
sustainability

Article

Hierarchical System Decomposition Using Genetic
Algorithm for Future Sustainable Computing

Jun-Ho Huh 1, Jimin Hwa 2 and Yeong-Seok Seo 3,*
1 Department of Data Informatics, Korea Maritime and Ocean University, Busan 49112, Korea;

72networks@kmou.ac.kr
2 Moderian AI, Incheon 21985, Korea; jmhwa@se.kaist.ac.kr
3 Department of Computer Engineering, Yeungnam University, Gyeongsan 38541, Korea
* Correspondence: ysseo@yu.ac.kr; Tel.: +82-53-810-3534

Received: 31 January 2020; Accepted: 7 March 2020; Published: 11 March 2020
����������
�������

Abstract: A Hierarchical Subsystem Decomposition (HSD) is of great help in understanding large-scale
software systems from the software architecture level. However, due to the lack of software architecture
management, HSD documentations are often outdated, or they disappear in the course of repeated
changes of a software system. Thus, in this paper, we propose a new approach for recovering
HSD according to the intended design criteria based on a genetic algorithm to find an optimal
solution. Experiments are performed to evaluate the proposed approach using two open source
software systems with the 14 fitness functions of the genetic algorithm (GA). The HSDs recovered
by our approach have different structural characteristics according to objectives. In the analysis on
our GA operators, crossover contributes to a relatively large improvement in the early phase of a
search. Mutation renders small-scale improvement in the whole search. Our GA is compared with a
Hill-Climbing algorithm (HC) implemented by our GA operators. Although it is still in the primitive
stage, our GA leads to higher-quality HSDs than HC. The experimental results indicate that the
proposed approach delivers better performance than the existing approach.

Keywords: software; software maintenance; subsystem decomposition; architecture; genetic
algorithm; artificial intelligence; restructuring

1. Introduction

Software tends to improve continuously by making changes repeatedly to meet ever-changing
requirements and business conditions rapidly. Although these changes positively contribute to
software maintenance or evolution, they can also cause software erosions that constantly decay the
internal structure of a software system, violating the software architecture principles, dropping system
performance, or shortening the useful lifetime of the system. Such problems occur repeatedly while
performing a software project and are constantly dealt with until the end of its lifetime to meet rapidly
changing requirements. Thus, a method that can easily understand and maintain software architecture
to avoid software erosions is in demand all the time.

Software architecture provides a high-level view of a software system. The software architecture
of a system makes it easy for developers to understand the system during its development and
maintenance [1–3]. As one of the most important and frequently used views of software architecture [1,4],
the module view plays a significant role in understanding a system, especially its static structure.
In general, it is built by breaking down the system in terms of the functionality of the system into
subfunctionalities of subsystems until the latter are small enough to manage and understand [3]. Thus,
naturally, the module view is presented as a Hierarchical Subsystem Decomposition (HSD) [4–6]. The
hierarchical representation is especially useful for understanding large-scale software systems [5,7].
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Despite having great advantage in understanding a software system, HSD is difficult to manage
well enough. For example, a modification of a system could not be properly reflected to the HSD
architecture due to lack of time and resources. This causes inconsistency and inaccuracy between the
HSD architecture and the actual architecture of the software system. Even if the HSD architecture is
properly updated according to the modification of a system, it could gradually deteriorate during the
continuous modification. These cases fail to lead to understanding of a system in a detailed level by
software developers; hence the need to recover HSD from software artifacts such as source codes or
design specifications.

The recovery aims to increase understanding of a software systems structure by finding an HSD
with the quality properties required by experts. The “objectives” of recovery may be domain-specific
or system-specific. They may also vary according to the purpose or circumstances of recovery. For
example, when a legacy system may have its source code only, the quality structural properties of an
HSD could be the objectives of recovery. If the system has a well-managed change history, the history
could provide an objective to minimize the change impact among subsystems.

There are several approaches that can be applied to recover an HSD of a system [5,8–10]. The
approaches represent the given objectives for their criteria. Likewise, their recovery techniques recover
a quality HSD in terms of the criteria. Nonetheless, the existing approaches have a limitation in
representing the objectives of recovery for their criteria. The approaches use specific criteria embedded
in their techniques. That makes the approaches able to adopt only specific kinds as well as a limited
number of objectives that are compatible with their criteria. Even if they are compatible, it often means
significant work for the users of the approaches to represent the objectives for the specific criteria,
especially when the objectives are many and complex. Thus, a minor change of objectives or the
introduction of new objectives could impose a heavy burden on the users. As such, a new approach
that is flexible in adapting objectives to its criteria is needed.

In this paper, we propose an approach for recovering the HSD of a software system that is
based on a genetic algorithm that has been applied to find optimal solutions in many large and
complex problems [11–16]. In order to apply the genetic algorithm for recovering HSD, we propose a
chromosome expression to present HSD architecture and also design crossover and mutation operators
to create new HSDs with good traits from the HSDs in a population. In our experiment, we validate
the proposed approach based on two open source software systems using the fitness functions with
various weighting values to evaluate the HSD quality. The experimental results are compared and
analyzed with the existing Hill-Climbing algorithm [12].

A broad spectrum of programs, algorithms, policies [17,18], and processing methods associated
with information technology that helps to create a better world for mankind are essential parts in
Future Sustainability Computing (FSC), which aims to deal with the potential issues concerning
the sustainability of current computing techniques as well as information technologies and their
environments [19–21]. To better understand and provide a possible solution for FSC, this study discusses
hierarchical system decomposition utilizing a genetic algorithm while considering various types of
information processing technologies and computational frameworks used for the cloud/cluster/mobile
computing including optimization, machine learning, prediction, and meta-heuristics in addition to
decision support systems and system security and stability, etc.

The rest of this paper is organized as follows: Section 2 introduces a general genetic algorithm used
in this work and several metrics used for defining the fitness functions of a genetic algorithm in this
study; Section 3 proposes an approach to recovering HSD using a genetic algorithm; Section 4 presents
the evaluation of our approach; Section 5 describes the existing studies for recovering subsystem
decomposition; Section 6 discusses threats to validity; and Section 7 concludes this paper with a
summary as well as future research directions.
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2. GA Metrics and Notations for Hierarchical System Decomposition

2.1. Genetic Algorithm (GA)

As one of most well-known global search algorithms [22,23], genetic algorithm (GA) imitates the
survival and reproduction of the fittest individuals in nature. As shown in Figure 1, a typical existing
GA was rewritten to be able to take a new form that is appropriate for the HSD. In this GA, there are
four parameters: the number of chromosomes in the population (npop); the probability of crossover
(pc), the probability of mutation (pm), and the number of iterations for termination (nIter).

Figure 1. Pseudocode of the genetic algorithm (GA) used in this study.

A search by the GA starts from the initial population consisting of npop chromosomes created by
an initialization algorithm. The search repeats nIter iterations of reproduction of the fittest individuals.
In each iteration, a new population is created from the current population. To create a new population,
new chromosomes are created by stochastically applying crossover and mutation to them according to
pc and pm. Among two old and two new chromosomes, two fittest chromosomes are selected for the
new population. After a new population has been selected, the algorithm runs repeatedly until nIterc

eventually becomes smaller than nItert to find the optimized chromosome.

2.2. Metrics for Fitness Functions

Coupling, cohesion, and complexity are three commonly used structural properties to assess the
quality of modules (e.g., functions, classes, and subsystems) and software systems [24–28]. In this
study, we also use them to evaluate subsystems and define fitness functions for evaluating HSDs.
Unfortunately, there is no measure that can evaluate HSDs as they are. Nonetheless, there are several
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complexity, cohesion, and complexity measures that can be adopted for evaluating subsystems in the
existing literature. We adopt the measures and define quality measures for HSDs.

In this section, we define the notations used for describing the measures used in this paper. We
then describe the complexity, cohesion, and coupling measures used for defining the fitness functions
of GA.

2.2.1. Proposed Notation for HSD

Software system S consists of basic entities and dependencies between them, S = {BE, D}. BE is a
set of basic entities of S. Edge d∈D represents the dependency of basic entities be1 and be2, (be1, be2)∈D
through the inheritances and references between them. In Figure 2, the system has nine basic entities
and dependencies between them. For example, basic entity e2 has a dependency on basic entity e1 by
inheriting e1 or referencing the data or functions of e1.

Figure 2. Example of Hierarchical Subsystem Decomposition (HSD).

The HSD of a system, S, has a hierarchical structure of {SB, R}. SB is a set of subsystems in S,
including root(S) as the root of the HSD. In addition, sb in SB has a set of basic entities be(sb)⊂BE. In
other words, the basic entities in be(sb) are grouped in sb, and they have grouping relationships with each
other at the level of sb. In Figure 2, there are five subsystems, SB = R, S1, S2, S3, S4, and root(S) = R. Each
subsystem contains several basic entities. For example, S1 and S2 have be(S1) = e3, e4, e5, e6, e7 and
be(S2) = e3, e4. The basic entities in be(S1) have grouping relationships at the level of S1, and those in
be(S2) have grouping relationships at the level of S2.

The relationship r∈R denotes that a subsystem is part of another subsystem called part-of relationships
between subsystems. In the relationship, subsystem sb can have its parent subsystem, prt(sb)∈SB. In
other words, there are part-of relationships between sb ∈SB and its children cld(sb) ⊂ SB by the edges of
R between them. So, be(cld(sb)) ⊂ be(sb). In Figure 2, cld(S1) = {S2, S3}, prt(S2) = S1, and be(S2) ⊂ be(S1).
Not only be(S2) ⊂ be(S1), but also S2 ⊂ R. Thus, a descendant of subsystem sb ∈ SB, dsc(sb), is part of sb.
On the other hand, subsystem sb has ancestors ast(sb). For example, ast(S3) = {S1, R}.

According to part-of relationships, e∈BE belongs to one or more than one subsystem. So, basic
entities can be grouped in more than one subsystem, with the part-of relationships representing the
level of a subsystem wherein its basic entities have grouping relationships. For example, in Figure 2, e3
and e4 are grouped together in S2. e3 and e5 are grouped in the higher level, S1. Therefore, e3 and e4
have a more homogeneous or closer grouping relationship than that of e3 and e5.

In be(sb), there are several basic entities that do not belong to cld(sb), and the basic entities belong
to sb directly, bedir(sb) ⊂ be(sb). In Figure 2, bedir(R) = {e1, e2}.

2.2.2. Complexity

A complex subsystem makes it hard for a developer to understand the subsystem. A subsystem
consists of basic entities and its child subsystems; one should understand them to understand the
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subsystem. If there are too many constituents, the subsystem might be hard to understand. As shown
in Equation (1), the complexity of a given subsystem sb, Cpx(sb), is defined by the number of its
constituents, which is one of the most frequently used concepts of complexity measures [24,25].

0 ≤ Cpx(sb) =
(|sb| −

∑
sb1∈cld(sb)|sb1|) +

∣∣∣cld(sb)
∣∣∣∑

sb2∈SB|sb2|
≤ 1 (1)

The larger the value of Cpx(sb), the more basic entities and child subsystems there are. So, a high
value of Cpx(sb) has a negative effect on an HSD.

The complexity of a given HSD, S, is computed by taking the maximum value among the
complexity values of all subsystems, as presented in Equation (2).

0 < Cpx(S) = max
sb∈SB

{
Cpx(sb)

}
(2)

If the complexity of an HSD is too high, there is at least a very large subsystem. Likewise, the
HSD should be restructured by breaking down large subsystems or moving some of its basic entities
and child subsystems to proper locations.

2.2.3. Cohesion

A subsystem needs to consist of a cohesive set of basic entities. To measure the cohesiveness, we
use a similarity measure that is used in hierarchical clustering [5,29,30]. The similarities between basic
entities are measured by the similarities of their feature vectors. The features of a vector for a basic
entity represent other basic entities on which the basic entity has dependencies by inheritance and
reference relationships. Thus, the vectors of two basic entities are similar, and they are interacting with
similar basic entities. That makes them cohesive.

In this work, we use binary vectors representing whether a basic entity has dependencies of
features or not. To measure the similarity between two vectors, Jaccard coefficient [5] is used. For the
given basic entities be1 and be2, as shown in Equation (3), the Jaccard coefficient Jcr between them is
given by:

0 ≤ Jcr(be1, be2) =
1/2·a

1
2 ·a + b + c

≤ 1 (3)

The value of a is the sum of the features present in both. The values of b and c represent the sum
of features present in just one of two vectors. The larger the value of the Jaccard coefficient, the more
similar the two vectors. Thus, Jcr(be1, be2) = 0 means that there are no features represented in both
vectors. In addition, when they have the same vectors, it has 1.

As provided in Equation (4), the cohesion of subsystem sb∈SB is computed by averaging the
similarity between the basic entities in the boundary of the subsystem.

0 ≤ Coh(sb) =
1

|sb|(|sb| − 1)


∑

be1∈sb

∑
(be2∈sb)∧(be1,be2)

Jcr(be1, be2)

 ≤ 1 (4)

A large value of Coh(sb) means that the target subsystem consists of similar basic entities, and that
it is cohesive.

There are two versions of cohesion for HSD S, as shown in Equations (5) and (6). The first cohesion
is given by the sum of cohesion of all subsystems in S.

0 ≤ Coh1(S) =
∑

sb∈SB

Coh(sb) (5)
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The second version is given by:

0 ≤ Coh2(S) =
∑
sb∈S

ρ(sb)·Coh(sb) (6)

ρ is between 0 and 1. It can be used to give weights to cohesion values of subsystems. In our
study, as presented in Equation (7), ρ is given by:

0 ≤ ρ(sb) = 0.5(1−x)
≤ 0.5

x =

{
1, if sb ∈ root(S)∪ cld(root(S))

ρ(par(sb))·Coh(par(sb)), Otherwise
(7)

ρ makes the cohesion of a higher-level subsystem in the hierarchy more important than that in a
lower level. It also has a recursive form to make the cohesion of a subsystem affected by its ancestors.
So, even if a subsystem has high cohesion without ρ, the low cohesion values of its ancestors make it
lose up to half of its cohesion by ρ.

2.2.4. Coupling

A subsystem of a system that is loosely coupled with other parts of the system is more manageable
and understandable according to the SE principles [31]. In many previous studies [24–28], the coupling
of a module is measured by counting the number of modules interacting with it. We define the coupling
measure for a subsystem in a similar point of view.

The coupling of subsystem sb, Cpl(sb), is caused by the external dependencies of its basic entities
on other basic entities or subsystems “outside”. In our coupling measure, the boundary of the outside
of sb is defined as the boundary of prt(sb). Thus, as shown in Equation (8), the basic entities and
subsystem counted as the targets of external dependencies of sb are given by:

Exbe(sb) = bedir(prt(sb))
Exsb(sb) =

{
cld(prt(sb)) − {sb}

} (8)

This is to reflect the “top–down decomposition” of an HSD. A hierarchy of subsystems is built by
decomposing a system into subsystems and the subsystems into sub-subsystems. Thus, a subsystem
that is loosely coupled with other subsystems should be decomposed to make its offspring loosely
coupled with each other, and the decomposition need not concern the coupling of the outside.

Cpl(sb) is computed by the ratio of the number of external dependencies on basic entities and
subsystems in the outside of sb, ExDepbe(sb) and ExDepsb(sb), to the number of dependencies of basic
entities in sb on the basic entities in prt(sb), Dep(sb), ExDepbe(sb), ExDepsb(sb), and Dep(sb) are given by
Equation (9):

ExDepbe(sb) =
{
be1 ∈ Exbe(sb)

∣∣∣be2 ∈ be(sb)[(be2, be1) ∈ D]
}

ExDepsb(sb) =
{
sbc ∈ Exsb(sb)

∣∣∣∃be1 ∈ sb, be2 ∈ sbc[(be1, be2) ∈ D]
}

Dep(sb) =
{
(be1, be2) ∈ D

∣∣∣be1 ∈ be(sb), be2 ∈ be(prt(sb))[be1 , be2]
} (9)

As provided in Equation (10), Cpl(sb) is given by:

0 ≤ Cpl(sb) =

∣∣∣ExDepbe(sb)
∣∣∣+ ∣∣∣ExDepsb(sb)

∣∣∣∣∣∣Dep(sb)
∣∣∣ ≤ 1 (10)
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A low value of Cpl(sb) means that sb is loosely coupled with other parts and is decomposed
well in view of coupling. As shown in Equation (11), the coupling of a given HSD S is computed by
aggregating the coupling values of the subsystems in S.

0 ≤ Cpl(S) =
∑

sb∈SB

ρ(sb)·Cpl(sb) (11)

Cpl(S) uses the same weighting schemes used in Coh2(S). In contrast to Coh2(S), low Cpl(S) means
high quality of HSD S.

In this way, a new concept of the metrics for individual metrics (i.e., complexity, cohesion, and
coupling) essential for the GA that will be applied to HSD has been presented clearly by mathematically
redefining them in terms of software architecture, allowing automated HSD. The actual form of
utilization of such concept and corresponding notations to perform HSD is described in detail in the
following section.

3. Recovering the Hierarchical Subsystem Decomposition Using GA

To achieve automated HSD recovery that is flexible to the criteria, we propose an approach to
recovering HSD using GA. In Section 3.1, we describe how to represent and initialize a chromosome.
In Section 3.2, we propose the GA operators (crossover and mutation) with fitness functions used in
this study.

3.1. Chromosome Representation and Initialization Algorithm

We define a representation of a chromosome that encodes the characteristics of an HSD. The two
most important characteristics of HSD are grouping relationships between basic entities and part-of
relationships between subsystems. It is because a good subsystem is designed to have basic entities and
subsystems that are homogeneous to each other and heterogeneous with the outside of the subsystem
to achieve modularity [31,32].

We define chromosome chr as a set of supergenes sgenes(chr), which are divided into two sets:
basic entities and subsystem genes sgenesbe(chr) and sgenessb(chr) ⊂ sgenes(chr). There are a number
of (|be(sb)| +(|SB|-1)) supergenes. So, a supergene has its corresponding basic entity or subsystem
corrhsd(sg). Figure 3 shows an example of our chromosome representation of an HSD in Figure 2. There
are (9 + (5 – 1)) supergenes for 9 basic entities and 4 subsystems except for the root of an HSD, R, in
Figure 2.

Figure 3. Example of a chromosome.

Supergene sg1 ∈ igenes(sg) has a set of internal genes igenes(sg). Each ig ∈ igenes(sg) represents the
supergene sg2 ∈sgenes(chr) of a subsystem where the basic entity or subsystem corrhsd(sg1) belongs.
This can be denoted by corrig(sg1, sg2) = ig. Conversely, ig has a corresponding supergene sg2, which is
denoted by corrsg(ig) = sg2. So, there is a subsystem sb where corrhsd(ig) = corrhsd(sg2) = sb. In igenes(sg),
the internal genes are presented in “ascending” order. The first ig ∈ igenes(sg), igenes(sg,1), represents the
subsystem containing corrhsd(sg) directly. The last ig ∈ igenes(sg), |igenes(sg)|), represents the subsystem
containing the root of an HSD directly.

In Figure 3, supergene e5ig has two internal genes S1ig and S3ig, which have the corresponding
supergenes corrsg(S1ig) = S1sg and corrsg(S1ig) = S3sg. In Figure 2, subsystems corrhsd(S1sg) = S1 and
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corrhsd(S3sg) = S3 contain basic entity corrhsd(e5ig) = e5. The first element of igenes(e5), igenes(sg, 1),
denotes S3, which contains e5 directly; the last internal element, igenes(sg, 2), denotes S1, which belongs
to the root of the given HSD in Figure 2.

We propose an initialization algorithm that aims to generate a chromosome of an HSD “arbitrarily.”
The initialization algorithm consists of two phases. In the first phase, it creates subsystems having only
basic entities. It is accomplished by selecting an arbitrary number of basic entities and allocating them
in a new subsystem. In the second phase, part-of relationships between the subsystems are assigned
until only one subsystem without its parent is left. The subsystem becomes the root of a created HSD
by the initialization algorithm.

With this initial algorithm, a chromosome for HSD is generated, and the calculation through
crossover and mutation will be performed to find the optimal decomposition structure with the fitness
function. To achieve this, the crossover, mutation, and fitness functions have to be redefined to perform
HSD. The definitions and corresponding execution processes are described in the following section.

3.2. GA Operators

3.2.1. Crossover

The method with its execution flow of crossover is proposed based on the concept and notations
defined for HSD in Section 2, representing in a pseudocode form to present them clearly.

A crossover operator for HSD recovery should be able to create new chromosomes that inherit
good grouping and part-of relationships of their parents. Thus, the crossover in our approach aims to
remove the chromosome subsystems causing poor grouping and part-of relationships and rebuild it
based on the good groupings of another chromosome.

Figure 4 presents our crossover algorithm. It consists of two sub-algorithms: selection and
regrouping. First, selection is applied to two given chromosomes of a system for crossover. For each
chromosome, several supergenes of subsystems are selected arbitrarily and removed to leave parts of it.
Figure 5 presents the pseudocode of the selection algorithm. An example of selection for a chromosome
is shown in Figure 6, and subsystem S1 is selected for removal from the HSD.

Figure 4. Pseudocode of the crossover operator.
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Figure 5. Pseudocode of the selection algorithm.

Figure 6. Example of the selection.

Next, regrouping regroups each chromosome’s basic entities that lose their grouping and part-of
relationships based on those of the other chromosomes. After the regrouping of two given chromosomes,
two new chromosomes inheriting the grouping and part-of relationships of their parents are created.
Figure 7 shows the pseudocode of the grouping algorithm. Figures 8 and 9 present an example of
regrouping in the HSD and chromosome versions. The example shows the status of the target HSDs and
chromosomes at three points of Figure 7. The first point shows the status of two given chromosomes
before regrouping progresses. At point 2, part of a chromosome is created by removing the basic
entities of a dirty subsystem. In addition, point 3 shows the result of regrouping after replacing the
basic entities of a dirty subsystem of a chromosome with part of the other chromosome created at
point 2.
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Figure 7. Pseudocode of the regrouping algorithm.

Figure 8. Example of regrouping: chromosome version.
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Figure 9. Example of regrouping: HSD version.

3.2.2. Mutation

The method with its execution flow of mutation is proposed based on the concept and notations
defined for HSD in Section 2, which is represented in a figure to present them clearly.

We define three mutation operators that cause small change to HSDs: (1) moving an entity (Mae),
(2) moving a subsystem (Mas), and (3) modularizing (Mdz). The Mae mutation operator moves basic
entities from one subsystem into another subsystem. The Mas mutation operator moves a subsystem
into another subsystem. The Mdz mutation operator creates a new child of a subsystem by grouping
basic entities belonging to the subsystem directly. Figure 10 shows examples of the mutation operators.

Figure 10. Examples of mutation operators.
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When a mutation operator is applied to an HSD during search by the GA in our approach,
an operator is selected stochastically based on the number of feasible cases.

3.2.3. Fitness Function

The fitness function is proposed by using the notations for cohesion and coupling for HSD
introduced in Section 2.

We define two fitness functions for experimental purposes: FF1 and FF2. They are on the structural
properties, and their metrics are introduced in Section 2.2. The first fitness function, FF1, is given by
Equation (12):

FF1(S) = Coh1(S) (12)

The higher FF1 is, the higher the quality of a given HSD. We use FF1, which is designed to produce
HSDs having similar structures with dendrograms produced by hierarchical clustering algorithms
for architecture recovery [5,8]. According to the formula of Coh1, FF1 is high when an HSD has
many subsystems that are highly cohesive. Since a subsystem has a small number of basic entities,
it commonly becomes highly cohesive.

As shown in Equation (13), FF2 is the aggregation of three structural properties: complexity,
cohesion, and coupling.

FF2(S, w1, w2, w3) = w1·Cpx(S) + w2·Coh2(S) + w3·Cpl(S) (13)

This fitness function is designed to search HSDs with low complexity, high cohesion, and low
coupling. A high value of FF2 means that HSD has high quality. The weight variables w1, w2, and w3

can be used to emphasize some properties among them or balance them. The change of weight values
would change the objectives of a search. Therefore, a recovered HSD would have different structural
characteristics according to the weight values.

If complexity is emphasized more than the others, the size of a subsystem would be reduced by
decreasing the number of its basic entities by moving some basic entities to other subsystems or creating
new subsystems consisting of such. If there are too many offspring in a subsystem, the offspring would
also be reduced.

More weight on cohesion would lead to a rich hierarchy, similar to an HSD by FF1. Unlike Coh1

of FF1, Coh2 with ρ gives more weight to higher-level subsystems of a hierarchy. That makes FF2

with more weight on cohesion prefer wide hierarchies than deep ones because the Coh2 of low-level
subsystems is highly likely to be reduced by ρ.

If coupling is emphasized, an HSD would have a relatively small number of subsystems. This is
because a large subsystem can encapsulate a large number of interactions between basic entities. On
the other hand, the number of offspring of a subsystem is reduced because a large number of offspring
can cause a large number of interactions between them as well as high coupling. Cpl with ρ prefers
deep hierarchies for the same reason as the Coh2 mentioned above.

4. Evaluation

In this section, we evaluate our approach to show how well it performs in finding an HSD intended
by the given criteria with limited cost. First, we introduce our tool, HireGA (Hierarchical subsystem
decomposition recovery by GA), which implements our approach. Then, we present the overview of the
evaluation process, and the result of evaluation is finally described.

4.1. HireGA Tool

HireGA supports our approach to recovering HSDs of a system written in Java. Figure 11 depicts
the overview of HireGA. The tool takes the source code of a subject system and a configuration as input.
The configuration consists of fitness function and parameters related to a GA setting. The parameters
consist of npop, pc, pm, and nIter, which are introduced in Section 2.1.
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Figure 11. Overview of HireGA.

HireGA consists of four parts: static analyzer, GA controller, data collector, and decoder. The static
analyzer conducts static analysis on the source code to figure out the basic entities and dependencies
among them. The GA controller creates the initial population based on the results of analysis by
the static analyzer and explores the search space in order to find an optimal HSD. The decoder
decodes the chromosome detected by the GA controller into an HSD. The given fitness function
evaluates chromosomes (i.e., HSDs) during the search. The data collector outputs an operational
profile on crossover and mutation describing how much and how frequently they give improvement
to chromosomes. The profile consists of two kinds of data: success rates and improvement degrees. They
are given by Equations (14) and (15):

Succss rate =
#successes improving f itnesses o f chromosomes

#applications during search
(14)

Improvement degree =

∑
the amount o f increase o f f itness by a success

#success o f improvement
(15)

4.2. Overview of the Evaluation Process

In Figure 12, we present the overview of our evaluation process, which consists of 4 parts: data
generation, analysis of the structural characteristics of search results, analysis of operational profile,
and performance evaluation.

In the data generation part, we replicate N times HSD recoveries for a subject system and a
configuration. The two subsystems used in this evaluation, JMSN and DNSJava, are presented in
Table 1 together with the number of basic entities and their description. For each subject system, we use
98 configurations, 7 fitness functions, and 14 GA settings, as presented in Tables 2 and 3. As a result, N
detected HSDs, and their operational profiles are produced for each subsystem and configuration. The
fitness functions in Table 2 have different objectives from each other. For example, fitness functions 5,
6, and 7 in Table 2 target loosely coupled subsystems; the others, fitness functions 1, 2, 3, and 4, target
highly cohesive ones. In this experiment, we run HireGA on a limited cost. We regard the number of
fitness computations as the cost of a search because the computations take the most time in a search.
As shown in Table 3, the limitation is achieved by keeping nPop · nIter = 10,000 for all GA settings.
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Figure 12. Overview of our evaluation process.

Table 1. Subject systems used in the evaluation.

System # of Basic Entity Description

JMSN 1.2.2 33 A pure Java Microsoft MSN clone

DNSJava 1.5.0 93 An implementation of DNS in Java
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Table 2. Fitness functions used in the evaluation.

ID Target System FF w1 w2 w3

1 JMSN FF1 - - -

2 JMSN FF2 0 3 1

3 JMSN FF2 2 3 1

4 JMSN FF2 6 3 1

5 JMSN FF2 0 1 6

6 JMSN FF2 2 1 6

7 JMSN FF2 6 1 6

8 DNSJava FF1 - - -

9 DNSJava FF2 0 3 1

10 DNSJava FF2 6 3 1

11 DNSJava FF2 18 3 1

12 DNSJava FF2 0 1 6

13 DNSJava FF2 6 1 6

14 DNSJava FF2 18 1 6

Table 3. GA settings used in the evaluation.

ID nPop pc pm nIter

1 100 0.0 1.0 100

2 100 0.5 0.1 100

3 100 0.5 0.5 100

4 100 0.5 1.0 100

5 100 0.9 0.1 100

6 100 0.9 0.5 100

7 100 0.9 1.0 100

8 50 0.0 1.0 200

9 50 0.5 0.1 200

10 50 0.5 0.5 200

11 50 0.5 1.0 200

12 50 0.9 0.1 200

13 50 0.9 0.5 200

14 50 0.9 1.0 200

In part 2, we evaluate the ability of our approach to detect an HSD that reflects the objectives of a
given fitness function. If our approach has such ability, it will detect HSDs having different structural
characteristics led by different fitness functions. We analyze and compare the structural characteristics
of the detected HSDs for each subject system and its 7 fitness functions in part 1. As the target
configuration of analysis, the best-performing GA setting is selected for each fitness function among
the 14 settings in Table 3. The performance of searches using a given configuration is determined by
the average fitness values of N detected HSDs for the configuration. The N detected HSDs for the
selected 7 configurations are analyzed by the 12 analysis metrics in Table 4. The first 5 metrics are
structural metrics that show the structure of a given HSD, such as the number of subsystems. The
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remaining 7 metrics are quality metrics that show the complexity, cohesion, and coupling of a given
HSD in various ways.

Table 4. Analysis metrics to analyze the structural characteristics of a detected HSD.

Metrics Description

Ansb The number of subsystem in a given HSD

Ancld 1/|SB|·
∑

sb∈SB
∣∣∣cld(sb)

∣∣∣
Anbe 1/|SB|·

∑
sb∈SB

∣∣∣bedir(sb)
∣∣∣

Ancst Ancld+Anbe

Ad The average depth of the leaves of S

Cpx Cpx in Section 2.2

Cpxave 1/|SB|·
∑

sb∈SB
∣∣∣Cpx(sb)

∣∣∣
Coh1 Coh1 in Section 2.2

Coh2 Coh2 in Section 2.2

Cohave 1/|SB|·
∑

sb∈SB
∣∣∣Coh2(sb)

∣∣∣
Cpl Cpl in Section 2.2

Cplave 1/|SB|·
∑

sb∈SB
∣∣∣Cpl(sb)

∣∣∣
In part 3, the crossover operator in our approach is evaluated. The crossover operator is the

most significant operator contributing to the performance of a GA. Thus, the efficiency of crossover
in search is important to guarantee the performance of our approach. To evaluate our crossover
operator, we analyze operational profiles to figure out the contribution of our crossover and mutation
operators to the search ability of our approach. We select 7 configurations for a subject system: 7 fitness
functions in Table 2 and a GA setting for each fitness function. For the 7 configurations, we analyze the
operational profiles collected in part 1. This analysis would also give clues to decide which values for
a GA setting, nPop, pc, pm, and nIter, are more suitable for our approach.

In part 4, we evaluate the search ability of our approach by comparing it with that of an approach
using a Hill-Climbing algorithm (HC) implemented by our mutation operators. For each fitness
function in Table 2, we produce N detected HSDs by the HC. Then, the search results are compared
with the search results obtained by our approach in part 1. If our GA has better performance than
the HC, we can conclude that the search concept of a GA, i.e., exploring population by crossover and
mutation, is more efficient than an HC’s search concept of exploring from random solution(s) only
with mutation.

4.3. Analysis Results on the Structural Characteristics

The results of searches for the fitness functions in Table 2 are shown in Figures 13 and 14.
In Figures 13 and 14, 1 to 14 of the x-axis represent the IDs of the GA settings in Table 3. In addition,
point 15 of the x-axis represents the ID of an HC. The y-axis represents the fitness values measured by
fitness functions denoted on the top of each chart. The average of fitness values for each GA setting is
indicated by a horizontal bar. The GA settings that give the highest average fitness for each fitness
function are presented in Tables 5 and 6. For the GA settings, the measured values of analysis metrics
in Table 4 are presented in Tables 7 and 8 for JMSN and in Tables 9 and 10 for DNSJava.
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Figure 13. Fitness values of the detected HSDs by GAs in Table 3 for JMSN.

Table 5. GA settings with the highest average for JMSN.

GAID FF(w1, w2, w3) nPop, pc, pm, nIter

GA1 FF1 50, 0.5, 1.0, 200

GA2 FF2(0, 3, 1) 50, 0.9, 1.0, 200

GA3 FF2(2, 3, 1) 50, 0.5, 1.0, 200

GA4 FF2(6, 3, 1) 50, 0.5, 1.0, 200

GA5 FF2(0, 1, 6) 50, 0.5, 0.5, 200

GA6 FF2(2, 1, 6) 50, 0.5, 1.0, 200

GA7 FF2(6, 1, 6) 50, 0.5, 1.0, 200
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Figure 14. Fitness values of the detected HSDs by GAs in Table 3 for DNSJava.

Table 6. GA settings with the highest average for DNSJava.

ID FF(w1, w2, w3) nPop, pc, pm, nIter

GA1 FF1 50, 0.5, 1.0, 200

GA2 FF2(0, 3, 1) 50, 0.9, 1.0, 200

GA3 FF2(6, 3, 1) 50, 0.5, 1.0, 200

GA4 FF2(18, 3, 1) 50, 0.5, 1.0, 200

GA5 FF2(0, 1, 6) 50, 0.5, 1.0, 200

GA6 FF2(6, 1, 6) 50, 0.5, 1.0, 200

GA7 FF2(18, 1, 6) 50, 0.5, 1.0, 200
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Table 7. Values of structural metrics of GAs in Table 5 for JMSN.

GAID Ansb Ancld Anbe Bncst Ad

GA1 19.533 1.934 1.668 2.622 2.500

GA2 11.600 1.462 2.846 3.749 3.824

GA3 17.667 1.821 1.850 2.799 3.204

GA4 19.033 1.700 1.695 2.647 3.735

GA5 5.500 2.834 5.817 6.830 1.524

GA6 9.800 1.421 3.249 4.148 3.811

GA7 11.500 1.412 2.813 3.710 3.895

Table 8. Values of quality metrics of GAs in Table 5 for JMSN.

GAID Cpx Cpxave Coh1 Coh2 Cohave Cpl Cplave

GA1 0.300 0.079 4.681 2.905 0.240 2.981 0.217

GA2 0.175 0.114 0.782 0.437 0.067 0.100 0.015

GA3 0.183 0.085 3.546 2.462 0.201 1.011 0.083

GA4 0.145 0.080 3.653 2.393 0.192 0.888 0.073

GA5 0.833 0.207 1.195 0.849 0.217 0.013 0.003

GA6 0.229 0.126 0.827 0.494 0.084 0.048 0.008

GA7 0.163 0.112 0.854 0.520 0.074 0.074 0.011

Table 9. Values of structural metrics of GAs in Table 6 for DNSJava.

GAID Ansb Ancld Anbe Bncst Ad

GA1 42.3 1.986 2.162 3.157 3.683

GA2 34.2 2.711 2.749 3.748 2.241

GA3 39.5 1.855 2.362 3.367 4.322

GA4 39.6 1.741 2.343 3.328 5.177

GA5 21.3 1.449 4.348 5.300 5.038

GA6 21.6 1.452 4.241 5.196 5.143

GA7 22.5 1.413 4.179 5.139 5.724

Table 10. Values of quality metrics of GAs in Table 6 for DNSJava.

GAID Cpx Cpxave Coh1 Coh2 Cohave Cpl Cplave

GA1 0.202 0.033 11.218 6.700 0.265 6.271 0.242

GA2 0.240 0.040 8.550 6.657 0.250 2.908 0.114

GA3 0.111 0.036 9.323 6.134 0.236 1.785 0.072

GA4 0.078 0.036 9.461 5.999 0.239 1.636 0.074

GA5 0.425 0.057 6.852 4.147 0.322 0.060 0.005

GA6 0.162 0.056 4.467 2.600 0.207 0.123 0.012

GA7 0.118 0.055 4.451 2.533 0.198 0.133 0.011

The GAs in Tables 5 and 6 are grouped into three in order to analyze the influence of changes of
fitness functions on the structural characteristics of the detected HSDs. A change in the fitness function
used means a change in the objectives of a search. The grouping allows us to fix some objectives and
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analyze the influence of the changes of other objectives. The three groups are as follows: GAs having
different cohesion and coupling (GA1, GA3, GA6), GAs having different complexity with high cohesion
(GA2, GA3, GA4), and GAs having different complexity with low coupling (GA5, GA6, GA7).

4.3.1. GAs Having Different Cohesion and Coupling

In Tables 5 and 6, GA1 uses only the cohesion measure as fitness function FF1. GA3 and GA6

use fitness function FF2, which aggregates complexity, cohesion, and coupling. Cohesion is more
emphasized in GA3, and coupling is more emphasized in GA6. So, the degree of emphasizing coupling
increases from setting GA1 to GA6.

The three values of each analysis metric for GA1, GA3, and GA6 are normalized by the largest
value among the three values. For example, in Figure 15b, the max value of Cpx is 0.3 of GA1, and
the normalized value of Cpx of GA6 is (0.229/0.3) ≈ 0.763. The normalized values for GA1, GA3,
and GA6 are presented in Figure 15a,b. This way of normalization is consistently used throughout
our evaluation.

Figure 15. Normalized values of analysis metrics of GAs in Table 5 for JMSN.

In Figure 15a, the HSDs by GA1 have relatively wide and rich hierarchies. As the coupling is
emphasized, the number of subsystems and their offspring decreases. Such change coincides with the
characteristics of fitness functions described in Section 3.2.3.

In Figure 15b, most of the cohesion metrics decrease, and most of the coupling metrics increase
through GA1 to GA6. This coincides with the change of their fitness functions. GA2 has the lowest Cpx
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because complexity and cohesion are emphasized together. Cpxave tends toward high values, which
is probably due to the increase in the number of basic entities belonging to a subsystem directly by
emphasizing coupling. The increase overwhelms the decrease of the number of offspring, and that
causes the increase of Ancst and Cpxave.

The analysis on DNSJava shows a very similar result to the result of JMSN. The measured
structural and quality metrics of GA1, GA3, and GA6 for DNSJava are presented in Figure 16a,b.

Figure 16. Normalized values of analysis metrics of GAs in Table 6 for DNSJava.

4.3.2. GAs Having Different Complexity with High Cohesion

The measured structural and quality metrics of GA2, GA3, and GA4 for JMSN are presented in
Figure 15c,d.

In Figure 15c, HSDs with more subsystems are detected as complexity is weighted. As w1 increases
from 0 to 2, cohesion also increases by sacrificing complexity a bit in Figure 15d. Using complexity as
part of a fitness function helps detect more cohesive HSDs than the ones detected by GA2. According
to the definition of complexity, it forces the GA to explore HSDs with relatively rich subsystems having
a small number of basic entities. So, the number of subsystems increases by making wide hierarchies.
Such change can increase cohesion according to Section 3.2.3. On the other hand, coupling increases
for the same reason.

When w1 increases from 2 to 6, the deep hierarchies become more preferable. A large number of
offspring in subsystems cause high complexity and high coupling. Thus, the number of offspring is
reduced by making deep hierarchies, and this in turn lowers not only complexity but also coupling
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and cohesion. The change coincides with the characteristics of fitness functions and the change of
fitness functions.

The measured structural and quality metrics of GA2, GA3, and GA4 for DNSJava are presented
in Figure 16c,d. According to Figure 16c, the decrease of complexity is accomplished by making the
detected HSDs deep and rich. The number of offspring decreases by making deep hierarchy, and that
can cause a decrease of coupling and cohesion as mentioned above.

4.3.3. GAs Having Different Complexity with Low Coupling

The measured structural and quality metrics of GA5, GA6, and GA7 for JMSN are presented in
Figure 15e,f. Since coupling is emphasized, search without weight on complexity detects the HSDs
having a relatively small number of subsystems. More weight on complexity, w1 = 2, makes the number
of subsystems grow and the size of the subsystems shrink. Such causes high coupling according to the
definition of Cpl. If coupling and cohesion are considered together, HSDs having subsystems with low
coupling would be created instead of subsystems with high cohesion. So, complexity is decreased
by not only increasing the number of subsystems but also making the hierarchy deeper to increase
coupling as minimally as possible, but at the expense of cohesion. As a result, both cohesion and
coupling deteriorate.

In the change of w1 from 2 to 6, complexity is decreased by increasing the number of subsystems
in the detected HSDs. Unlike the change of w1 from 1 to 2, the depth and width of the hierarchies show
little change. The increase in the number of subsystems causes an increase of coupling and cohesion.
Nonetheless, cohesion shows little change because the cohesion values of the subsystems might be
very low by emphasizing coupling.

The measured structural and quality metrics of GA5, GA6, and GA7 for DNSJava are presented in
Figure 16e,f. The analysis on DNSJava shows very similar results to the result of JMSN, but the change
of analysis metrics for DNSJava is less drastic. In our manual inspection of the resulting HSDs of GA5,
they commonly have a large subsystem contributing to coupling. So, the increase of w1 decreases Cpx
a lot by reducing the number of basic entities in the large subsystems. Such causes relatively small
changes to the rest of the HSDs and the analysis metrics.

As we have shown in the analyses on structural characteristics for JMSN and DNSJava, the search
results are varied according to fitness functions. Therefore, we can conclude that our approach
can reflect different objectives of the fitness functions and produce HSDs that reflect the difference
of objectives.

4.4. Analysis Results on the Operational Profile of Mutation and Crossover

As shown in Figures 13 and 14, nPop = 50 and nIter = 200 always show better performance than
nPop = 100 and nIter = 100, respectively. In most of the cases, the GA settings of pc = 0.5 and pm =

1.0 give the best performance. The performance of a GA is heavily dependent on its crossover and
mutation operators. Likewise, the efficiencies of crossover and mutation contributing to finding a
quality HSD affect the best-performing GA setting and vice versa. Therefore, in this analysis, we
figure out the search efficiencies of crossover and mutation by analyzing the operational profiles of the
detected HSDs by several GA settings. The analysis also leads us to the best GA settings based on the
analysis result.

As the targets of the analysis, we choose the GA settings of pc = 0.5 and pm = 0.5 because they give
equal chances of application to crossover and mutation. We only present the details of analysis on the
results of recovery by our approach for DNSJava and the GA settings having nPop = 50 and nIter = 200.
That is because the analysis on JMSN or the other GA settings gives a similar result to the presented
analysis and in consideration of space.
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4.4.1. Analysis on nPop and nIter

The average success rates for 10 runs with the fitness function in Table 2 are shown in Table 11.
We divide a running of GA in 3 phases by dividing 200 iterations into 3 and record the success rates of
crossover and mutation for each phase separately. The numbers on the top of Table 11 represent the
IDs of the fitness functions in Table 2. In Figure 17a, we present charts of the normalized values of data
in Table 11. In addition, Table 12 and Figure 17b show how much the fitness values are improved by
applying operators.

Table 11. Success rates of operators in nPop = 50 and nIter = 200 for fitness functions in Table 2
of DNSJava.

Operators 8 9 10 11 12 13 14

Crossover in phase 1 0.301 0.253 0.220 0.208 0.118 0.112 0.137

Mutation in phase 1 0.392 0.341 0.442 0.474 0.288 0.466 0.482

Crossover in phase 2 0.110 0.106 0.080 0.063 0.077 0.046 0.066

Mutation in phase 2 0.285 0.226 0.297 0.325 0.212 0.341 0.334

Crossover in phase 3 0.062 0.081 0.062 0.057 0.052 0.043 0.041

Mutation in phase 3 0.247 0.179 0.242 0.268 0.188 0.277 0.277

Figure 17. Normalized operational profiles in Tables 11 and 12.

Table 12. Improvement degrees of operators in nPop = 50 and nIter = 200 for fitness functions in Table 2
of DNSJava.

Operators 8 9 10 11 12 13 14

Crossover in phase 1 0.285 0.424 0.535 0.864 0.292 0.422 0.689

Mutation in phase 1 0.047 0.148 0.175 0.221 0.132 0.153 0.267

Crossover in phase 2 0.154 0.340 0.278 0.303 0.116 0.077 0.147

Mutation in phase 2 0.059 0.159 0.178 0.207 0.152 0.136 0.180

Crossover in phase 3 0.134 0.312 0.273 0.292 0.126 0.093 0.093

Mutation in phase 3 0.059 0.152 0.153 0.172 0.139 0.148 0.175

In these charts, the success rates and improvement degrees of crossover are relatively high in
phase 1 but decrease sharply through phases 2 and 3 for all cases. The mutation rates also decrease,
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but relatively gradually compared with crossover. Therefore, crossover plays the role of improving the
quality of HSDs in the early phase of search. On the other hand, mutation plays the role of rendering
relatively small changes during search.

Regardless of nPop = 50 or 100, the limited number of genetic traits in the population is “consumed”
by crossover, and new chromosomes with “good” traits and high quality are created rapidly in the
early phase of search as shown in Figure 18, which depicts the change of fitness of the fittest HSD of
each iteration. After the early phase, the fitness increases relatively slowly, and mutation contributes to
the increase with higher efficiency than crossover. Thus, if the limit of cost is not expanded, it is better
to increase the chances of mutation improving the chromosomes by creating new good traits. In other
words, a larger number of iterations show better performance.

Figure 18. Change of the highest fitness value during search in nPop = 50 and nIter = 200 for FF2 (6, 3,
1) of DNSJava.

4.4.2. Analysis on pc and pm

In the analysis in Section 4.4.1, the efficiency of crossover is considerably reduced in the early
phase of search. In the GA of Figure 1, mutation is applied after crossover is applied or skipped. Thus,
the mutation could be affected by the low efficiency of a GA in the late phase of search.

Table 13 presents the success rates of combinations of operators for GAs whose setting is nPop =

50, pc = 0.5, pm = 0.5, and nIter = 200 for the fitness functions in Table 2. There are three combinations:
crossover-only, mutation-only, and both. Crossover-only occurs when crossover is applied to an HSD
but mutation is skipped. Mutation-only is the opposite. The combination “both” is a case wherein
crossover and mutation are applied to an HSD. The normalized values of the data in Table 13 are
drawn as a chart in Figure 19.

Table 13. Success rates of the combination of operators in nPop = 50 and nIter = 200 for fitness functions
in Table 2 of DNSJava.

Combination of Operators 8 9 10 11 12 13 14

Crossover in phase 1 0.181 0.151 0.137 0.122 0.069 0.061 0.078

Mutation in phase 1 0.230 0.199 0.264 0.290 0.158 0.272 0.294

Both in phase 1 0.186 0.134 0.143 0.167 0.068 0.089 0.109

Crossover in phase 2 0.060 0.057 0.043 0.035 0.041 0.023 0.035

Mutation in phase 2 0.185 0.142 0.180 0.210 0.116 0.200 0.192

Both in phase 2 0.056 0.046 0.046 0.053 0.031 0.032 0.047

Crossover in phase 3 0.032 0.042 0.034 0.032 0.027 0.022 0.022

Mutation in phase 3 0.158 0.101 0.150 0.161 0.095 0.153 0.140

Both in phase 3 0.031 0.031 0.033 0.037 0.022 0.023 0.024
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Figure 19. Normalized success rates in Table 13.

In Figure 19, the success rates applying both crossover and mutation decrease drastically as
the search proceeds, along with those of crossover-only, but mutation-only maintains relatively high
success rates. We can conclude that applying mutation after applying crossover is inefficient in the late
phase of search because of the low success rate of crossover. Nonetheless, applying both crossover and
mutation and crossover-only is relatively efficient in the early phase. In the analysis in Section 4.4.1,
the efficiency of crossover is also relatively high in the early phase. So, it is important to set pc properly
to balance its efficiency in the early phase and its inefficiency in the late phase of search.

In the same perspective, mutation can also offset the improvement by crossover with poor
operation. Still, it can be easily inferred that the effect of failure of mutation is far smaller than the
improvement degree by crossover in the early phase based on Figure 17b. In the late phase of search,
mutation plays a refining role, as analyzed in Section 4.4.1. Therefore, it is better to keep pm high
during search.

The values that we used for pc and pm are (0.0, 0.5, 1.0) and (0.1, 0.5, 1.0). Among the settings,
0.5 for pc and 1.0 for pm are the most suitable values according to our analysis.

4.5. Performance Evaluation by Comparing Our Approach with Search by HC

An HC starts its search from a point of a search space and terminates when it reaches the (local)
optimal solution or a given termination condition is met. To compare with our GA fairly, the HC used
in this evaluation is implemented by the mutation operators of our approach to exploring neighbors.
Likewise, the number of evaluations of HSDs by fitness functions is given as a termination condition
for the HC. The HC is (re)started at random positions when one run of the HC is terminated before the
termination condition is met. We maintain nPop • nIter = 10,000 throughout all the GA settings. This
restricts the cost for a run to 10,100 evaluations at most, 10,000 for a search, and 100 for initializing a
population of 100 chromosomes. When the number of evaluations by the HC reaches 10,100 during the
search, the search is finished. Then, the fittest HSD is taken as an optimal solution among the detected
HSDs by multiple runs of the HC.

We apply the HC to JMSN and DNSJava with the fitness functions in Table 2. The search results
for the systems are presented in Figures 13 and 14 together with the search results of our GA. The 15th
datum in each chart represents a search result by the HC.

The performance of the HC in DNSJava is much worse than that in JMSN. As the size of a target
system grows, the number of neighbors of an HSD also grows. So, the larger a system is, the higher
the cost incurred by the HC to find a fitter HSD among neighbors than a given one. Such reduces the
search space that can be covered by the HC at a given cost. In addition, the impact of change to an
HSD by mutation in a large system is weaker than that in a small system. Therefore, the efficiency of
mutation becomes lower as the size of a system grows, whereas the efficiency of our crossover becomes
relatively higher.

During our experiment, we realized that HC cannot finish just one run of an HC in DNSJava. This
means that an HC starts from only one point in the search space and searches as “deep” as possible. In
contrast to this search strategy, an HC can (re)start multiple points to search “widely” but relatively
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“shallowly.” Therefore, the higher performance of GA than HC is likely caused by poor search strategy
as well as the efficiency of crossover.

Thus, we take the strategy with various numbers of restarts and run the HC with them. We choose
seven numbers for restarts: 1, 2, 5, 18, 20, 50, and 100. Figure 20 presets the search results of GAs in
Table 3. The data of 15 to 21 represent HCs with the seven restart numbers, as presented in Table 14.
Among the results of the HC with the fitness functions in Table 2, we present only the result of FF2

(6, 1, 6) because it shows relatively high or similar performance among all results and relatively high
efficiency of mutation during our evaluation.

Figure 20. Fitness values of detected HSDs of DNSJava by GAs in Table 3 and HCs with various
restart numbers.

Table 14. Number of restarts in a run of Hill-Climbing algorithm (HC).

ID # of Restart

15 1

16 2

17 5

18 10

19 20

20 50

21 100

Despite the changes of the restart number for the HC, the GA in our approach always shows
better performance than the HC. We conclude that the search strategy of a GA is more adequate for
recovering HSDs than HCs. Our crossover operator also contributes to the outcome. Especially, as a
software system for recovery expands, HC is expected to require much more resources (i.e., time) to
perform similarly to GA.

The architecture of an extensive software system can be often interpreted by employing a technique
Hierarchical Subsystem Decomposition (HSD), but as it is possible that the contents obtained from
such a task have not been managed properly, they would not reflect the current picture. Constant
update or revision can cause many changes in the software so that recovering or regenerating HSD
contents is not an easy task.

This paper proposes an approach that can work through the past contents and reproduce an optimal
solution that suits the design criteria well. As the objectives of such a task can be domain/system-specific
or depend on the environmental conditions, the proposed approach focuses on complying with each
objective effectively by utilizing a genetic algorithm creating a fitness function to work through all
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across search areas to deliver an optimal HSD form. The approach was subjected to the tests for
evaluation where two open-source software systems having a set of 14 fitness functions in the algorithm.
The architectural characteristics of the HSD types recovered by using the proposed approach varied
depending on the objective given, and the result showed that the crossover type was more effective
during the early search stage and the mutation enhanced the performance a little throughout the
entire search process. The performance of the genetic algorithm used for the approach was analyzed
in comparison with the Hill-Climbing algorithm and produced a better result in quality-wise even
considering that it was in the early stage of development. The same result was expected for the
proposed approach when compared with other existing approaches.

5. Related Work

5.1. Recovery Approaches for Subsystem Decomposition

There have been several studies published regarding the recovery of subsystem decomposition
from the design or source code of a system.

Mitchell et al. [33] proposed a famous bunch tool for architecture recovery. The bunch tool
transforms a system into a directed Module Dependency Graph (MDG) consisting of nodes representing
basic entities and edges representing dependencies between entities. In addition, it decomposes MDG
into several MDG partitions using a hill-climbing or simulated annealing algorithm. The bunch tool
uses Modularization Quality (MQ) as a fitness function that represents the balance between the internal
and external edges of MDG partitions. The MDG partitions present a flat subsystem decomposition
that consists of disjoint partitions of basic entities and no part-of relationships between its subsystems.

Seng et al. [34] proposed an approach to improving subsystem decomposition. They adopted
the grouping genetic algorithm (GGA) [35], which is a specialized genetic algorithm designed to
solve a grouping problem with GA. They used the aggregation of five structural metrics as a fitness
function: cohesion, coupling, complexity, cycles, and bottlenecks. GGA searches only the flat subsystem
decomposition that fits the given fitness function. An issue with this approach, and other existing
approaches, is that they cannot provide the advantages of hierarchy, which is useful for understanding
a system, especially when it is large and complex [8].

Jeet et al. [36] proposed an approach that is based on a combination of a nature-inspired
black-hole algorithm and a genetic algorithm, which is named the Genetic Black Hole Algorithm
(GBH). The combination of evolutionary algorithms tested on various software systems and resulted
in better solutions.

The studies detailed in [5,29,30] adopted hierarchical clustering algorithms, which apply a greedy
strategy to cluster similar basic entities. They used hierarchical clustering algorithms to produce a
dendrogram presenting similarities among basic entities. Dendrograms can be used to recover the
hierarchical structure diagrams HSDs by clustering basic entities in various levels of similarity.

The authors in [9,10] proposed recovering subsystem decompositions using concept analysis.
Concept analysis represents several attributes of basic entities, such as global variables in use and
interacting basic entities, to build a concept lattice, which consists of partially ordered sets of concepts.
Basic entities are clustered as subsystems at a proper level of the concept lattice. A concept lattice
represents “part-of-relationships” between sets of basic entities sharing the same attributes.

The studies detailed in [5,9,10,29,30] are similar to our approach in that they can be used for
recovering HSDs; however, they use technique-dependent forms of criteria to find high-quality HSDs.
When there are criteria provided by an expert, the criteria should be transformed to specific forms suited
to their techniques. This makes the approaches inflexible for recovering HSDs using various (different)
forms of criteria, because the transformation is highly difficult to perform. This is especially true when
complex criteria are given. In practice, hierarchical clustering algorithms require measures defining
similarities between basic entities. Concept analysis is also needed to represent the relationships
among basic entities as concepts. However, when the criteria are complex, such as the multi-modal
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criteria used in Seng et al.’s work [34], transforming the criteria to a similarity measure or to concepts
is almost impossible to accomplish.

Although the existing studies are helpful in performing subsystem decomposition, they cannot
provide the advantages of hierarchy that is crucial for understanding a system, especially when it is
large and complex.

5.2. GA Approaches Based on Tree Representation in Other Domains

In Koza’s work [37], GA is used to create a LISP (List Processor: high-level programming language)
expression, which for example is a minimal-length-expression used to fulfill a given task. The author
represented a LISP expression as a tree structure, which is referred to as a syntax tree, and uses the tree
structure as the individual for the GA instead of a chromosome, and crossover and mutation operators
that are specific to the domain are provided. The crossover takes two syntax trees as parents, and a
subtree from each tree is inherited by their children. Subsequently, the parents exchange their subtrees
by each removing a subtree and attaching the subtree to the other parent in place of the removed one.
As an example of syntax trees (i.e., expressions) of LISP:

T1: (OR (NOT D1)(ANDD0 D1))
T2: (OR (OR D1 (NOT D0))(AND (NOT D0))(NOT D1))
S1: (NOT D1)
S2: (AND (NOT D0))(NOT D1)).
T1 and T2 are given as the targets for crossover, and the subtrees (i.e., sub-expressions) in two

syntax trees, S1 and S2, are selected for crossover. Crossover between T1 and T2 results in two new
legal syntax trees:

T1’: (OR (AND (NOT D0))(NOT D1)(AND D0 D1))
T2’: (OR (OR D1 (NOT D0)) (NOT D1)).
In contrast, a mutation is performed to produce a small change in a syntax tree. There are three

mutation operators and they are highly specific to the domain. For example, the editing operator
simplifies an expression based on editing rules such as

(AND X X)→ X.
A tree structure is one of several feasible forms used to represent a hierarchical structure. An HSD

can be represented by a tree structure: nodes for subsystems and basic entities, and edges representing
where subsystems and basic entities belong. Therefore, the GA is the easiest alternative considered for
use in recovering HSDs [38]. In R. Lutz’s work [39], a complexity metric based on information theory
was proposed, and a GA was applied to validate the metric without guarantee of the adaptability of
the GA to the recovery of HSDs. To address this issue, crossover is adapted to resolve discrepancies
between syntax trees and HSDs, and mutation operators suited to HSDs are applied [37].

However, the GA studied in [37,39] did not adapt well to the task of exploring HSDs because it
does not consider the characteristics of each HSD, which should be considered to produce quality HSDs.
First, the characteristics of an HSD are far different when using a syntax tree. The hierarchy of syntax
trees represents the order of processing of sub-expressions. In an HSD, grouping relationships of basic
entities (i.e., which entities are grouped together in which subsystem level, and part-of relationships
among subsystems) are the most important characteristics. Second, in contrast with syntax trees, there
are dependencies between the nodes of tree structures in HSDs. A node representing a basic entity
should appear in a tree at least once, but only once. This means that there should be nodes representing
all basic entities and that the grouping relationships between basic entities should be unique. Therefore,
in the crossover for syntax trees, attaching a sub-tree to another syntax tree is equivalent to adding a
sub-expression to an expression, and the result of the attachment is considered to be a legal expression.
However, applying crossover to HSDs can produce illegal HSDs, which have duplicate and/or missing
nodes representing basic entities. The gap between the GA and the characteristics of the HSD recovery
problem requires a repair procedure after crossover [38].
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The inconsistency between the GA proposed in [37,39] and the characteristics of the problem
(recovering HSDs) causes a serious issue in that the actual effect of the crossover performed on HSDs is
highly difficult to grasp [38]. This makes it challenging to apply the GA to HSD recovery in various
circumstances. For example, when a very large-scale system requires architecture recovery, scalability
can be a problem. In this case, other information, such as the change history of the system, can be
used to reduce the search space by reducing the arbitrary elements in the GA and by guiding the
operators to proceed in an indicated and more efficient search. In some cases, the system expert can
modify several elements of GA, such as the initialization of the algorithm, and crossover and mutation
operations, to fit them to a specific problem. Therefore, to apply GA in various circumstances, the GA
should be developed by analyzing the characteristics of the HSD, and these characteristics should be
reflected to the elements of the GA. This was one of the primary reasons why we began this study,
which was to develop such a GA.

6. Threats to Validity

(Implementation of a GA) In several studies, various approaches to implement a GA are
proposed [11,34,39,40]. Among all feasible implementations, we selected one of the simplest
implementations (provided by [11]) to avoid distortions associated with using a more complex
and advanced GA.

(Weights of FF2) During our experiment, we used more values for the weight variables of FF2
than we presented in the evaluation. Although we did not present the analysis on all weights because
of space considerations, the conclusions for the omitted weights were the same as those reached in the
analysis presented.

(Decrease of crossover efficiency in the late stages of a search) The decrease in efficiency results
from two causes: a small population size or the inherent convergence problem of GAs [11]. The former
can be resolved by increasing the population size, but this increases the cost of a search. Regarding the
convergence problem, several techniques have been proposed to resolve it. For example, a GA can use
a selection strategy to compose a new generation during the search, and this new generation is one
of the most influential elements toward achieving GA convergence. Our approach can adapt other
selection strategies, such as roulette wheel selection [11], instead of the greedy selection strategy that
we actually used in this study.

(Implementation of HC) We use the simplest implementation of HC, the first-ascent HC, which
moves the search to the first discovered neighbor with higher quality [40] for the same reason that
we use a simple implementation of a GA. There could be other implementations of HC that provide
higher performance in recovering an HSD. If there is such an implementation, it would be worth using,
because HC is simpler to understand and implement than GA. A study on various implementations of
an HC algorithm for HSD recovery is one of our planned future studies.

7. Conclusions

In this paper, we have proposed an approach to recovering an HSD, which provided an
architecture-level understanding of a software system. A method of understanding the software system
at the architecture level was provided in this study along with an HSD scheme useful for reducing the
possibility of software erosions. When an HSD of a software system is recovered, the objectives of
recovery are given by experts. The objectives of recovery may be domain-specific or system-specific.
They may also vary according to the purpose and circumstances of recovery. Thus, an approach
to recovering an HSD of a software system should be able to adopt various objectives of recovery.
To achieve this, we have proposed a recovery approach using GA, which is able to adopt various
objectives easily as a fitness function and find a quality HSD in a vast search space.

To apply a GA in our approach, we provided a chromosome representation that represents
grouping relationships among basic entities and part-of relationships among subsystems as the
characteristics of an HSD affecting its quality. The initialization algorithm was designed to create
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arbitrary HSDs for initializing the population of a GA. Crossover was proposed to create new HSDs
inheriting the grouping and part-of relationships from existing HSDs in the population. Mutation
operators were provided to create a new HSD by rendering a small change to the grouping and the
part-of relationships of an HSD in the population. In addition, fitness functions were designed to have
different objectives, which were presented by the structural properties of an HSD and metrics assessing
the properties.

In our evaluation, we evaluated the ability of our approach to recover different HSDs according to
different objectives of recovery. We applied our approach to two open source software systems with
fitness functions having different objectives of recovery. Then, we analyzed the search result to figure
out whether our approach could find different HSDs according to the various fitness functions. As a
result, our approach recovered HSDs having different structural characteristics intended by the fitness
functions and their objectives of recovery.

Afterward, we evaluated how much our crossover operator contributed to the search efficiency of
our approach, since crossover is a key feature significantly influencing the performance of a GA. We
analyzed the contributions of our crossover and mutation operators to the search efficiency of the GA.
We also compared our approach with an approach using an HC. As a result, crossover provided great
efficiency to a search by contributing to the early-phase search, whereas mutation played the role of
refinement throughout the entire search. On the other hand, the comparison of our approach and an
approach using an HC showed us that the GA was the better strategy for the recovery. According
to the analysis and comparison, our crossover operator had a significant role during the search. The
performance of our GA was attributed to the efficiency of our crossover operator.

Our approach can be applied to recover an HSD intended by various objectives given as fitness
functions. The change history or design specification of a system could be used for the establishment
of the objectives of recovery by experts. For example, the change history of a software system could
be used for establishing an objective to recover an HSD with low change impact among subsystems.
In different objectives, our approach may show different behavior and require different calibration.
Therefore, we plan to repeat the evaluation of our approach in various objectives.
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Abbreviations

HSD Hierarchical Subsystem Decomposition
GA genetic algorithm
HC Hill-Climbing algorithm
FSC Future Sustainability Computing
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