 2016 and 1986.
For the 2016 model, this was conducted by digitizing 140 randomly located reference IS areas within
the study site. Figure 12 shows the locations for the 2016 reference IS areas. Each HUC-12 watershed
contains 20 of the digitized reference polygons. Every reference IS polygon covers an area equal to
15 m?. The NAIP dataset was used as the source of these reference IS polygons. A majority count zonal
statistic was applied to the digitized reference polygons overlaying the impervious dataset. This was
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conducted to determine if the majority of the classified pixels covered by the reference polygons were
impervious or pervious. Due to resource constraints, it was not possible to obtain high resolution aerial
photography to generate reference polygons to evaluate the 1986 dataset. In this case, a true color
Landsat 5 TM image was used to obtain the 140 reference polygons. The reference polygons digitized
using the NAIP data that contained 100% IS on the Landsat 5 TM image were used for the accuracy
assessment. Only 60 polygons digitized with NAIP imagery represented 100% IS cover in 1986. These
polygons were then used to assess the accuracy of the 1986 IS dataset following the methods used for
the 2016 dataset.

Watershed iy

(Chattanooga Creek A

Spring Creek B G
Lower South Chickamauga Creek C

Tennessee River Nickajack Lake Upper (]

MNerth Chickamauga Creek Lower E

Tennessee River-Chickamauga Lake Lower F

Blue Spring Creek-Chickamauga Lake G E

[ Huc-12 Boundary
[ Impervious Surface
I other

0 5 10 20 Kilometers

L 1 1 1 1 1 1 1 |

Figure 10. Detected impervious surfaces (IS) for the study site as observed by Landsat 5 TM image on
24 January 1986.
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Tennessee River Nickajack Lake Upper
Morth Chickamauga Creek Lower
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Blue Spring Creek-Chickamauga Lake

—
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M MmN W@ s
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Il other
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|

Figure 11. Detected impervious surfaces (IS) for the study site as observed by Landsat 8 OLI image on
26 November 2016.

2.7.2. Kappa Statistics

A confusion matrix and Cohen’s Kappa-coefficient (k) were calculated for each date. The Kappa
statistic has been shown to be an effective measure of a classification model in remote sensing and other
scientific fields, due to its ability to evaluate the interclassifier agreement and remove the bias [148-150].
Kappa statistics evaluated the performance of the IS classification models by calculating the User’s
accuracy (Type I error or false positive) and Producer’s accuracy (Type II error or false negative) for
each class, the proportion of pixels correctly classified (PCC), and Kappa-coefficient of agreement. The
Producer’s accuracy reports the error of omission created by the model, quantifying the amount of
each class that have not been correctly classified. The equation for the Producer’s accuracy is shown by
Equation (5).

Cr

Producer’s Accuracy = C oo
T c

©)
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where Cr is the amount of a class C that is correctly classified, and O is the sum of other classes that

were classified as C.

‘Watershed
Chattanooga Cresk
Spring Creek
Lower South Chickamauga Creek
Tennessea River-Nickajack Lake Upper
Herth Chickamauga Creek Lower
Tennesses River-Chickamauga Lake Lower F
Blue Spring Creek-ChickamaugaLake G

B

moOme

o  Truel$ location

[ HUC-12 Boundary

(4)

-t ‘..'. /o g » '
1; x' ": ’S.
y. w

-

Figure 12. Locations of the IS reference sites (truth data) used for calculating Zonal Statistics. Yellow
points represent individual polygon locations. The sites were randomly selected on a color orthoimagery
(2014 NAIP image) with 20 polygons/watershed. Each site covers an area of 15 m?.

The User’s accuracy reports the error of commission which is the amount of other classes that
have been classified incorrectly. The equation for the User’s accuracy is shown by Equation (6).

Cr
User’s Accuracy =

where Cr is the sum of the class that are incorrectly classified.

Cr+Cg

(6)

The proportion of pixels correctly classified (PCC) is calculated by dividing the total number of
correctly classified pixels by the total number of pixels classified. The equation for calculating overall

accuracy of a classification model is shown as Equation (7).

pcc = &
n

@)
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where n7 is the sum of correctly classified subjects and # is total subject sample size.

The Kappa-coefficient of agreement (k) describes the accuracy of the classification model compared
to random classification on the assumption that some of the pixels could have been classified correctly
by chance. The equation for calculating the Kappa-coefficient is shown by Equation (8).

Po — Pg

K =
1-Pg

®)

where Pp is the observed agreement of classification, Pr is the chance agreement of classification and 1
represents maximum agreement. To calculate Pp and P Equations (9) and (10) were used.

_ %

Po = = )
_ Ep

Pp = — (10)

where Op is the sum of the observed frequencies along the diagonal in the confusion matrix, Ep is the
sum of expected frequencies along the horizontal and # is the total number of subjects.

To generate the confusion matrix, 250 randomly stratified accuracy assessment points were
generated for each date. These points were validated using the relevant Landsat image. For 2016, the
NAIP imagery from 2014 was also used in this regard. The locations of the assessment points of the
confusion matrix generation can be seen in Figures 13 and 14 for 1986 and 2016, respectively.

Watershed i
Chatlancoga Creek
reck

© 1986 Accuracy Assessment Point
I Tennessee River

I HUC-12 Boundary

o llo Kilometers — Streams

Figure 13. Location of the accuracy assessment points for calculating Kappa Statistics for the 1986 IS.
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Watershed 1]
Chattanooga Creck A
Spring Creek

@ 2016 Accuracy Assessment Point
Il Tennessee River

Il HUC-12 Boundary

10 Kilometers — Streams

J

Figure 14. Location of the accuracy assessment points to calculate Kappa Statistics for the 2016 IS.
2.8. Water Resource Proximity Analysis

To understand the spatial relationship of the impervious surface (IS) growth regarding water
resources within the study site, IS change per HUC-12 watershed (and stream riparian areas) was
measured. The obtained IS datasets were clipped by each of the selected HUC-12 watershed boundaries
for quantification of the IS change in each HUC-12 watershed. IS area was calculated by multiplying
the total number of IS pixels with the area of a single pixel (30 m x 30 m). Finally, the obtained values
were converted to km?.

For the stream analyses, streams within the study site were obtained from the NHDplus dataset
and combined with auxiliary data from the City of Chattanooga Water Quality Program. The first
stream analysis was performed by creating buffer distances of 30 m, 60 m, and 90 m on both sides of
the selected streams. A map showing the stream buffers generated can be seen in Figure 15. After
the buffer polygons were generated, they were clipped by each of the HUC-12 watersheds to create
separate watershed riparian buffer boundaries for each watershed within the study site. The obtained
polygon features were then used to extract impervious surface (IS) pixels from both IS datasets. IS
area was then calculated in km? for each of the buffer features using the quantity of IS pixels and the
area coverage for a single pixel. The proximity analysis was conducted in ESRI’s ArcGIS Pro GIS
environment and the bar charts for reporting the results were generated using the Python scripting
language in the Jupyter Notebook environment.
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Figure 15. Stream Buffers generated to represent riparian zones.

2.9. Assessing Stream Risk

To assess the probability of stream impairment due to impervious surface (IS) change, a model
was developed to independently assess streams for their potential risks. The model evaluates stream
segments to provide further detail regarding sections of streams that may have higher risk due to new
or existing developments. More specifically, the model accounts for both the quantity of changes in IS
and the proximity of those changes to the stream segments evaluated. Percent imperviousness was
calculated for each buffered polygon and was incorporated with the model. The risk assessment was
conducted in ESRI’s ArcGIS Pro GIS environment. The bar charts were generated using the Python
scripting language in the Jupyter Notebook environment [145].

2.9.1. Stream Segmentation

The segmentation of streams was done by generating points at every 90 m along the stream with
points also placed at the ends of the stream and at the intersection of stream branches. These points
were then used to splice the original stream datasets and to act as end points for new, unique stream
segments. A total of 12,910 stream segments were generated within the study site. Some segments
were shorter than 90 m due to stream branching and/or small stream segment lengths.
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2.9.2. Riparian Zone Generation

Both IS datasets were converted from pixels to points, which represented the centers of the original
pixels. The obtained IS point datasets were used to perform a spatial analysis technique called ‘spatial
join’. Spatial join summarizes and joins the attributes of features that meet a pre-determined spatial
criterion, to be performed for points within 30 m, 60 m, and 90 m of each stream segment. This zone of
influence considers all land cover within these distances from any point along the segment, including
the start and end points. The attributes of each IS dataset were then summarized per segment of the
stream in the zone.

These results allowed for quantifying and locating the IS growth around each stream segment
within the study site. Quantification of the amount of IS development were normalized using the
number of points within each zone. The normalization by area generated a percent imperviousness
value per zone of influence surrounding each stream segment. By subtracting the 30 m zone results
from the 60 m zone results and the 60 m zone from the 90 m zone, the area with each segment was
partitioned into three evenly spaced, 30m wide riparian zones. This relationship between spatial
join buffer sizes and riparian zone creation can be seen in Table 3. Figure 16 demonstrates how each
segment considers the points within the zone of influence and how the percent imperviousness for
the riparian area is generated. The model is based on the understandings that riparian areas up to
150 m from the stream can have significant impacts of stream water quality [151]. The proximity of
the development is considered to have a stronger impact on the stream than the development which
occurred father away [152,153].

Assessing Stream Segments for Risk Due to Riparian Percent Imperviousness

| Segment ID | Total Number of Pixels | Number of Impervious Pixels | Percent Imperviousness (%) |

Within Buffer Within Buffer
1 42 30 71%
2 42 22 52%
3 41 10 24%

Landsat Pixel Classification Segment and Buffer ID "
e Pervious Surface — 1 w*(:)- e
e Impervious Surface 2 s
— 3 4} a0 100 200 Maters

Figure 16. Visual description of how stream segment percent imperviousness was calculated for the
stream risk assessment. Assigned color and number ID are used to aid in identifying segment-buffer
pairs. An example chart is given to describe the attributes calculated from the segment-buffer pair and
the resulting percent imperviousness.
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Table 3. Riparian buffer interval distance from streams and equivalent stream buffer variables.

Interval Distance Range from Stream (m)

0-30 30-60 60-90
Variable X1 X2 X3
Proximity Weight 3 2 1
Buffer Distance Range from Stream (m)
0-30 0-60 0-90
Variable X Y V4
Interval Equivalent X1 X1+ X3 X1+ Xy +X3

2.9.3. Relating IS Development Proximity and Quantity to Risk

A linear weighted model was then developed and applied to each segment to calculate the
probability of surface water impairment due to the distance and magnitude of percent imperviousness
in each riparian zone. This model can be seen in Equation (10).

IS proximity risk model = (W3 x X7) + (Wp X X3) 4+ (W7 X X3) (11)

where X;, X;, and X3, represent the percent imperviousness (normalized) within the three separate
30 m riparian zones, and Wy, W, and W3, represent the IS-stream influence weight. The values for
the IS-stream influence weight are shown as the subscript numeral. The weights were incorporated
arbitrarily using the values of 1 to 3, where the value of 3 represents the most influential, 2 represents
the moderately influential and 1 represents the least influential. These values reflect that usually the
influence of the growth of IS on the stream will have more influence from the nearby development.
The output of this model indicates the portions of the streams, within the study site, that have an
increased probability of being impaired due to the surrounding IS development.

3. Results and Analysis

3.1. Impervious Surface (IS) Mapping

According to the results of zonal statistics, the accuracy for the IS classification of 1986 was
88.3%. That is, 53 of the 60 reference polygons were correctly classified as IS. The accuracy for the
IS classification of 2016 was 90%. That is, 126 of the 140 reference polygons were correctly classified
as IS. The confusion matrix prepared for 1986 is shown in Table 4. The overall accuracy reported by
the confusion matrix for 1986 is 90.0%. The Kappa-coefficient calculated is 0.624, showing that the
model for 1986 classified 62.4% better than a random classification of the data. The confusion matrix
prepared for 2016 is shown in Table 5. The overall accuracy reported by the confusion matrix for 2016
is 84.8%. The Kappa-coefficient calculated is 0.545 showing that the model for 2016 performed 54.5%
better than a random classification. The values of Kappa statistic ranging from 0.41 to 0.6, and from
0.61 to 0.80 can be interpreted to represent moderate and substantial agreement for a classification,
respectively [154]. According to this interpretation, the accuracy of the classification model for 1986
dataset can be described as substantial. Similarly, on the other hand, the accuracy of the classification
model for 2016 dataset can be described as moderate.

Table 4. Confusion matrix for the 1986 Landsat 5 TM IS classification.

Classification Other Impervious Total User’s Accuracy Kappa (k)
Other 198 12 210 94.3%
Impervious 13 27 40 67.5%.
Total 211 39 250
Producer’s Accuracy 93.8% 69.2% 90.0%

Kappa (k) 0.624
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Table 5. Confusion matrix for the 2016 Landsat 8 OLI IS classification accuracy.

Classification Other Impervious Total User’s Accuracy Kappa (k)
Other 178 16 194 91.7%
Impervious 22 34 56 60.7%
Total 200 50 250
Producer’s Accuracy 89% 68% 84.8%
Kappa (k) 0.545

The total HUC-12 IS area calculations performed on this study’s model show that there has been a
significant growth in the study site as shown in Figure 17 and described in Table 6. The net growth
within the study site was 45.12 km?. This growth was not spatially equal in its distribution and
occurred heavily in the Lower South Chickamauga Creek watershed with an increase of 24.3 km? of
IS. The Lower South Chickamauga Creek watershed had the largest percent increase in impervious
development with a change from 24.2 to 48.5 km?, equaling slightly more than a 100% increase in
impervious area. All but the Chattanooga Creek watershed showed an increase in IS with development
being less than 10 km? in each area. Finally, the Chattanooga Creek watershed had a small decrease in
IS area, decreasing by 0.01 km?.

Impervious Surface Cover Area in 1986 and 2016

Year
. 1986
w2016

Chattanooga Creek 1

Spring Creek 1

Tennessee River - Nickajack Lake Upper A

Tennessee River Chickamauga Lake Lower 1

Lower South Chickamauga Creek 4

HUC-12 Watershed

North Chickamauga Creek Lower A

Blue Spring Creek -

30 40 50
Impervious Surface Area (sq.km.)

B
=3

10

(=X

Figure 17. The chart shows a comparison between the impervious surface (IS) areas mapped for
24 January 1986, and 26 November 2016 for the different HUC-12 watersheds in Hamilton County.

Table 6. Quantitative estimation of the IS areas mapped for the seven HUC-12 watersheds in Hamilton
County as observed on 24 January 1986 and 26 November 2016.

Impervious Surface (IS) Area in Square Kilometers and Percentage

HUC Watershed 1986 2016 Percent Increase

Chattanooga Creek 20.12 20.11 -0.1%

Spring Creek 7.42 14.24 91.9%

Tennessee River - Nickajack Lake Upper 37.93 40.31 6.3%
Tennessee River Chickamauga Lake Lower 9.26 13.91 50.2%
Lower South Chickamauga Creek 24.23 48.48 100.8%
North Chickamauga Creek lower 14.63 20.85 42.5%
Blue Spring Creek - Chickamauga Lake 6.73 7.54 12.0%

3.2. Water Resource Proximity Analysis

The impervious surface (IS) growth estimated shows that there has been significant IS growth near
selected streams in the study site. The results of this analysis can be seen in Figure 18 and summarized
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in Table 7. In 1986, IS cover accounted for 14.9% of the total area within 30 m of streams, increased
to 18.1% by 2016. Compared to the change within 90 m of streams, where in 1986, IS cover occupied
15.2%, increased to 20.9% by 2016. The net growth of IS within 90 m of streams was 9.96 km?. The
total increase of IS within the first 30 m was 2.04 km?2, with an increase of 3.43 km? between 30 m
and 60 m, and 4.49 km? between 60 m and 90 m of streams. The average change in IS area for the
30 m, 60 m and 90 m buffers in each HUC-12 watershed was 0.29, 0.49, and 0.64 km?, respectively. IS
development within 90 m of streams accounted for 22% of the total IS development detected. Changes
in IS extent within the stream riparian areas within the study site are shown in Figure 18, which shows
the coverage of IS in riparian areas in green and the added extent in 2016 in red.

Watershed ID
Chattanooga Creek

Spring Creek
Lower South Chickamauga Creek

A

B

C
Tennessee River Nickajack Lake Upper D
North Chickamauga Creek Lower E
Tennessee River-Chickamauga Lake Lower F
G

Blue Spring Creek-Chickamauga Lake

1986 impervious surfaces within
90 meters of streams

) 2016 impervious surfaces within
90 meters of streams

- Other land covers within go
meters of streams

. - Tennessee River
0 5 10 Kilometers
| | | | [ HUC-12 Boundary

Figure 18. Impervious surface (IS) growth, from 24 January 1986 to 26 November 2016, within 90 m of
stream segments.
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Table 7. IS growth within buffers of streams within the study site for 1986 and 2016.

Impervious Surface (IS) Area in Square Kilometers within Stream Riparian Zones

Zones 30m 60 m 90 m
Watershed ID 1986 2016 % Change 1986 2016 % Change 1986 2016 % Change
A 1.49 1.32 -11.5 3.18 3.07 -3.5 4.89 491 0.4
B 047  0.89 894 1.00 1.90 90.0 157 298 89.8
C 2.59 2.74 5.7 5.42 5.72 5.5 8.07 8.84 9.5
D 0.40 0.70 75 0.77 1.41 83.1 1.13 2.14 89.4
E 2.16 3.52 63 3.99 7.28 824 571 1134 98.6
F 1.54 1.52 -13 2.99 3.39 134 4.42 5.46 23.5
G 027  0.28 3.7 0.55 0.60 9.1 0.91 1.00 9.9

Watershed ID key: Chattanooga Creek (A), Spring Creek (B), Lower South Chickamauga Creek (C), Tennessee
River-Nickajack Lake Upper (D), North Chickamauga Creek Lower (E), Tennessee River-Chickamauga Lake Lower
(F), Blue Spring Creek-Chickamauga Lake (G).

The Lower North Chickamauga Creek watershed experienced a decrease of 0.024 km? of IS within
30 m of streams but reported large increases in IS for the 60 m and 90 m buffers. The Chattanooga
Creek watershed experienced a decrease in IS within 30 m and 60 m of streams but did experience
a small increase within 90 m. There was growth for the remaining five watersheds at each buffer
distance with similar trends found in the total HUC-12 IS area analysis. The Lower South Chickamauga
Creek watershed showed the largest growth of IS development in each of the three distance zones. It
experienced an increase of 1.35 km?2 within 30 m of streams, 3.29 km? within 60 m, and 5.63 km? within
90 m. This equated to being 66.3%, 60.1% and 56.4% of the total IS development regarding each buffer
distance. A portion of the Lower South Chickamauga Creek IS change in relation to stream buffers is
shown in Figure 19.

3.3. Riparian Development and Risk Analysis

3.3.1. Riparian Percent Imperviousness

For the 1986 dataset, the first two 30 m riparian interval zones on average were 15.2% covered
by IS with the third interval having an average of 15.5%. In the 2016 dataset, the average percent
impervious cover for all the 30 m riparian zones had increased to 17.9%, 20.1%, and 21.6% respectively,
with the amount of growth increasing for further riparian zones. Descriptive statistics for the riparian
development analysis can be seen in Table 8. A visual description of the distributions of percent
imperviousness for each zone in 1986 and 2016 can be seen below in Figure 20 with outliers being
visualized as plus symbols above the top whisker. The distributions also show that the two further
riparian zones show increases in the second and third quartiles compared to 1986. Maps showing the
percent imperviousness for each riparian zone can be found in Appendix A (Figures A1-A6).

Table 8. Descriptive statistics for the percent imperviousness within the first three separate 30 m
riparian zones for stream segments for 24 January 1986 and 26 November 2016.

Interval Year Mean Stalea.rd Quartile

Deviation  Min, 25% 50% 75% Max.

0 m-30 m
1986 15.2% 27.4% 0.0% 0.0% 0.0% 20.0% 100%
2016 17.9% 29.8% 0.0% 0.0% 0.0% 25.0% 100%

30 m-60 m
1986 15.2% 24.1% 0.0% 0.0% 0.0% 21.4% 100%
2016 20.1% 27.7% 0.0% 0.0% 7.1% 33.3% 100%

60 m-90 m
1986 15.5% 23.0% 0.0% 0.0% 5.2% 22.2% 100%

2016 21.6% 27.0% 0.0% 0.0% 10.5% 35.7% 100%
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Figure 19. Impervious surface (IS) growth, from 24 January 1986 (A) to 26 November 2016 (B), within

30, 60, and 90 m of stream segments in the Lower South Chickamauga Creek watershed.

Normalized Riparian Zone Percent Imperviousness

100% < . . . . .

Percent Impervious within Riparian Zone

r T 1
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Figure 20. Boxplot of the percent imperviousness values for each of the three 30 m, riparian zones.
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3.3.2. Stream Risk Assessment

The range in values for the stream impairment risk model was 0 through 6, allowing for different
levels of probable risk to be assigned. Table 9 shows the levels of risk related to the equivalent range in
risk model values. The basis for these levels originated from the amount of development that must
be present to achieve this score. For a stream segment to be assigned the lowest value (0.0) there
must be 0% imperviousness in all three riparian zones while the maximum value (6.0) requires 100%
imperviousness in all three riparian zones. Therefore, a score between 0 and 1 shows a stream segment
with little to no risk of impairment related to IS development. A score between 5 and 6 shows areas that
have significant impervious surfaces in their riparian zones, and thereby should have higher risk of
impairment related to IS development. Figures 21 and 22 show the possible risk of stream impairments
due to IS development for 1986 and 2016, respectively.

Watershed 1D
Chattanooga Creek A
Spring Creek B
Lower South Chickamauga Creek 5]
Tennessee River Mickajack Lake Lbper D
E
F
G

Morth Chickamauga Creek Lower
Tennessee River-Chickamauga Lake Lower
Blue Spring Creek-Chickamauga Lake

G

Risk of Stream
Impairment

— None
— Very Low
— Low
Medium
High
—— Very High
— Extreme

. Tennessee
River

0 5 10 20 Kilometers HUC-12
' . L ' L L ‘ L] Boundary

Figure 21. Risk of stream impairment model scores for 24 January 1986. Each segment is visualized by
their respective risk score.
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Table 9. Model scores for potential stream risk assessments due to riparian imperviousness.

Risk of Impairment Model Score
None 0<1
Very Low >1<2
Low >2<3
Medium >3 <4
High >4 <5
Very High >5<6
Extreme 6
Watershed 0

Chattanooga Creek

A
Spring Cresk B
Lower South Chickamauga Creek C
Tennessee River Nickajack Lake Ubper D
Meorth Chickamauga Crask Lower E
Tennessee River-Chickamauga Lake Lower F
Blue Spring Treek-Chickamauga Lake G

Risk of Stream
Impairment

— None
— Very Low
— Low
Medium
High
— Yery High
— Extreme

- Tennessee
River

0 5 10 20 Kilometers HUC-12
I : L ' ! L L | - Boundary

Figure 22. Risk of stream impairment model scores for 26 November 2016. Each segment is visualized
by their respective risk score.
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The average score per stream segment was 0.92 and 1.06 for 1986 and 2016, respectively. Statistics
describing the distribution of the model’s results are shown below in Table 10. For both dates, 75% of
the model scores were below 2, a classification of low risk of impairment. Table 11 gives the quantity
of segments with each level of risk, the total length of segments for each level of risk, and the change in
quantities between 1986 and 2016. The distributions of risk scores for both dates can be visualized in
boxplots shown in Figure 23.

Table 10. Statistics of potential risk assessment of stream segments due to riparian imperviousness.

Quartile
Year Mean Standard Deviation Min. 25% 50% 75% Max.
1986 0.92 1.45 0 0 0.15 1.22 6
2016 1.06 1.47 0 0 0.33 1.57 6

Table 11. Stream impairment risk model score counts and approximate total stream lengths per score
for each date. Counts represent the number of segments within that class.

Risk of Impairment 1986 (km) 2016 (km) Change (km)

None 8155 (634) 7168 (550) —987 (84)

Very Low 1883 (148) 2108 (169) +225 (21)

Low 1012 (77) 1278 (100) +266 (23)
Medium 737 (58) 812 (63) +75 (5)
High 506 (36) 593 (45) +87 (9)

Very High 374 (27) 505 (38) +131 (11)

Extreme 243 (17) 446 (32) +203 (15)

Stream Impairment Risk Model
6 1 . 1986
X016

Model Score

Figure 23. Boxplot shows the distribution of the 24 January 1986 and 26 November 2016 stream
impairment risk models’ results.

4. Discussions

This study aimed to: (1) estimate and map the net impervious surface (IS) change in and around
the City of Chattanooga, Tennessee, between 1986 and 2016 using satellite imagery from NASA’s
Landsat satellite missions, (2) perform a quantitative analysis of the obtained IS changes in relation
to local water resources, and (3) develop a risk assessment model to identify the potential areas of
concern for surface water quality in the study site due to the proximity and quantity of IS growth.
All three tasks were successfully completed in a reasonable sense. However, there were challenges
associated with each task that should be taken into consideration to evaluate the outcome of this study.
The important aspects of the obtained results for each task along with the limitations and challenges
encountered are discussed in the following sections.
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4.1. Impervious Surface (IS) Mapping

This study shows that there has been an overall increase in the net IS development between 1986
and 2016 within the study site. This amount of IS growth fits the substantial growth in population,
housing units, and economic activity in the area, as other research has found that increases in population
can be related to proportionally larger increases in IS [155,156]. The larger proportional increase in IS
area could be viewed as the result of residential and commercial development driven by the population
growth in the greater Chattanooga areas. The contribution of both population and economic growth to
IS growth are considered for the EPA’s IS Growth Model [157]. The results are further supported by
the EPA’s IS Growth Model since the three primary contributors to IS cover are buildings, roads, and
parking lots, listed in order of contribution [157].

4.2. Impervious Surface (IS) Classification Accuracy

The results of the confusion matrix accuracy assessments show that the classification of impervious
and non-impervious surfaces using the model developed in this study was reasonably successful. The
model’s classification accuracy for pervious surfaces for both dates are much higher than impervious
surfaces, which could result from the assignment of points using the random stratification method,
which placed a much larger number of accuracy assessment points for assessing the pervious surfaces.
The lower quantity of assessment points in impervious surfaces could, therefore, be more heavily
affected by outlying classification errors. Differences in the User’s Accuracy and Producer’s Accuracy
show the variation of different types of errors that the classification model experienced for each class.
Having a higher Producer’s Accuracy shows that the model was more likely to have more false
positives and less false negatives. On the other hand, a higher User’s Accuracy indicates the presence of
the opposites [154]. In this study, for IS classification, both dates showed a higher Producer’s Accuracy.
This result indicates that the model had a difficulty to differentiate between subject’s spectral responses
effectively and consistently and, as a result, classified some non-urban areas as urban IS. The main
source of confusion is believed to be derived from areas covered with open dry soils.

The zonal statistics accuracy assessments show that both dates had a similar performance in IS
classification. This indicates the ability of the model to correctly classify moderately sized urban areas
using both Landsat 5 TM and Landsat 8 OLI imagery.

4.3. Water Resource Proximity to Impervious Surfaces

The accuracy of the proximity of the impervious surface (IS) development to streams accuracy is
dependent on the accuracy of the detected IS and the positional accuracy of the stream data, since the
locations of the streams are assumed to be accurate due to the U.S. National Map accuracy standards
met by the NHDplus dataset [68]. Errors from the IS detection portion of this study are believed
to be the cause of the detected decrease in IS with 30 m of streams in the Chattanooga Creek and
North Chickamauga Creek Lower watersheds and within 60 m of streams for the Chattanooga Creek
watersheds. The results of the IS growth near streams also show that the growth is unequal across
HUC-12 watersheds, thereby signifying that some may have increased impairment. This study shows
that the Lower South Chickamauga watershed experienced the largest amount of urban growth between
1986 and 2016. This finding parallels with the finding that the Lower South Chickamauga watershed
includes the largest amount of overall IS growth. Having the largest portion of IS development
within the watershed and near the streams suggests that the Lower South Chickamauga watershed
surface water quality could have the most noticeable and significant impairment relative to the other
watersheds within the study site.
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Differences in percent imperviousness between the three riparian zones show an average increase
for all three zones with the increase being larger in the distant riparian zones. Shifting in the second and
the third quartile percent imperviousness in the 2016 dataset compared to the 1986 dataset supported
the conclusion that in 2016, stream riparian zones had experienced increases in IS development. The
largest increases in the farthest zone suggests that the growth has begun to develop closer to streams.
Increases in anthropogenic development and activity closer to streams increases the risk of potential
impairment of stream surface water quality and riparian habitat [152]. Large portions of stream
riparian zones are still present and not heavily disturbed within the study site. However, the findings
of this research clearly shows the need for local policy action for riparian zone protection that could
help mitigate the potential increase in stream impairment.

4.4. Impairment Risk Due to 1S Development

The potential risk of stream impairment increased from 1986 to 2016. The increase in the total
number of stream segments at risk being impaired suggested that stream surface water quality health
in 2016 was at a higher risk than it was in 1986. Segments with extreme risk of impairment experienced
the third largest increase between the two datasets. The increase in average risk can be attributed to the
increase of risk for 7.64% of stream segments, where 987 stream segments have experienced increases in
risk. This is coupled with the 27.75% of segments that have maintained risk of impairment since 1986.
These findings show that there is a moderate proportion of streams within the study site that could
have significant impairment due to long-term exposure or rapid introduction to urban development.

The risk model developed in this research showed that the locations of the potentially impaired
stream segments due to impervious surface development are within the immediate riparian areas.

4.5. Limitations and Challenges

The accuracy assessment results for both datasets are at an acceptable level with regards to the
effectiveness of the data and environmental conditions at the time of data acquisition. Moderate
scale resolution sensors, such as the Landsat Thematic Mapper (TM) and Operational Land Imager
(OLI), have been utilized for mapping impervious surfaces (IS), however, a consensus has been found
that with data of this scale, it is not an effective ability to detect smaller areas of IS [158]. This study
found that pixels determined as being IS are those where the majority to entirety of the land cover
is impervious.

Environmental factors at the time of image acquisition are believed to have been an influence
for both IS dataset generation. Water, shadow, and dry soil have been found to be difficult for many
classification models due to the spectral confusion [159]. Shadows, which are present in both images,
can be caused by the angle of the sun and/or sensor. The effect of shadowed areas was accounted for in
the model and is not believed to have had any significant effect on the results of the study. For the 2016
image, a strong drought affected the study site and produced an increased amount of dry soils, river
recession, and wildfires [160]. For the 1986 image, several clear-cut areas were seen in the study site
exposing large areas of dry soil. The evaluation of the obtained IS data shows the presence of some
dry and compacted soil, which were classified as IS. This probably stems from the conflicting spectral
response of dry soil and IS (in some cases). However, it is believed that detection of dry soils as IS, in
some cases, did not contribute to a major portion of detected areas [161,162].

The effects of noise and errors from the data, model, and environmental systems are also believed
to have an influence on the results. The estimated area of IS for both dates is believed to be conservative,
even with the detection of dry soil as it is inferred through the increase in housing units and population
in the study site. There has been a net growth of suburban areas between 1986 and 2016, much of which
is believed to have not been detected by this model based on visual inspection of the true color images.
Suburban land cover can include IS such as roofs, drive-ways, and sidewalks. Although attempts were
made to detect IS in suburban areas with the aid of true color images, it was not possible to accurately
detect them due to sensor’s coarser spatial resolution and erroneous detection of dry soil.
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5. Conclusions

This study successfully utilized remote sensing and GIS technologies to estimate and map historical
and current impervious surfaces (IS) of the greater Chattanooga area to determine its net spatial
growth across seven HUC-12 watersheds and their relationship to the streams. IS cover was used
to represent areas of anthropogenic development, specifically urban and suburban areas. Utilizing
the multispectral satellite imagery acquired by the USGS Landsat 5 and 8 programs, IS detection was
conducted using the Normalized Difference Vegetation Index (NDVI) and density slicing technique.
This study found that there had been a net increase in IS within the study site with significant growth
occurring near many of the streams. The IS change estimation showed that the overall growth was not
equally distributed. Most of the IS development occurred in the Lower South Chickamauga Creek
watershed. It was found that dry soil from transitioning land cover or drought caused erroneous
detection of IS in some cases. Areas of suburban development are not believed to be fully mapped due
to the spectral dominance of the pervious surfaces such as tree cover.

The results of the stream - IS proximity analysis show that there is an overall increase in percent
imperviousness surface growth in the first three 30 m stream riparian zones in the study site. The
largest increase in percent imperviousness of stream riparian zone occurred between 60 m to 90 m
from streams, indicating that urban growth is beginning to encroach on critical, immediate riparian
zones. The model for potential risk of stream surface water quality impairment reflects that there is
an increase in risk for some portions of the streams due to riparian IS development. The HUC-12
watersheds in the study site directly feed into the Tennessee River, thereby increasing the possible
impact of the land use and cover change for areas downstream of the study site. This study also found
that decreases in pervious surfaces in stream riparian zones signaled a decrease in buffer capacity for
filtering impaired surface and ground water. IS development detected within the watersheds could
be the sources of potential new or continued surface water quality degradation. Finally, this study
can conclude that between 1986 and 2016, there was an increase of at least 45.12 km? of IS cover in
the seven HUC-12 watersheds within the greater Chattanooga, Tennessee, area and 9.96 km? of this
growth were within close proximity of the streams, which should cause concerns for the local stream
and river surface water quality.
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Appendix A

Percent impervious cover within
30 meters of streams
in 1986
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Figure Al. Percent impervious cover within 30 m of streams in 1986. Streams are visualized in segments
generated for the stream impairment risk model. Percent imperviousness was calculated by dividing
the number of classified impervious Landsat pixels by the total number of Landsat pixels within 30 m
of each stream segment.
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Percent impervious cover between
30 and 60 meters of streams
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Figure A2. Percent impervious cover between 30 and 60 m of streams in 1986. Streams are visualized
in segments generated for the stream impairment risk model. Percent imperviousness was calculated
by dividing the number of classified impervious Landsat pixels by the total number of Landsat pixels
between 30 and 60 m of each stream segment.
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Percent impervious cover between
60 and 90 meters from streams
in 1986
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Figure A3. Percent impervious cover between 60 and 90 m of streams in 1986. Streams are visualized
in segments generated for the stream impairment risk model. Percent imperviousness was calculated
by dividing the number of classified impervious Landsat pixels by the total number of Landsat pixels
between 60 and 90 m of each stream segment.
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Percent impervious cover within
30 meters of streams
in 2016
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Figure A4. Percent impervious cover within 30 m of streams in 2016. Streams are visualized in segments
generated for the stream impairment risk model. Percent imperviousness was calculated by dividing
the number of classified impervious Landsat pixels by the total number of Landsat pixels within 30 m
of each stream segment.
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Percent impervious cover between
30 and 60 meters of streams
in 2016
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Figure A5. Percent impervious cover between 30 and 60 m of streams in 2016. Streams are visualized
in segments generated for the stream impairment risk model. Percent imperviousness was calculated
by dividing the number of classified impervious Landsat pixels by the total number of Landsat pixels
between 30 and 60 m of each stream segment.
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Percent impervious cover between
60 and 90 meters of streams
in 2016
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Figure A6. Percent impervious cover between 60 and 90 m of streams in 2016. Streams are visualized
in segments generated for the stream impairment risk model. Percent imperviousness was calculated
by dividing the number of classified impervious Landsat pixels by the total number of Landsat pixels
between 60 and 90 m of each stream segment.
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