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Abstract: Multi-attribute decision making (MADM) is a cognitive process for evaluating data with
different attributes in order to select the optimal alternative from a finite number of alternatives. In the
real world, a lot of MADM problems involve some random and ordinal variables. Therefore, in this
paper, a MADM method based on stochastic data envelopment analysis (DEA) cross-efficiency with
ordinal variable is proposed. First, we develop a stochastic DEA model with ordinal variable, which
can derive self-efficiency and the optimal weight of each attribute for all decision making units (DMUs).
To further improve its discrimination power, cross-efficiency as a significant extension is proposed,
which utilizes peer DMUs’ optimal weight to evaluate the relative efficiency of each alternative.
Then, based on self-efficiency and cross-efficiency of all DMUs, we construct corresponding fuzzy
preference relations (FPRs) and consistent fuzzy preference relations (FPRs). In addition, we obtain
the priority weight vector of all DMUs by utilizing the row wise summation technique according to
the consistent FPRs. Finally, we provide a numerical example for evaluating operation performance of
sustainable development of 15 listed banks in China, which illustrates the feasibility and applicability
of the proposed MADM method based on stochastic DEA cross-efficiency with ordinal variable.

Keywords: stochastic DEA; multi-attribute decision making; ordinal variable; cross-efficiency

1. Introduction

Sustainable development (SD) is a widely used phrase and idea, which firstly emerged in the
context of environmental concerns [1–3]. However, with the development of society and economy,
we gradually realized the significance of sustainable development of economy. To some extent, the
operation performance of banks can reflect economic trends. Therefore, it is important to maintain the
sustainable development of banks. Recently, sustainable development of banks has become a hotspot.
Munir and Gallagher [4] proposed that optimizing the benefits and costs can improve sustainable
development of banks. Xue et al. [5] considered that adjusting and optimizing the layout of the physical
branches of commercial banks is crucial to its sustainable development. Jiang and Han [6] suggested
that adopting diversification strategy is beneficial to achieving sustainable development of banks.

Multi-attribute decision making (MADM) is one of the most common and popular research fields
in the theory of decision science [7]. It assumes that there exists a set of alternatives with multiple
attributes which decision makers (DMs) need to evaluate. The purpose of MADM is to select the
optimal one from a finite number of alternatives. Generally speaking, each MADM problem includes
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two parts: classifying and ranking. Classifying can be considered as the grouping of the alternatives
based on the similarities of attributes. Ranking is defined as the rank of alternatives from the optimal to
the worst [8]. In recent years, some methods have been proposed to handle MADM problems, such as
total sum (TS) method [9], simple additive weighting (SAW) method [10], the analytic hierarchy process
(AHP) method [11], multiplicative analytic hierarchy process (MAHP) method [12], the technique for
order preference by similarity to ideal solution (TOPSIS) method [13], and data envelopment analysis
(DEA) method [14].

In MADM problems, we need some decision making information including attribute values and
attribute weights, which denote the characteristics of alternatives and relative importance of attributes,
respectively [7]. Nevertheless, attribute values are known, so we have to obtain attribute weights by
the aforementioned approaches. However, DEA is a nonparametric programming efficiency rating
technique for evaluating the relative efficiency of DMUs with multiple inputs and outputs, whose
evaluation results come from input and output data [15–17]. Compared with other methods, attribute
weights derived by DEA is relatively objective. Therefore, DEA has been widely applied in many fields
for different purposes [18–20], such as assessment of environmental sustainability [21,22], supplier
selection [23–25], and evaluation of the influence of E-marketing on hotel performance [26].

Due to the inherent complexity and competition of the real world, MADM problems often involve
some random and ordinal variables. However, previous DEA studies have been undertaken in a
deterministic environment, which cannot solve the above situation. Therefore, it is necessary to
incorporate the stochastic variable into DEA. Then, we propose the stochastic DEA model with ordinal
variable. Recently, stochastic DEA has become the research hotspot. A well-known method to extend
DEA to the case of random inputs and outputs is to utilize chance constrained programming (CCP) [27],
which was proposed by Charnes and Cooper [28]. The CCP admits random data variations and
permits constraint violations up to the specified probability limit. Khodabakhshi et al. [29] extended
the super-efficiency DEA model to an input-oriented super-efficiency stochastic DEA model by CCP.
The major contributions on the stochastic DEA may be attributed to the work of Sengupta [30].
A prominent characteristic of his study is that stochastic DEA is transformed into a deterministic
equivalent [31]. In addition to Sengupta’s work, Sueyoshi [31] proposed a DEA future analysis method
that considered how to integrate future information into DEA, and then applied it to restructure
strategy of a Japanese petroleum company. Wu et al. [32] followed the Cooper’s approach to develop
stochastic DEA model by considering undesirable outputs with weak disposability.

However, although stochastic DEA model can evaluate MADM problems with random and
ordinal variables, the following disadvantages also exist. One is that DEA identifies many efficient
alternatives where efficiency score is equivalent to one, and cannot further discriminate them. Another
is that the ranking order of all alternatives cannot involve appraisal of peer DMUs and influences the
accuracy and persuasion of evaluation results in MADM problems. Faced with these drawbacks, many
researchers have taken efforts to modify DEA methods, including weight restriction, super-efficiency,
cross-efficiency and so on [33]. The weight restriction methods commonly attach additional constrains
to relative weights, including absolute weight restriction [34], common weights [35], and cone
ratio restriction [36]. Nevertheless, all weight restriction approaches use priority information or
predefined parameters, thus they are subjective to some extent. Andersen and Petersen [37] proposed
a super efficiency method for ranking DMUs. The cross-efficiency evaluation method is an important
extension, which is invented to utilize peer DMUs’ optimal weights to appraise relative efficiency of
each DMU [38–41]. Compared with the traditional DEA approach concentrating on self-efficiency
evaluation, cross-efficiency evaluation method has the following main characteristics: (1) taking
peer-evaluation of all alternatives into account and guaranteeing a unique ranking order for whole
DMUs, (2) eliminating unrealistic weight schemes without predetermining any weight restrictions,
and (3) effectively distinguishing better DMUs and poor DMUs [42]. Owing to these superiorities,
cross-efficiency evaluation results can be more reasonable and acceptable. Therefore, cross-efficiency
has been widely applied to diverse fields, including R&D project selections and the ranking of
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universities’ comprehensive ability. However, there are few DEA methods to handle the issue that
MADM problems involve some random and ordinal variables. To further extend the application of
DEA on aforementioned MADM problems, we develop a MADM method based on stochastic DEA
cross-efficiency with ordinal variable.

The main purpose of this paper is to address the MADM problems with random and ordinal
variables. Therefore, we propose a MADM method based on stochastic DEA cross-efficiency with
ordinal variable. The major characteristics of this method are presented as follows. One is that both
stochastic variable and ordinal variable are incorporated into DEA model, which is considerably
consistent with the actual circumstance. The other is that it simultaneously considers the self-efficiency
and cross-efficiency in evaluation process of MADM problems, and then constructs corresponding
consistent FPRs. Subsequently, we calculate the priority weight vector of all alternatives by utilizing
the row wise summation technique and derive the full ranking order of them.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the traditional CCR
model and its correlative properties. In Section 3, we develop a MADM method based on stochastic
DEA cross-efficiency with ordinal variable. Section 4 gives a numerical example for evaluating
operation performance of sustainable development of 15 listed banks in China, which illustrates the
applicability of this proposed approach. Finally, some conclusions and future research work are
presented in Section 5.

2. Preliminaries

In this section, we briefly review some basic concepts of DEA model. DEA is a data-oriented
methodology for identifying efficiency production frontiers and evaluating the relative efficiency
of DMUs that multiple inputs of production factors produce certain amount outputs [43]. Suppose
that there are n DMUs to be evaluated, where each DMU is characterized by its production
process of consuming m inputs to generate s outputs. For convenience, the inputs and outputs
of DMU j( j = 1, 2, · · · , n) are denoted as xi j(i = 1, 2, · · · , m) and yrj(r = 1, 2, · · · , s), respectively.
To evaluate performance of specific DMUk, Charnes et al. [44] proposed the following model to
calculate its relative efficiency under the assumption of constant returns to scale (CRS).

minθk

S.t
n∑

j=1
λ jyrj ≥ yrk, r = 1, 2, · · · , s,

n∑
j=1

λ jxi j ≤ θkxik, i = 1, 2, · · · , m,

λ j ≥ 0, j = 1, 2, · · · , n.

(1)

The above model is called input-oriented CCR model, where λ j are the nonnegative multipliers
used to aggregate existing DMUs into a virtual one [45], θk is the relative efficiency score of DMUk.
To understand the CCR model clearly, we give the dual form of the CCR model:

max z =
s∑

r=1
ωryrk

S.t
s∑

r=1
ωryrj −

m∑
i=1

µixi j ≤ 0, j = 1, 2, · · · , n,
m∑

i=1
µixik = 1,

ωr ≥ 0, r = 1, 2, · · · , s;µi ≥ 0, i = 1, 2, · · · , m.

(2)

where xi j and yrj are the inputs and outputs of DMU j( j = 1, 2, · · · , n), µi and ωr are the input and
output weights. xik and yrk are the inputs and outputs of specific DMUk, respectively. The optimal
solution of the objective function is the relative efficiency of DMUk. If the efficiency score of DMUk is
less than one, the DMUk is defined as DEA inefficient. Conversely, if the efficiency score is equal to one,
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the DMUk is considered as DEA efficient. In the following, we extend the CCR model by incorporating
discretionary variable, ordinal variable and stochastic variable. Then, we develop a MADM method.

3. Multi-Attribute Decision Making Method

Generally speaking, MADM is an evaluation process where the optimal alternative needs to be
chosen from a finite number of feasible alternatives based on a set of attributes [8]. Owing to the
inherent complexity and competition of real world, MADM problems often involve some random and
ordinal variables. However, the traditional DEA approach assumes that all inputs and outputs are
discretionary where they are under the control of management, thus it insufficiently addresses the
above situation. Therefore, we propose a stochastic DEA model with ordinal variable, which constructs
production frontiers that incorporate inefficiency and stochastic error [45].

3.1. Stochastic DEA Model with Ordinal Variable

The basic CCR model supposes that all inputs and outputs are deterministic. In other words,
they are under the control of management [45]. However, in the real world, there are many situations
where some inputs and outputs are out of the control of management. Hence, the aforementioned
models need to be modified to adapt to these circumstances. First, we assume that I denotes the set
including all input variables, and then divide them into two categories: a set of discretionary inputs
ID(i = 1, 2, · · · , p), and a set of ordinal inputs IO(i = p + 1, p + 2, · · · , m). We rewrite model (3) in a
new form as follows:

max z =
s∑

r=1
ωryrk

S.t
s∑

r=1
ωryrj −

p∑
i=1

µ1
i x1

i j −
m∑

i=p+1
µ2

i x2
i j ≤ 0,

p∑
i=1

µ1
i x1

ik +
m∑

i=p+1
µ2

i x2
ik = 1,

ωr ≥ 0,µ1
i ≥ 0,µ2

i ≥ 0, j = 1, 2, · · · , n.

(3)

The above model simultaneously considers discretionary and ordinal inputs. The model (3) is
an output-oriented model in which we find the optimal output value on the condition that the input
values are fixed. The optimal solution of the objective function of model (3) is the self-efficiency of the
specific DMUk. The symbols µ1

i and µ2
i represent weight multipliers of the discretionary inputs and

ordinal inputs, respectively.
It is notable that this study pays attention to real situations where we can control the quantity of

inputs, while being unable to control the outputs. The reason is that the quantity of outputs relies on
many external factors such as economic factors, political factors and other social factors. Therefore, the
output is commonly considered as stochastic variable. The traditional DEA model for performance
evaluation is deterministic type, which does not take the random errors of output variable into account
in production process. However, stochastic DEA constructs production frontiers that incorporate
both inefficiency and stochastic error, which moves the frontiers closer to the bulk of the producing
units [45]. Therefore, the measured technical efficiency of DMUs is improved comparing to the
deterministic model. In this subsection, we introduce the stochastic outputs into model (3). Suppose
that all stochastic outputs are denoted by ỹrj(r = 1, 2, · · · , s), and each ỹrj has a certain probability
distribution. The following model (4) is developed:
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max E
(

s∑
r=1

ωr ỹrk

)
S.t

p∑
i=1

µ1
i x1

ik +
m∑

i=p+1
µ2

i x2
ik = 1,

Pr


s∑

r=1
ωr ỹrj

p∑
i=1

µ1
i x1

i j+
m∑

i=p+1
µ2

i x2
i j

≤ β j

 ≥ 1− α j,

ωr ≥ 0,µ1
i ≥ 0,µ2

i ≥ 0, j = 1, 2, · · · , n.

(4)

The above model is designed to evaluate the expected efficiency of the specific DMUk.
The inequality constraint guarantees that the probability of the efficiency score of DMU j less than
or equal to β j should be higher than 1− α j. The symbols (ωr,µ1

i ,µ2
i ) represent weight multipliers of

stochastic outputs, discretionary inputs and ordinal inputs, respectively. Pr denotes a probability and
the superscript “~” expresses that ỹrj is a stochastic variable. The other symbol β j is a predefined
value whose range is between 0 and 1. β j stands for a desirable level of efficiency of DMU j, which is
determined by outside conditions including decision level of management or market circumstances [31].
Meanwhile, α j is also a prescribed value whose range is between 0 and 1. It is considered as an
allowable risk level that violates the related constraints.

To obtain the computational feasibility, the stochastic DEA model should convert into the
deterministic DEA model. In this paper, we utilize the CCP technique to transform the second
constraint of model (4) into the following form.

Pr


s∑

r=1
ωr ỹrj −

s∑
r=1

ωryrj√
U j

≤

β j

 p∑
i=1

µ1
i x1

i j +
m∑

i=p+1
µ2

i x2
i j

− s∑
r=1

ωryrj√
U j

 ≥ 1− α j, j = 1, 2, · · · , n, (5)

where yrj is the expected value of ỹrj and

U j =
(
ω1 ω2 · · · ωs

)
×


V
(
ỹ1 j

)
Cov

(
ỹ1 j, ỹ2 j

)
· · · Cov

(
ỹ1 j, ỹsj

)
Cov

(
ỹ2 j, ỹ1 j

)
V
(
ỹ2 j

)
· · · Cov

(
ỹ2 j, ỹsj

)
...

...
. . .

...
Cov

(
ỹsj, ỹ1 j

)
Cov

(
ỹsj, ỹ2 j

)
· · · V

(
ỹsj

)
×


ω1

ω2
...
ωs

, j = 1, 2, · · · , n. (6)

U j( j = 1, 2, · · · , n) represents the variance-covariance matrix of the DMU j where the symbol “V”
stands for a variance and the symbol “Cov” denotes a covariance. To follow the CCP technique, this
subsection introduces a new variable which follows the standard normal distribution with zero mean
and unity variance.

Z̃ j =

s∑
r=1

ωr ỹrj −
s∑

r=1
ωryrj√

U j
, j = 1, 2, · · · , n. (7)

Therefore, the Formula (5) can be rewritten as follows:

Pr

Z̃ j ≤

β j

 p∑
i=1

µ1
i x1

i j +
m∑

i=p+1
µ2

i x2
i j

− s∑
r=1

ωryrj√
U j

 ≥ 1− α j, j = 1, 2, · · · , n. (8)
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After a simple transformation, we can obtain the following formula.

β j

 p∑
i=1

µ1
i x1

i j +
m∑

i=p+1
µ2

i x2
i j

− s∑
r=1

ωryrj√
U j

≥ Φ−1
(
1− α j

)
, j = 1, 2, · · · , n. (9)

where Φ represents a cumulative normal distribution function and Φ−1 denotes its inverse function.
Based on Equation (9), the model (4) can be rewritten as follows:

maxE
(

s∑
r=1

ωr ỹrk

)
S.t

p∑
i=1

µ1
i x1

ik +
m∑

i=p+1
µ2

i x2
ik = 1,

β j

 p∑
i=1

µ1
i x1

i j+
m∑

i=p+1
µ2

i x2
i j

− s∑
r=1

ωr yrj

√
U j

≥ Φ−1
(
1− α j

)
,

ωr ≥ 0,µ1
i ≥ 0,µ2

i ≥ 0, j = 1, 2, · · · , n.

(10)

The second inequality constraint of model (10) includes quadratic expression and brings
computational difficulty. To further simplify the computational process, we suppose that each
stochastic output is denoted by ỹrj = yrj + hrjδ(r = 1, 2, · · · , s; j = 1, 2, · · · , n), where yrj is the expected
value of ỹrj and hrj is its standard deviation. δ is assumed to follow a standard normal distribution
N(0, 1). B j represents the covariance matrix of DMU j. Under such an assumption, B j can be defined
as follows:

B j =


h2

1 j h1 jh2 j · · · h1 jhsj

h2 jh1 j h2
2 j · · · h2 jhsj

...
...

. . .
...

hsjh1 j hsjh2 j · · · h2
sj


. (11)

Hence, U j can be rewritten as the following form,

U j =
(
ω1 ω2 · · · ωs

)
×


h2

1 j h1 jh2 j · · · h1 jhsj

h2 jh1 j h2
2 j · · · h2 jhsj

...
...

. . .
...

hsjh1 j hsjh2 j · · · h2
sj


×


ω1

ω2
...
ωs

 =
(

s∑
r=1

ωrhrj

)2

,∀r = 1, 2, · · · , s; j = 1, 2, · · · , n. (12)

By incorporating Equation (12) into model (10), then the stochastic DEA model with ordinal
variable can be transformed into the following equivalent linear programming:

max
s∑

r=1
ωryrk

S.t
p∑

i=1
µ1

i x1
ik +

m∑
i=p+1

µ2
i x2

ik = 1,

β j

 p∑
i=1

µ1
i x1

i j +
m∑

i=p+1
µ2

i x2
i j

− s∑
r=1

ωryrj ≥
s∑

r=1
ωrhrjΦ−1

(
1− α j

)
,

ωr ≥ 0,µ1
i ≥ 0,µ2

i ≥ 0, j = 1, 2, · · · , n.

(13)
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Here, the dual form of model (13) is presented as follows:

minθk

S.t
n∑

j=1
λ j

(
β jx1

i j

)
≤ θkx1

ik, i = 1, 2, · · · , p,

n∑
j=1

λ j

(
β jx2

i j

)
≤ θkx2

ik, i = p + 1, p + 2, · · · , m,

n∑
j=1

λ j
[
yrj + hrjΦ−1

(
1− α j

)]
≥ yrk, r = 1, 2, · · · , s,

λ j ≥ 0, 0 ≤ α j ≤ 1, 0 ≤ β j ≤ 1, j = 1, 2, · · · , n.

(14)

We can derive the optimal weights (ωr,µ1
i ,µ2

i ) of outputs and inputs by solving model (13). Based
on the optimal weights of DMUk, the cross-efficiency of DMU j is calculated by the following formula:

Ekj =

s∑
r=1

ωrk ỹrj

p∑
i=1

µ1
ikx1

i j +
m∑

i=p+1
µ2

ikx2
i j

, k, j = 1, 2, · · · , n, k , j. (15)

which is the peer evaluation of DMUk to DMU j. Then, we obtain the cross-efficiency matrix.

E =


E11 E12 · · · E1n
E21 E22 · · · E2n

...
...

. . .
...

En1 En2 · · · Enn

 (16)

However, we cannot derive priority weight vector of all DMUs by cross-efficiency matrix E.
Therefore, we need to construct corresponding preference relations to yield the priority weight vector
of whole alternatives.

3.2. Constructing the Consistent Fuzzy Preference Relations for Ranking DMUs

It is known that traditional ways to construct a preference relation are based on experts’ subjective
evaluation involving their professional knowledge and ideas, which lead to different preference
information for different experts [46]. However, compared with traditional approaches, using the
pairwise efficiency derived by DEA method to construct a preference relation is more objective. In this
subsection, we present the following specific procedures of construction process. First, we can obtain
the efficiency scores Ekk, Ekj, E jk, E j j(k, j = 1, 2, · · · , n) by solving model (13) and calculating Equation

(15). Then, we construct corresponding fuzzy preference relations (FPRs)R =
(
rkj

)
n×n

, the element of R
is defined as follows:

rkj =
Ekk + E jk

Ekk + Ekj + E jk + E j j
, r j j = 0.5, j = 1, 2, · · · , n. (17)

where R =
(
rkj

)
n×n

is characterized by rkj + r jk = 1 and r j j = 0.5. rkj represents the evaluation of unit k
over unit j. If rkj > 0.5, it denotes that unit k is superior to unit j. Conversely, if rkj < 0.5, it stands for

that unit j is superior to unit k. Based on FPRs R =
(
rkj

)
n×n

, we can construct corresponding consistent

FPRs A =
(
akj

)
n×n

by utilizing the following formulas.

ck =
n∑

j=1

rkj =
n∑

j=1

Ekk + E jk

Ekk + E jk + E j j + Ekj
, k = 1, 2, · · · , n. (18)
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akj =
ck − c j

2(n− 1)
+ 0.5. (19)

Based on the consistent FPRs A =
(
akj

)
n×n

, we can derive the priority weight vector of all
alternatives by using the row wise summation technique and obtain the whole ranking order.
The priority weight vector vk(k = 1, 2, · · · , n) of DMUk is calculated by the following equation,

vk =

n∑
j=1

akj

n∑
k=1

n∑
j=1

akj

=

n∑
j=1

akj +
n
2 − 1

n(n− 1)
. (20)

In summary, we show the detailed procedures of MADM method based on stochastic DEA
cross-efficiency with ordinal variable.

Step 1: Solve model (13); we obtain the self-efficiency Ekk(k = 1, 2, · · · , n) and the optimal weights
µ1∗

i (i = 1, 2, · · · , p), µ2∗
i (i = p + 1, p + 2, · · · , m),ω∗r(r = 1, 2, · · · , s).

Step 2: Utilize Formula (15) to calculate the cross-efficiency Ekj(k , j, k, j = 1, 2, · · · , n) by the
optimal weights of other peer DMUs.

Step 3: Use Equation (17) to calculate the value of rkj(k, j = 1, 2, · · · , n) and construct the FPRs

R =
(
rkj

)
n×n

.

Step 4: Construct corresponding consistent FPRs A =
(
akj

)
n×n

based on the FPRs R =
(
rkj

)
n×n

by
utilizing Equations (18) and (19).

Step 5: Obtain the priority weight vector vk(k = 1, 2, · · · , n) of DMUk by calculating the
Formula (20).

Step 6: Rank all alternatives in accordance with the descending order of priority weight vector
vk(k = 1, 2, · · · , n) and select the optimal one.

4. Example and Discussion

With the development of society, we gradually realize the significance of sustainable development
of economy. To some extent, the operation performance of banks can reflect the economic trend.
Therefore, it is important to maintain sustainable development of banks. In this section, we provide
a numerical example for evaluating operation performance of sustainable development of 15 listed
banks in China, which illustrates practicability and validity of the proposed MADM method based on
stochastic DEA cross-efficiency with ordinal variable. The 15 listed banks are Bank of China (DMU1),
Construction Bank of China (DMU2), Industrial and Commercial Bank of China (DMU3), Agricultural
Bank of China (DMU4), Industrial Bank Co., Ltd. (DMU5), Bank of Communications (DMU6), Shanghai
Pudong Development Bank (DMU7), Ping An Bank Co., Ltd. (DMU8), China Minsheng Bank (DMU9),
China Merchants Bank (DMU10), China Citic Bank (DMU11), China Everbright Bank (DMU12), Huaxia
Bank (DMU13), Beijing Bank (DMU14) and Shanghai Bank (DMU15), respectively. Owing to operating
similar business, these banks compete with each other. Then, we want to know the bank with the best
performance under the same conditions. Therefore, we have to evaluate the relative performance of
all listed banks by aforementioned method and obtain a full ranking of them. Here, we employ the
intermediation approach to determine input and output factors of these banks. Compared with other
approaches, this method is more suitable for evaluating the whole bank and superior in evaluating
efficiency of bank’s profitability. Then, it also reduces heavy computation and is considerably consistent
with bank’s daily operation. Therefore, based on the intermediation approach, we determine four
input factors (m = 4) and two output factors (s = 2). The input factors consist of (i) fixed assets (x1),
which stand for the capital value of tangible assets; (ii) labor costs (x2), which refer to the costs of the
full-time employees; (iii) interest expense (x3) and the number of branches (x4). The output factors
include the amount of the loan (y1) and the amount of deposit (y2). Among these six attributes, x1, x2

and x3 are considered as the discretionary variables, x4 is the ordinal variable, y1 and y2 are assumed
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as the stochastic variables. Our data come from the national Tai’an database. Table 1 gives a summary
of the inputs and outputs. Table 2 gives order ranking for branches’ number of all listed banks. Table 3
gives descriptive statistics of raw data.

Table 1. Input and output variables.

Index Sym Item Unit

Input 1 X1 Fixed assets 100-million CNY
Input 2 X2 Labor costs 100-million CNY
Input 3 X3 Interest expense 10-billion CNY
Input 4 X4 The number of branches

Output 1 Y1 Loan 100-billion CNY
Output 2 Y2 Deposit 100-billion CNY

Table 2. Order ranking for branches’ number of all listed banks.

Banks Rank Banks Rank

Bank of China 4 China Minsheng Bank 9
Construction Bank of China 3 China Merchants Bank 5

Industrial and Commercial Bank of China 2 China Citic Bank 7
Agricultural Bank of China 1 China Everbright Bank 9

Industrial Bank Co., Ltd. 6 Huaxia Bank 10
Bank of Communications 5 Beijing Bank 11

Shanghai Pudong Development Bank 7 Shanghai Bank 11
Ping An Bank Co., Ltd. 8

Table 3. Descriptive statistics of raw data.

Attribute Fixed Assets Labor Costs Interest
Expense

Ranking of
Branches’ Number Loan Deposit

Average 715.51 152.35 17.66 6.53 70.51 86.29
Min 43.95 27.62 4.59 1 6.43 9.24
Max 2161.56 402.22 37.56 11 198.93 232.26

There are two parameters which are not part of the given database: α and β. We run the stochastic
DEA model (13) in Matlab software with different values for these parameters to see the sensitivity of
the result. Table 4 shows self-efficiency scores of 15 listed banks which are calculated with diverse
combinations between α = {0.05, 0.1, 0.2} and β = {0.8, 0.85, 0.9, 0.95, 1}. It presents the values of
three statistics of self-efficiency, including the minimum, maximum and the mean. As suggested by
Sueyoshi [31], regular trends are found in Table 4. It is notable that the mean, the maximum and the
minimum of the self-efficiency increase as α or β increases. However, there are two cases that exist
in Table 4 and cannot be viewed as exceptions. One is that an increase in β from 0.95 to 1 decreases
the maximum of self-efficiency from 1 to 0.9754 when α = 0.1. The other is that the maximum of
self-efficiency has no variation between β = 0.95 and β = 1 under the condition of α = 0.2. It is obvious
that there is smaller difference among self-efficiency scores under the condition that α or β chooses
diverse values. Therefore, we choose α = 0.1 and β = 0.95 for the rest of the paper.

With the original data, we complete Step 1 of the developed method. In the following, we will
accomplish Step 2 to 6. In Step 2, we use the optimal attribute weights of each bank to calculate the
cross-efficiency of the 15 listed banks by utilizing Formula (15) and the results are presented in Table 5.
In Table 5, Ekj(k = 1, 2, · · · , 15) denotes the peer evaluation of DMUk to DMU j. In Step 3, we utilize
the Formula (17) to calculate the value of rkj(k, j = 1, 2, · · · , 15) and construct corresponding FPRs

R =
(
rkj

)
15×15

. Table 6 shows the values of the FPRs R. In Step 4, we construct the consistent FPRs

A =
(
akj

)
15×15

by using Equations (18) and (19). Table 7 presents the values of the consistent FPRs A.
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In Step 5, we obtain the priority weight vector of each listed bank by utilizing Equation (20). In Step 6,
we can select the optimal one by ranking all listed banks in accordance with the descending order of
priority weight vector vk(k = 1, 2, · · · , 15) and the result is documented in Table 8.

Table 4. Self-efficiency under different α and β.

β α min max mean

0.8 0.05 0.4142 0.7649 0.6470
0.1 0.4528 0.8435 0.6791
0.2 0.5171 0.8716 0.7064

0.85 0.05 0.4401 0.8127 0.6874
0.1 0.4811 0.8963 0.7215
0.2 0.5494 0.9205 0.7502

0.9 0.05 0.4660 0.8605 0.7278
0.1 0.5094 0.9312 0.7576
0.2 0.5817 0.9593 0.7933

0.95 0.05 0.4919 0.9283 0.7696
0.1 0.5377 1.0000 0.8212
0.2 0.6141 1.0000 0.8365

1 0.05 0.5178 0.9561 0.8087
0.1 0.5660 0.9754 0.8434
0.2 0.6464 1.0000 0.8770

Table 5. Cross-efficiency and self-efficiency score.

E1,j E2,j E3,j E4,j E5,j E6,j E7,j E8,j

Ek,1 0.9010 0.9493 0.9498 0.9507 0.9059 0.6197 0.8449 0.6523
Ek,2 0.8762 1.0000 0.8815 0.8851 0.8317 0.5170 0.7675 0.6071
Ek,3 0.9005 0.9246 0.9016 0.9259 0.8458 0.5912 0.7884 0.6076
Ek,4 0.8961 0.9374 0.9272 0.8707 0.8361 0.4318 0.7651 0.6326
Ek,5 0.7182 0.5316 0.5085 0.5325 0.8379 0.2974 0.7553 0.8421
Ek,6 0.8000 0.7858 0.7684 0.7870 0.7827 1.0000 0.7508 0.6226
Ek,7 0.6880 0.4986 0.5146 0.4992 0.8108 0.4244 0.8102 0.5327
Ek,8 0.5317 0.3765 0.3377 0.3772 0.7480 0.3673 0.6536 0.8627
Ek,9 0.5940 0.4900 0.4691 0.4908 0.6672 0.5191 0.6298 0.6017
Ek,10 0.8565 0.8067 0.7437 0.8082 0.8942 0.9491 0.8380 0.9062
Ek,11 0.7483 0.5406 0.5460 0.5413 0.9022 0.4473 0.8256 0.6656
Ek,12 0.4792 0.3245 0.3215 0.3250 0.6325 0.3444 0.5905 0.5295
Ek,13 0.3340 0.2141 0.2176 0.2144 0.4578 0.2772 0.4225 0.3466
Ek,14 0.2555 0.1648 0.1631 0.1650 0.3608 0.4986 0.3379 0.3115
Ek,15 0.2065 0.1279 0.1230 0.1281 0.3217 0.4377 0.2799 0.3316

E9,j E10,j E11,j E12,j E13,j E14,j E15,j

Ek,1 0.8543 0.6192 0.8056 0.7620 0.6979 0.7845 0.6618
Ek,2 0.7839 0.5166 0.7338 0.6950 0.6278 0.6723 0.5966
Ek,3 0.7981 0.5907 0.7465 0.7081 0.6484 0.7363 0.6161
Ek,4 0.8015 0.4315 0.7223 0.6923 0.6017 0.5903 0.5718
Ek,5 0.8082 0.2972 0.8971 0.8132 0.6871 0.4417 0.6563
Ek,6 0.7322 0.9484 0.7443 0.7046 0.7071 0.8947 0.6888
Ek,7 0.7309 0.4241 0.8104 0.7341 0.7082 0.7067 0.6541
Ek,8 0.6590 0.3670 0.9505 0.8461 0.8474 0.4468 0.8502
Ek,9 0.7477 0.5186 0.6937 0.6462 0.6509 0.6153 0.6363
Ek,10 0.8242 1.0000 0.9245 0.8610 0.8855 0.8809 0.8901
Ek,11 0.8133 0.4470 0.8555 0.8408 0.8092 0.7158 0.7597
Ek,12 0.5678 0.3441 0.7268 0.6991 0.6749 0.5365 0.6391
Ek,13 0.3933 0.2770 0.5495 0.4752 0.5377 0.4546 0.5040
Ek,14 0.2976 0.4982 0.4880 0.4076 0.5828 0.5987 0.5709
Ek,15 0.2401 0.4374 0.5198 0.3980 0.7339 0.5277 0.6945
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Table 6. Fuzzy preference relations R.

r1,j r1,j r3,j r4,j r5,j r6,j r7,j r8,j

rk,1 0.5000 0.5035 0.4933 0.4883 0.4627 0.5421 0.4618 0.4730
rk,2 0.4965 0.5000 0.4925 0.4896 0.4278 0.5407 0.4254 0.4354
rk,3 0.5067 0.5075 0.5000 0.4959 0.4352 0.5423 0.4394 0.4430
rk,4 0.5117 0.5104 0.5041 0.5000 0.4453 0.5784 0.4446 0.4520
rk,5 0.5373 0.5722 0.5648 0.5547 0.5000 0.6109 0.5043 0.4895
rk,6 0.4579 0.4593 0.4577 0.4216 0.3891 0.5000 0.4135 0.4312
rk,7 0.5382 0.5746 0.5606 0.5554 0.4957 0.5865 0.5000 0.5303
rk,8 0.5270 0.5646 0.5570 0.5480 0.5105 0.5688 0.4697 0.5000
rk,9 0.5668 0.5904 0.5828 0.5745 0.5378 0.5776 0.5280 0.5300
rk,10 0.4502 0.4564 0.4612 0.4187 0.3747 0.4999 0.4018 0.3921
rk,11 0.5155 0.5539 0.5404 0.5328 0.4968 0.5724 0.4908 0.5438
rk,12 0.5853 0.6235 0.6120 0.6042 0.5536 0.6203 0.5449 0.5817
rk,13 0.6472 0.6841 0.6724 0.6619 0.6050 0.6769 0.6126 0.6592
rk,14 0.6637 0.6866 0.6825 0.6567 0.5715 0.6333 0.6183 0.5899
rk,15 0.6343 0.6600 0.6499 0.6368 0.5952 0.5987 0.6004 0.6254

r9,j r10,j r11,j r12,j r13,j r14,j r15,j

rk,1 0.4332 0.5498 0.4845 0.4147 0.3528 0.3363 0.3657
rk,2 0.4096 0.5436 0.4461 0.3765 0.3159 0.3134 0.3400
rk,3 0.4172 0.5388 0.4478 0.3880 0.3276 0.3175 0.3501
rk,4 0.4255 0.5813 0.4463 0.3958 0.3381 0.3433 0.3632
rk,5 0.4622 0.6253 0.5032 0.4464 0.3950 0.4285 0.4048
rk,6 0.4224 0.5001 0.4276 0.3797 0.3231 0.3667 0.4013
rk,7 0.4720 0.5982 0.5092 0.4551 0.3874 0.3817 0.3996
rk,8 0.4700 0.6079 0.4562 0.4183 0.3408 0.4101 0.3746
rk,9 0.5000 0.5903 0.5366 0.4761 0.3996 0.1792 0.4031
rk,10 0.4097 0.5000 0.4036 0.3592 0.3017 0.3684 0.3746
rk,11 0.4634 0.5964 0.5000 0.4567 0.3951 0.4088 0.4292
rk,12 0.5239 0.6408 0.5433 0.5000 0.4244 0.4489 0.4495
rk,13 0.6004 0.6983 0.6049 0.5756 0.5000 0.5435 0.5783
rk,14 0.8208 0.6316 0.5912 0.5511 0.4565 0.5000 0.9109
rk,15 0.5969 0.6254 0.5708 0.5505 0.4217 0.8717 0.5000

Table 7. Consistent fuzzy preference relations A.

a1,j a2,j a3,j a4,j a5,j a6,j a7,j a8,j

ak,1 0.5000 0.5110 0.5069 0.5000 0.4737 0.5182 0.4756 0.4835
ak,2 0.4890 0.5000 0.4959 0.4890 0.4626 0.5072 0.4646 0.4725
ak,3 0.4931 0.5041 0.5000 0.4931 0.4668 0.5113 0.4687 0.4766
ak,4 0.5000 0.5110 0.5069 0.5000 0.4736 0.5182 0.4756 0.4835
ak,5 0.5263 0.5374 0.5332 0.5264 0.5000 0.5446 0.5020 0.5099
ak,6 0.4818 0.4928 0.4887 0.4818 0.4554 0.5000 0.4574 0.4653
ak,7 0.5244 0.5354 0.5313 0.5244 0.4980 0.5426 0.5000 0.5079
ak,8 0.5165 0.5275 0.5234 0.5165 0.4902 0.5347 0.4921 0.5000
ak,9 0.5254 0.5364 0.5323 0.5254 0.4991 0.5436 0.5010 0.5089
ak,10 0.4754 0.4864 0.4823 0.4754 0.4490 0.4936 0.4510 0.4589
ak,11 0.5238 0.5348 0.5307 0.5239 0.4975 0.5421 0.4994 0.5073
ak,12 0.5498 0.5608 0.5567 0.5498 0.5235 0.5680 0.5254 0.5333
ak,13 0.5878 0.5988 0.5947 0.5878 0.5615 0.6060 0.5634 0.5713
ak,14 0.5686 0.5796 0.5755 0.5686 0.5422 0.5868 0.5442 0.5521
ak,15 0.5533 0.5644 0.5602 0.5534 0.5270 0.5716 0.5290 0.5369
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Table 7. Cont.

a9,j a10,j a11,j a12,j a13,j a14,j a15,j

ak,1 0.4746 0.5246 0.4762 0.4502 0.4122 0.4314 0.4467
ak,2 0.4636 0.5136 0.4652 0.4392 0.4012 0.4204 0.4356
ak,3 0.4677 0.5177 0.4693 0.4433 0.4053 0.4245 0.4398
ak,4 0.4746 0.5246 0.4762 0.4502 0.4122 0.4314 0.4466
ak,5 0.5009 0.5510 0.5025 0.4765 0.4385 0.4578 0.4730
ak,6 0.4564 0.5064 0.4579 0.4320 0.3940 0.4132 0.4284
ak,7 0.4990 0.5490 0.5006 0.4746 0.4366 0.4558 0.4710
ak,8 0.4911 0.5411 0.4927 0.4667 0.4287 0.4479 0.4631
ak,9 0.5000 0.5500 0.5016 0.4756 0.4376 0.4568 0.4721
ak,10 0.4500 0.5000 0.4515 0.4256 0.3876 0.4068 0.4220
ak,11 0.4984 0.5485 0.5000 0.4740 0.4360 0.4552 0.4705
ak,12 0.5244 0.5744 0.5260 0.5000 0.4620 0.4812 0.4965
ak,13 0.5624 0.6124 0.5640 0.5380 0.5000 0.5192 0.5345
ak,14 0.5432 0.5932 0.5448 0.5188 0.4808 0.5000 0.5152
ak,15 0.5280 0.5780 0.5295 0.5035 0.4655 0.4848 0.5000

Table 8. Ranking of 15 listed banks.

Banks Weight Rank

Bank of China 0.0694683 6
Construction Bank of China 0.0709367 3

Industrial and Commercial Bank of China 0.0703883 4
Agricultural Bank of China 0.0694709 5

Industrial Bank Co., Ltd 0.0659563 11
Bank of Communications 0.0718976 2

Shanghai Pudong Development Bank 0.0662167 9
Ping An Bank Co., Ltd 0.0672700 7
China Minsheng Bank 0.0660825 10
China Merchants Bank 0.0727509 1

China Citic Bank 0.0662932 8
China Everbright Bank 0.0628283 12

Huaxia Bank 0.0577616 15
Beijing Bank 0.0603234 14

Shanghai Bank 0.0623554 13

We can obtain the ranking of all listed banks:

DMU10 > DMU6 > DMU2 > DMU3 > DMU4 > DMU1 > DMU8 > DMU11

> DMU7 > DMU9 > DMU5 > DMU12 > DMU15 > DMU14 > DMU13.
(21)

From the ranking in Table 7, we find that the optimal DMU is selected as DMU10. It is obvious
that China Merchants Bank is the listed bank with the best operation performance. However, according
to self-efficiency of all listed banks, we derive the following ranking:

DMU10 = DMU6 = DMU2 > DMU3 > DMU1 > DMU4 > DMU8 > DMU11

> DMU5 > DMU7 > DMU9 > DMU12 > DMU15 > DMU14 > DMU13.
(22)

We cannot select the best bank in accordance with the above ranking result. In addition, the
ranking result obtained from the developed method is different from that derived by traditional DEA
approach. The stochastic DEA cross-efficiency with ordinal variable method effectively distinguishes
all listed banks and yields the whole ranking. Meanwhile, it can greatly avoid impact of subjectivity
of experts and strengthen the discrimination power. Therefore, our proposed method is reliable and
valid compared with the traditional DEA method.
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5. Conclusions

In this article, we proposed MADM method based on stochastic DEA cross-efficiency with ordinal
variable and applied it to evaluating operation performance of sustainable development of 15 listed
banks in China. First, we obtained self-efficiency scores of each bank and optimal attribute weights
by solving stochastic DEA model. Then, we calculated cross-efficiency of all listed banks by utilizing
the optimal attribute weights. Subsequently, according to self-efficiency and cross-efficiency of whole
banks, we constructed corresponding FPRs and consistent FPRs. Finally, we used the row wise
summation technique to derive the priority weight vector of all listed banks. Based on the unique
ranking order of whole banks, we selected the best one.

In summary, the developed MADM method based on stochastic DEA cross-efficiency with ordinal
variable is proved effective for evaluating MADM problems. The advantages of this approach are
presented as follows. One is that it simultaneously incorporates stochastic variable and ordinal variable,
which is considerably consistent with actual circumstances. The other is that it takes cross-efficiency
into account in evaluation process of MADM problems and constructs corresponding FPRs, which
guarantee the objectivity and persuasion of evaluation results. Furthermore, it requires no assumption
of the functional relationships between multiple inputs and multiple outputs of alternatives, and all
evaluation results come from original data. However, our method exists some limitations. One is
that the stochastic output variable is assumed to follow standard normal distribution and directly
applied to the stochastic DEA model. Standard normal distribution is one of the many probability
distributions, we need to examine whether other distributions can be used for stochastic DEA model.
Another is that the value of parameters α and β is predefined. We have no mature approach to find the
optimal value of parameters α and β.

In the future research, we intend to design an integrated method that combines DEA with
multiplicative FPRs to handle performance evaluation of MADM problems. Another is that we need
to consider the relation among different types of variables in MADM problems and extend existing
DEA methods to address it.
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