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Abstract: In this paper, the standardized characterization of nanofibrous membranes used to coat
three porous bulk acoustical materials (melamine foam, a polyester textile, and an MDF perforated
panel) is presented. The membranes were manufactured from recyclable Polyamide 6 (PA6) and
water-soluble polyvinyl alcohol (PVA) using the needleless electrospinning technique. This resulted
in very thin membranes that had high porosity and very high airflow resistivity. The membranes were
collected in a high-permeability nonwoven substrate. Measured results in both an impedance tube
and a reverberation room showed significant improvements in the sound absorption performance of
the bulk materials after incorporating the nanofibrous layer. The application of the membranes on the
surface of a traditional air-backed perforated panel also improved the sound absorption, exhibiting a
broad peak of sound absorption in the low-frequency range. This was particularly true when the
membrane area weight was increased. It is concluded that these materials, manufactured as described
in this paper, can be alternatives to glass, mineral, and ceramic fibrous materials, which have high
carbon footprints.
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1. Introduction

There is a current need in the acoustic market to incorporate sustainable materials as alternatives
to glass, mineral, and ceramic fibrous materials, all of which have high carbon footprints [1].
Public awareness and concern about the negative effects of pollution have led consumers to favor
environmentally friendly materials, less contaminating processes, and recycled products [2]. In this
sense, the concept of “green” building materials is currently used in several European countries. These
countries have introduced specific recommendations into building regulations to increase the use of
ecological materials in new constructions. These regulations also contain a list of non-sustainable
materials that should be avoided (e.g., mineral fibers). In addition, some countries have developed
standard eco-indicators to express the total environmental load of a product or process. All these
numbers show that sound absorbing materials based on fiberglass and mineral wool report high
environmental impacts, mainly due to their embodied energies [3]. Moreover, Toyoda et al. [4] have
pointed out some of the environmental drawbacks of using fiberglass as a sound-absorbing material,
including durability issues, difficult recycling, and that its dust is harmful to humans. The acoustic
characterization of green materials has been discussed by Iannace [5] and a comprehensive review on
acoustical eco-materials can be found in [2].

A thin layer of fibrous material can be added to a bulk sound-absorbing material in the form of an
attached membrane. This layer is commonly used for the protection and structural integrity of the
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material. However, since this layer must be permeable so as not to degrade the acoustic performance,
the membrane can also add acoustic resistance to the overall system, providing an increase in the total
sound absorption. Thus, a nanofibrous layer with its unique properties has the potential to work well
as a thin, lightweight absorbing solution.

Contrary to conventionally used microscale sound absorbers, sound absorbing membranes based
on submicron fibers may show higher sound absorption abilities. As the membrane is forced to vibrate
by incident sound waves, there are several physical mechanisms contributing to sound absorption.
The kinetic energy of the membrane is transformed into thermal energy due to the friction between
individual fibers, as well as the friction of the membrane with air and possibly with other layers of
material arranged in its proximity. A certain part of the energy can also be transmitted to the frame
(if it is present). In addition, part of the energy can be absorbed by scattering from the fibers and
by the vibration caused in individual fibers or fiber segments (considering structural overlaps) [6].
These unique properties come from the nature of nanofibrous layers, i.e., their small fibrous diameter,
correspondingly high specific surface area, and high values of porosity, close to unity. This causes high
viscous losses inside the material and, consequently, more dissipation of acoustic energy. Furthermore,
due to resonance at its natural frequency, the membrane is able to absorb low-frequency sound energy.
For thicker membranes, the effect of bending stiffness may have to be considered [7]. Nanofibrous
elements and the optimal rigidity of the membrane can lead an acoustic system to vibrate more
efficiently [8,9].

The theoretical basis of the sound absorption characteristics of a membrane sound absorber
has been presented by Sakagami et al. [10]. To analyze the absorption mechanism, the solution is
approached in a form that points out the contribution from each element of a membrane. The effects
of the parameters of the sound absorption system are discussed in light of the calculated results.
Another study [11] reported a detailed analysis of the acoustic properties of a single-leaf permeable
membrane and considered the effects of membrane parameters, such as surface density and airflow
resistance. The statistical sound absorption coefficients of permeable membranes of different airflow
resistance and sizes have been presented more recently [12]. On the other hand, Toyoda et al. [4]
have presented a numerical method to predict the sound absorption performance of cylindrical and
rectangular permeable membrane space sound absorbers. Kalinova [9] has demonstrated that the
nanofibrous layer has a resonant effect on sound absorption when the nanofibers are arranged with
respect to the layer. This study reported that the sound absorption coefficient of a material composed of
a nanofibrous web was significantly higher at lower frequencies than that of the basic material without
nanofibers. It was also shown that the resonance frequency of a polyvinyl alcohol (PVA) nanofibrous
membrane decreased with increases in its area density and the average diameter of the nanofibers.

The effectiveness of a fiber-based sound absorption material involves several parameters such as
porosity, tortuosity, fiber diameter, surface density, and thickness [13]. The optimization of material
types, the structural characteristics of nanofibrous membranes, and their sound absorption mechanisms
are of increasing interest. Typically, for textile materials applied as acoustic fabrics, the influence of
airflow resistivity and area weight on the acoustic performance is very important [14]. Although
some studies have addressed the subject, further research is still needed on the inner structure
mechanisms [15–18]. A nanofibrous membrane (which is already covered by a patent) can improve
the ambient sound field quality by absorbing undesired noise [19]. It can be successfully applied in
numerous areas, including room acoustics and construction, automotive, transportation, aerospace,
and, interestingly today, as a solution to reduce the noise coming out of drones [1,20–22].

Resonant nanofibrous membranes of very small thicknesses can be prepared from different polymer
solutions in the form of electrospun nanofibers captured on a substrate layer via the electrospinning
method. Electrospinning is one of the most popular methods to directly produce nanofibers. Most
electrospinning setups include a feeding unit that transports the polymeric solution/melt into an
electrical field. Details of the electrospinning technique are widely discussed in the literature [23,24].
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Electrospinning methods can be divided into two groups: needle and needleless electrospinning.
In a single-needle electrospinning system, the polymeric solution is stored inside a needle that is
connected to a high-voltage supplier. A syringe pump feeds the solution to the needle tip. Micro-
and nanometric fiber size can be produced with this technique by controlling the properties of the
polymeric solution and parameters such as voltage applied, distance between electrodes (tip to
collector), solution feed rate, needle tip diameter, and ambient conditions [23,24]. In comparison with
needle electrospinning systems, needleless electrospinning systems offer certain advantages, such as
preventing needle clogging and avoiding the limiting distance between needles [23].

Both rotating roller and wire electrospinning systems are currently used on an industrial scale
under the trade name Nanospider [25]. Although the role played by the system and process parameters
of the roller electrospinning technique in the final product have been discussed [26], the parameters for
wire electrospinning, which has been used in this study, still have yet to be fully investigated [24,26,27].

Regarding environmental problems, one of the major challenges in the development of
electrospinning as a manufacturing technology is the issue of the solvents used to dissolve the
polymer, which are predominantly organic [28]. Volatilization of these solvents during the spinning
process may be hazardous. It is evident that systems that employ water as a solvent offer many
advantages in terms of safety, costs, and sustainability. However, water is usually not a favorable solvent
for electrospinning because of its high dielectric constant. Although some non-solvent alternative
techniques have been suggested, the use of water-soluble polymers in the electrospinning process
appears to be the most convenient and sustainable approach [23,24,28,29].

Therefore, a green electrospinning strategy should consider the use of environmentally friendly
and biodegradable raw materials, and the solution used for electrospinning must be non-toxic and
pollution-free. Nanoscopic fibers fabricated in such a manner will be sustainable and easily recyclable
and have wide applications in different industrial settings, including the biomedical sector [23,29,30].

The paper is organized as follows: Section 2 introduces the materials and manufacturing process
of the nanofibrous membranes. In this section, the experimental procedures and equipment used to
characterize the materials are also described. Section 3 presents the experimental results. Finally, the
main conclusions are summarized in Section 4.

2. Materials and Methods

Considering sustainable options, two polymer candidates were chosen in the course of this work.
Polyamide 6 (PA6) has been described in several studies that have emphasized its potential application
as an excellent recyclable polymeric material [31]. As a representative of a water-soluble polymer,
polyvinyl alcohol (PVA) has been selected. It is noted that water absorption, swelling, and disintegration
of water-soluble electrospun fibers are common, which may seriously affect the morphology, structure,
physical mechanism, and applications of nanofiber membranes [32]. The practical solution reported in
the literature is chemical/physical crosslinking, which can significantly promote the water-resistance
and water-stability of electrospun PVA nanofibers and has been successfully applied in this study.
The hydroxy groups in PVA can provide the possibility of chemical modification either before or after
electrospinning. Hence, the crystallinity and the water-resistance of PVA electrospun fibers can be
distinctly increased by treatment with solvents. Therefore, further modifications could be realized by
the change in pH value and the addition of salt [29].

The final solutions prepared for processing by electrospinning were a 14% w/w solution of PA6
(Ultramid®B27 by BASF, with Mw > 70.000 g/mol and ρ = 1.13 g/cm3) in acetic/formic acid solvent (2:1)
and a 16% w/w water solution of PVA (Sloviol R 16 by Fichema, with Mw = 100.000–130.000 g/mol).
Aqueous solutions of glyoxal (40%) and phosphoric acid (85%) were added as cross-linking agents for
PVA. The content of glyoxal in the PVA solution was 5 wt%, and the content of phosphoric acid in
the PVA solution was 4 wt%. The final concentration of the prepared PVA solution was determined
as 12.75 wt%. The solution containing PVA, distilled water, glyoxal, and phosphoric acid was mixed
intensively by a magnetic stirrer at room temperature. The solution containing PA6 was subjected to
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the same mixing procedure. Nanofibers were then collected on a 52 cm substrate layer in different
surface densities. A nonwoven textile (with a surface density of 30 gsm, thickness of 0.1 mm, and
measured air permeability of 5526 ± 117 mm/s) was chosen as the substrate, as well as regular baking
paper, which allowed the analysis of a nanofibrous layer in standalone form. The mean fiber diameter
of the substrate was estimated as 12.7 (± 1.4) µm, with a minimum value of 10.1 µm and a maximum
value of 15.7 µm.

To manufacture the sound absorption composite materials to be studied, different sets of acoustic
melamine foam (Cellofoam HR 290/0), a standard polyester (PES) nonwoven textile (Cellofoam F800FR
HO), and commercial perforated panel resonators were chosen as porous bulk materials (see Figure 1).
The perforated panels were designed to be used with a backing air space to act as distributed Helmholtz
resonators. The core of the panels was made of homogenous medium-density fiberboard (MDF)
fabricated without resin binder (formaldehyde), so they were more environmentally friendly than other
chemically-bonded panels. The thickness of the panels was 16 mm, with a density of 700–800 kg/m3.
The nominal thicknesses of the melamine foams were 10 and 20 mm and for the PES textile materials
were 10, 20, and 50 mm. In practice, the PES samples exhibited measured thicknesses values of 8–9,
18–20, and 46 mm due to their unevenness.
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Figure 1. Photographs of the bulk porous materials (a) and perforated panels used to test the effect of
adding a nanofibrous membrane (b).

Lamination of the thin nanofibrous membrane to these bulk materials was carried out using
different adhesives. Melamine foam and PES were treated using a polymeric adhesive web (CoPAD,
8 gsm by Protechnic®), while a dispersive adhesive (Unimelt A417 by Stachema) was employed for
the MDF panels.

A needleless electrospinning method using a cord (NanospiderTM, NS 1WS500U) was employed
to manufacture the nanofibrous membranes. The liquid polymeric material was fed to a moving
stainless-steel wire (cord). The wire electrode was connected to a high-voltage source and, on the
top, there was a grounded counter-electrode. When the applied voltage exceeded a critical value,
Taylor cones appeared on the wire surface (with orientation towards the counter-electrode). Polymer
solution jets moved toward the collector, and nanofibrous layers were collected on a moving substrate
after solvent evaporation. Optimal process parameters, such as the speed of the carriage, distance
between the electrodes, voltage, etc., were carefully applied during the process. Voltages of 50 and
60 kV, relative humidity of 30% and 40%, and a temperature of 22 ◦C were applied during the course
of electrospinning for PA6 and PVA, respectively. The resultant surface densities of the manufactured
nanofibrous PA6 membranes were 0.2 ± 0.03 and 1 ± 0.02 gsm. The corresponding values for the PVA
membranes were 0.6 ± 0.03 and 1 ± 0.02 gsm.
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Characterization of the Materials

Both the fiber morphology and the fiber diameter of the electrospun manufactured nanofibers
were determined using scanning electron microscopy (SEM). Moreover, to get information about the
membrane thickness, a common approach was performed using liquid nitrogen specimen immersion
followed by cutting (freeze fracture). Small sections of the nanofiber samples were placed on the SEM
sample holder and sputter-coated with gold prior to SEM observation (Quorum Q150R Rotary-Pumped
Sputter Coater). Micrograph images of the samples were obtained using a scanning electron microscope
(TESCAN VEGA3) operated at an accelerating voltage of 1.48 kV.

The average fiber diameter was estimated from the SEM images using imaging analysis software
(NIS Elements BR 3.2 by Nikon Instruments Inc.). More than 50 fibers were counted from two SEM
images, which were taken of different places in each sample at 20k magnification value.

The airflow resistivity (σ) of each sample was measured according to the standard ISO 9053 [33],
which basically describes the requirements for the direct measurement of the pressure developed across
a sample for a known volume velocity of steady, slow airflow (i.e., laminar flow) passing through
it. Each membrane specimen was stretched in a flow resistivity tube that carried a slow (1.5 mm/s)
direct airflow, and the pressure drop across it was measured. Care was taken to prevent air leakage by
ensuring a proper seal between the flow resistivity tube and the sample holder. All measurements
were repeated five times in at least two specimens. In addition, five samples obtained from each of the
two variants of PA6 nanofibrous membrane (0.2 and 1 gsm) were sent to the laboratories of Mecanum
Inc. (Sherbrooke, Canada) in order to receive independent results.

Air-permeability (Q) was measured according to the standard ISO 9237 [34] using an air
permeability tester (M021A, SDL Atlas). The air-permeability values of the fibrous materials considered
in this research were determined on the principle of drawing air through a 20 cm2 area of material.
The rate of airflow was adjusted until a 150 Pa pressure difference between the face and back sample
surfaces was achieved. Then, the airflow was measured, and the air-permeability was calculated. Each
sample was measured in at least five different places and, if the values varied considerably, in 10 places.

The membranes’ pore size was estimated from at least three measurements following the “bubble
point method” principle, as described in the ASTM D6767 standard [35]. The method is governed
by the Washburn equation, here extended by the shape factor variable s, which eventually gives the
pressure needed for a fluid wetting sample to be displaced by another through a capillary as:

∆p =
4γs cosθ

dp
, (1)

where ∆p is the applied pressure, dp is the pore (capillary) diameter, γ is the surface tension of
the liquid–liquid or air–liquid interface, and θ is the wetting angle with the solid matrix of the
membrane. Using this method, the maximum pore size present in the pore distribution was determined,
corresponding to the minimum pressure necessary to blow the first observed air bubble. The mean
and the minimum pores were then received from the so-called “dry curves” as the stepped pressure
was applied on a non-wetted sample. The flow rates at particular pressures were compared to the flow
rates at corresponding pressures in a dry run, carried out after all the wetting fluid had been expelled
in the initial run. In the course of this study, a capillary flow porometer (3G Micro by Quantachrome
Instruments) with the proprietary wetting fluid Porofil (γ = 16 mN/m) was employed.

The porosity (φ) of the investigated nanofibers was determined both numerically and
experimentally. A simple numerical estimation can be carried out using the formula expressing
porosity as a function of specimen thickness (d), its mass per unit area (M), and material density (ρf)
via a solidity parameter. Solidity, χ (also referred to as packing density), is the volume of solid material
in a unit volume of the medium. It could also be expressed as the volume fraction of the solids in the
medium [36]. In our case, solids can include fibers, resins, additives, etc. From that, we can estimate
the porosity as the three-dimensional volume void fraction of the specimen from the equation [36]:
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φ = 1− χ = 1−
M

dρ f
. (2)

In addition, porosity was estimated experimentally during the pore size measurements by
immersing specimens in the Porofil wetting fluid, determining their weights, and calculating porosity
from the known densities and specimen dimensions.

Furthermore, considering the Brunauer–Emmett–Teller (BET) theory [37], the assumed specific
surface area can be determined from the nanofibrous diameter (df) using the equation [37]:

S =
4
ρ f d f

. (3)

Surface area was also measured using a high-resolution gas sorption analyzer (Autosorb iQ-MP
by Quantachrome Instruments). Krypton was employed as the gas. Specimen chamber degassing
conditions were 60 ◦C, 60+ hours. The final correlation coefficients for all the outcome data were the
same (0.9999). Surface area was measured from at least three samples (a maximum of five when it
was necessary).

The normal incidence sound absorption coefficient was measured according to the standard ISO
10534-2 [38] in the frequency range 50 to 6400 Hz using a two-microphone impedance measurement
tube (Brüel & Kjær Type 4206). Some measurements were carried out in a larger tube with samples of
10 cm diameter only, so as to focus on the low frequency range, after previous calibration (Brüel &
Kjær sound calibrator Type 4231). Care was taken to avoid leakages in the tube. Signal processing
and analysis were performed by a multi-channel real-time signal analyzer (Aubion X.8) controlled by
measuring software. This analyzer also served to generate a broadband random signal (pink noise),
which was amplified by a power amplifier (Brüel & Kjær Type 2670 and Crown D-75A) and then fed to
the tube loudspeaker. The analyzer measured the signals from the two microphones (Brüel & Kjær
Type 4187), fast Fourier transformed the signals to the frequency domain, and thus calculated the
frequency response function (FRF) H1 between the microphone channels. Later, the normal incidence
sound absorption coefficient (α) was determined from the estimated surface impedance of each sample
according to the ISO standard. The results were plotted as a logarithmic function of the frequency.

3. Results and Discussion

Figures 2–4 show some typical micrograph results. Table 1 reports the results of the characterization
of the manufactured nanofiber membranes.
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Table 1. Average and standard deviation results for the manufactured nanofibers.

Nanofiber 0.2 gsm PA6 1.0 gsm PA6 0.6 gsm PVA 1.0 gsm PVA

Thickness (µm) 3.2 ± 0.84 12.2 ± 1.48 10.6 ± 1.52 18.8 ± 1.64
Airflow resistivity (107 Pa s/m2) 3.6 ± 0.384 9.1 ± 0.085 7.2 ± 0.083 8.8 ± 0.098
Air permeability (mm/s) 111.5 ± 5.831 42.38 ± 0.102 81.6 ± 4.9 68.75 ± 3.2
Mean pore diameter (nm) 648 ± 88 491 ± 36 936 ± 41 897 ± 35
Calculated porosity (%) 98.8 ± 0.25 94.1 ± 0.3 97.3 ± 0.45 95.5 ± 0.17
Measured porosity (%) 97.1 ± 0.98 96.4 ± 2.15 92.1 ± 2.41 91.7 ± 3.17
Calculated specific surface area (m2/g) 24.3 ± 6.7 25.5 ± 4.9 14.5 ± 1.8 16.8 ± 4.1
Measured specific surface area (m2/g) 21.0 ± 4.0 25.0 ± 3.0 13.0 ± 3.0 17.0 ± 4.0
Mean fiber diameter (nm) 153.5 ± 37.5 142.9 ± 27.3 263 ± 29.4 238.1 ± 83.2
Min fiber diameter (nm) 90.4 90.6 115.4 149.4
Max fiber diameter (nm) 331 196.8 345.2 512.6
Porosity 1 (%) 98.4 ± 0.44 97.7 ± 0.49 96.3 ± 0.45 96.3 ± 1.41

1 Estimated from the Kozeny-Carman equation [39].

The average airflow resistivity values measured independently by the Mecanum Inc. laboratory
reported 9.80 ± 0.34 x 107 Pa s/m2 for the 1 gsm PA6 and 2.02 ± 0.9 x 107 Pa s/m2 for the 0.2 gsm PA6.
Comparing these independent measurements with the airflow resistivity values shown in Table 1,
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we observe that both results are within the same order of magnitude. The results for the 1 gsm PA6
membrane compare much better than the results for the lighter 0.2 gsm PA6 membrane.

It has been shown [40] that it is difficult to mathematically relate the measured specific airflow
resistivity of textiles and their air permeability in accordance with ISO 9237 and ISO 9053. However, we
see that an increase in air permeability corresponds to a decrease in resistivity for each material studied.

Although the fiber web morphology of the nanofibrous membrane has been simplified as a
pore-like structure, the calculated values of porosity are in good agreement with those measured.
These values can be considered as quite high, mostly situated above the approximate value of 95%.
It is interesting to compare these values of porosity with those obtained from the Kozeny–Carman
model [39]. This model can be derived from the Poiseuille’s equation for laminar flow of fluid, and it
states that the airflow resistivity of a random network of fibers can be estimated as:

σ =
180η(1−φ)2

d2
fφ

3
, (4)

where η is the dynamic viscosity of air (18.27× 10−6 Ns/m2). Substituting the values of airflow resistivity
and mean fiber diameter in Equation (4) and solving the cubic equation for porosity, we obtain the
results that are included in the last row of Table 1. We also observe good agreement between the results
estimated by Equation (4) and those calculated by Equation (2) and the measured values of porosity.

In addition, we can see good agreement between the calculated and measured values of the
average specific surface area, although we recognize a high dispersion of the values relative to the
mean. This fact may be explained by standard electrospinning being a process with highly stochastic
results in terms of fiber web geometry and alignment. In addition, electrospun fibrous layers are
anisotropic, with a significant factor of local non-homogeneities.

To study the effects on sound absorption of adding the nanofibrous membrane to the bulk porous
materials, the lightest nanofiber membranes have been considered in the following.

Figure 5 shows the normal incidence sound absorption coefficient as a function of frequency for
the hard-backed bulk 8 mm thick PES nonwoven textile (Cellofoam F800FR HO) alone, for textile with
the micro-fibrous substrate and for the textile coated with the PA6 nanofibrous membrane with an
area density of 0.2 gsm. It can be noticed that the sound absorption performances of the bulk material
with and without the micro-fibrous substrate are similar, where the bulk material with the substrate
exhibits a slight improvement in high frequencies. This is obvious given the high air permeability of
the nonwoven textile substrate. However, the effect of incorporating the nanofibrous membrane on
the sound absorption properties is remarkable. This effect can be explained by the increase in the real
part of the surface impedance of the bulk material when the nanofibrous membrane is attached on
top of it. This added resistance is approximately given by the airflow resistivity of the membrane
multiplied by its thickness, as explained by Chevillotte [41]. Thus, in this case, the membrane adds
approximately 16 Ns/m3 to the system. A significant increase in the sound absorption coefficients
is clearly observed for frequencies above 1000 Hz when the nanofibrous membrane is added to the
fibrous bulk material with the micro-fibrous substrate. A maximum sound absorption value, near
unity, is achieved at around 3000 Hz.

Sound absorption curves for the PES nonwoven textile (Cellofoam F800FR HO) are also shown
in Figure 6. Here, the measured results for the bulk material with three different thicknesses (8, 18
and 46 mm) are compared with the inclusion of the nanofibrous membrane with an area density
of just 0.2 gsm on the fibrous bulk material (8 mm) with the micro-fibrous substrate. As expected,
the bulk material exhibits better sound absorption when its thickness is increased, in particular for
high frequencies. However, the effect of the nanofiber membrane on the 8 mm thick bulk material is
appreciable. An increase of 100% in the sound absorption coefficient at the frequency of 3000 Hz is
observed compared to the 18 mm thick bulk material. This could be of great importance to satisfy the
interest in high levels of sound absorption with limited thickness. In addition, from Figures 5 and 6, it
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can be seen that the effect of the micro-fibrous substrate on the sound absorption performance of the
bulk material is unimportant when compared with the effect produced by an increase in its thickness.
This is because the high air permeability of the substrate does not add significant airflow resistance to
the composite.
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(PES) nonwoven fibrous bulk absorber alone (blue line), treated only with a micro-fibrous substrate (red
line) and treated with the 0.2 gsm PA6 nanofibrous membrane on this substrate (green line). The bulk
absorber thickness is 8 mm, while the membrane thickness is negligible.
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Similar comments can be made for the melamine foam bulk material (Cellofoam HR 290/0).
Figure 7 shows the measured sound absorption for this bulk porous material with two different
thicknesses (10 and 20 mm) and the bulk material coated with the substrate and the PA6 nanofibrous
membrane of area density of 0.2 gsm. Sound absorption results are quite similar for the 20 mm thick
foam alone and the 10 mm thick foam treated with the nanofiber membrane up to around 1500 Hz.
Higher sound absorption values for the treated 10 mm thick bulk material can be observed over the
frequency range 1500 to 4000 Hz. This result is very promising, considering that the 20 mm thick foam
is two times thicker and heavier than the treated material.
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Figure 7. Normal incidence sound absorption coefficient as a function of frequency for the 10 mm
melamine foam absorber alone (blue line), the same foam absorber, but 20 mm thick (red line), and the
10 mm thick one treated with the 0.2 gsm PA6 nanofibrous membrane on the substrate (green line).

Figure 8 shows the comparison of the measured sound absorption of a perforated panel resonator
alone (circular holes of radius 4 mm and evenly distributed in a grid with 16 mm between hole centers)
and the panel treated with two different nanofibrous membranes (0.2 PA6 and 0.6 gsm PVA). The results
were measured for different air backing spaces ranging between 0 and 34 mm. It can be seen that the
resonance sound absorption peaks of the untreated panel are very low in the studied frequency range
and the average sound absorption is not appreciable at low frequencies. For all cases, increasing the air
gap distances resulted in leftward shifting of the sound absorption peaks. Inclusion of the nanofiber
membrane produced a significant improvement in the low-frequency sound absorption performance
of the perforated panel when the panel had an air backing space. A broad sound absorption peak is
observed for the panel treated with both PA6 and PVA nanofibrous membranes. Moreover, the observed
curves show that sound absorption curves tend to shift toward lower frequencies when the membrane
area weight is increased. This result agrees with previous observations made by Kalinova [9]. In this
sense, the perforated panel treated with the 0.6 gsm PVA nanofibrous membrane absorbs more than
70% of sound energy at 300–400 Hz with an air-backing space of just 34 mm.

In light of the previous results, it is interesting to study the sound absorption performance in a
standardized reverberation room. The values of normal incidence sound absorption measured with
the impedance tube are useful for comparing the performance of small samples. However, in practice,
the sound absorption of a material depends on the angle of sound incidence. Results of the sound
absorption coefficients of materials tested in a reverberating room give a realistic estimate of the
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performance to be expected in practical applications. In this method, it is assumed that the intensities
of the incident sound are uniformly distributed over all possible directions.
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perforated panel AVS10 alone (dot-dashed lines) and treated with the 0.2 gsm PA6 and with the 0.6
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Intended samples of 10.8 m2 were manufactured and sent to an independent laboratory (Aveton
Ltd., Prague, CZ). There, the materials were tested in accordance with the ISO 354 standard [42] to obtain
the statistical sound absorption coefficients for one-third-octave frequency bands between 100 and
5000 Hz. Figure 9 shows a photograph of one of the materials being tested in the reverberation room.
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measurement of sound absorption in a reverberation room.

A comparison of the results between 20 mm thick melamine foam (Cellofoam HR 290/0) with
a layer of micro-fibrous substrate and with the addition of a 0.2 gsm PA6 nanofibrous layer can be
seen in Figure 10. We observe a noticeable improvement in the sound absorption performance of the
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bulk material with the addition of the nanofibrous membrane between the bands centered at 300 and
2000 Hz. The maximum sound absorption of the treated material occurs at the frequency band centered
at 1000 Hz, where the nanofibrous treatment increased the sound absorption coefficient of the bulk
material by about 40%. Similar results are shown in Figure 11 for an 18 mm thick PES nonwoven textile
(Cellofoam F800FR HO) with the substrate treated and untreated with a 0.2 gsm PA6 nanofibrous layer.
In this case, an improvement in the sound absorption is observed above 500 Hz, exhibiting the highest
sound absorption coefficient at the band centered at 2500 Hz.
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4. Conclusions

This paper has reported the standardized characterization of nanofibrous membranes used to coat
three porous bulk acoustical materials to produce sustainable sound absorbers. The membranes were
manufactured from two different polymers using the needleless electrospinning technique. This resulted
in very thin membrane samples that had high porosity and very high airflow resistivity. The sound
absorption coefficient results measured in an impedance tube show that a significant improvement
in the sound absorption performance of the bulk materials can be achieved by incorporating the
nanofibrous layer on them. The application of the membranes on the surface of a traditional air-backed
perforated panel also improves the sound absorption, exhibiting a broad peak of sound absorption
in the low-frequency range. This is particularly true when the membrane area weight is increased.
The results of the diffuse-field sound absorption coefficient measured in a reverberation room also
show a substantial increase in the sound absorption performance of bulk porous materials treated with
nanofibrous membranes.

Interestingly, these high values of sound absorption were obtained after treating materials of low
thickness. This is of great importance to satisfy the challenge in the transportation industry of high
sound absorption values with reduced weight to reduce fuel consumption. Joost [43] has reported
that reducing a vehicle’s weight by 10% can improve the fuel economy of the vehicle by 6% to 8%.
In a recent sustainable report [44], airlines have estimated that losing just a pound (0.45 kg) in weight
from every plane in their fleet would save 53000 liters of fuel a year. Thus, further application of these
membranes to recycled bulk materials has the potential to result in more environmentally friendly
acoustic materials.

Although this work has focused on experimental results, there is a clear need for theoretical work
to predict the acoustical properties of nanofiber membranes. This would be useful to tailor the sound
absorption characteristics of a material made of nanometric fiber to a particular problem. However, this
is far from easy. Some authors [16] have indicated that several problems make this difficult, such as the
complexity of characterizing the non-acoustical properties and the high uncertainty when determining
the geometric dimensions of such a tiny structure. In addition, Umnova et al. [45] have described that
when fiber radius and/or inter-fiber distances become comparable to a saturated gas molecular mean
free path, conventional theoretical models have to be modified to allow for velocity and thermal slip.
The mean free path is approximately equal to 60 nm for air in normal conditions. However, a theoretical
approach to completely describe the acoustical properties of electrospun nanofiber membranes must
also consider the complexity of their inner structure and fiber orientation, as well as accounting for
membrane vibration.

Further work will be devoted to assessing the real environmental impact of the nanofibers studied
in this research through a life cycle assessment (LCA) and cost/benefit analysis.
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