
sustainability

Article

Sensitivity and Uncertainty Analyses of Flux-based
Ecosystem Model towards Improvement of Forest
GPP Simulation

Hanqing Ma 1,2, Chunfeng Ma 1,* , Xin Li 3,4, Wenping Yuan 5, Zhengjia Liu 6 and
Gaofeng Zhu 7

1 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China; mahq@lzb.ac.cn

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Institute of Tibetan Plateau Research, Chinese Academy of Sciences. Beijing 100101, China; xinli@itpcas.ac.cn
4 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences,

Beijing 100101, China
5 School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou 510275, China;

yuanwp3@mail.sysu.edu.cn
6 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,

Beijing 100101, China; liuzj@lreis.ac.cn
7 Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University,

Lanzhou 730000, China; zhugf@lzu.edu.cn
* Correspondence: machf@lzb.ac.cn; Tel.: +86-931-4967-236

Received: 19 February 2020; Accepted: 16 March 2020; Published: 25 March 2020
����������
�������

Abstract: An ecosystem model serves as an important tool to understand the carbon cycle in the forest
ecosystem. However, the sensitivities of parameters and uncertainties of the model outputs are not
clearly understood. Parameter sensitivity analysis (SA) and uncertainty analysis (UA) play a crucial
role in the improvement of forest gross primary productivity GPP simulation. This study presents
a global SA based on an extended Fourier amplitude sensitivity test (EFAST) method to quantify
the sensitivities of 16 parameters in the Flux-based ecosystem model (FBEM). To systematically
evaluate the parameters’ sensitivities, various parameter ranges, different model outputs, temporal
variations of parameters sensitivity index (SI) were comprehensively explored via three experiments.
Based on the numerical experiments of SA, the UA experiments were designed and performed
for parameter estimation based on a Markov chain Monte Carlo (MCMC) method. The ratio of
internal CO2 to air CO2 ( fCi), canopy quantum efficiency of photon conversion (αq), maximum
carboxylation rate at 25 ◦C (V25

m ) were the most sensitive parameters for the GPP. It was also indicated
that αq, EVm and Q10 were influenced by temperature throughout the entire growth stage. The result
of parameter estimation of only using four sensitive parameters (RMSE = 1.657) is very close to that
using all the parameters (RMSE = 1.496). The results of SA suggest that sensitive parameters, such as
fci,αq, EVm, V25

m strongly influence on the forest GPP simulation, and the temporal characteristics of
the parameters’ SI on GPP and NEE were changed in different growth. The sensitive parameters
were a major source of uncertainty and parameter estimation based on the parameter SA could lead
to desirable results without introducing too great uncertainties.

Keywords: sensitivity analysis; flux-based ecosystem model; extended Fourier amplitude sensitivity
test (EFAST); Howland forest; Markov chain Monte Carlo
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1. Introduction

Ecosystem models are valuable tools that describe and explain the processes and variable dynamics
of photosynthesis and respiration in a forest ecosystem [1,2]. They also play a key role in assessing
the carbon equilibrium and the response of a forest ecosystem to global change at local and global
scales [3,4]. Existing ecosystem models integrate many ecosystem processes and are coupled into
the earth system model (ESM) [5–7]. Terrestrial gross primary productivity (GPP) was the largest
component flux of the global carbon cycles [8,9]. There had uncertainty in the interannual variability
of GPP simulation of the majority of ecosystem models [10]. The more complicated the models are,
the more parameters they may have. This may introduce larger uncertainty caused by the parameter
sensitivity, thus, it is indispensable to quantify the uncertainty and sensitivity of the parameters in
forest ecosystem models. Under such background, various sensitivity analyses (SAs) were proposed
and applied to ascertain the corresponding responses in the output variables when input parameters
alter within their valid ranges [11,12]. Indeed, various SA algorithms have been widely expanded to
ecological models [13,14], SCOPE model [15], hydrological models [16,17], remote sensing models [18]
and crop growth models [12]. Thus, performing an SA is a feasible way to characterize and reduce
uncertainties in ecosystem models, and to improve their performance [19,20].

The global and local SA algorithms can identify the influence of parameters on variations of
the outputs in the model and are therefore key to understand the model performance in response
to variations in environmental factors [12,21]. Especially, global SA could be applied to non-linear
models, but local SA could not [22,23]. The global SA considers non-linear responses and parameter
interactions [24], providing a comprehensive identification of parameter sensitivity on model outputs.
For example, the Sobol’ [25], Fourier amplitude sensitivity test (FAST), and extended FAST (EFAST)
are variance-based SA methods, and they can quantify the sensitivities of model parameters,
including first-order sensitivity index (or main sensitivity index, MSI), total sensitivity index (TSI) and
interactions [26].

SA helps parameter uncertainty analysis (UA) and can identify the major uncertainties when
combined with parameter optimization. Note that parameter optimization is an essential means
of calibrating ecosystem models and increasing the accuracy of their predictions [27,28]. However,
the parameter calibration of complex process models is time-consuming and inaccurate owing to a lack
of results in SA in general [29–35].

The flux-based ecosystem model (FBEM) was also widely used for parameter estimation or data
assimilation studies [28,36–38]. However, the model has as many as 16 parameters, and how these
parameters govern the model behavior is still not clear. Thus, it is necessary to identify the sensitivities
of the parameters, informing understanding of the uncertainties in the model. Specifically, we need
to estimate the parameter sensitivities in FBEM and their variations in the growing season, as well
as the relationship between parameters SI and environmental factors. In this study, the FBEM and
EFAST algorithm were combined for parameters SA experiment. Three experiments were designed
to systematically evaluate the parameters’ sensitivities. Various parameter ranges, different model
outputs and temporal variations of parameters SIs were carefully considered.

The objective of this study is to evaluate the sensitivity index (SI) of all the parameters on the
GPP of FBEM using the EFAST method and to improve the parameter estimation process based on
the results of the SA for quantizing uncertainty. Four scientific questions are addressed: (1) how
the parameter ranges influence their sensitivities on forest GPP simulation? (2) which parameter(s)
predominates the model behavior and leads to uncertainty of the model, i.e., which parameters were
most sensitive for GPP and net ecosystem carbon exchange (NEE) simulation? (3) how the parameter
SI variated during the growing season, and how the environmental factors influence the variation of SI?
and (4) did the uncertainties caused by parameters mainly come from sensitive parameters? To answer
these questions, we designed numeric experiments: (1) to analyze the influence of parameter ranges,
models outputs on parameters SIs, (2) to identify the most influential parameters on the output in
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the FBEM model, (3) to further analyze the relationship between sensitivity index, uncertainty and
environmental factors based on the results of the SA.

2. Materials and Methods

2.1. Flux-based Ecosystem Model and Parameters

In this study, FBEM is used to conduct ecosystem modeling. FBEM is originally designed to
compute net CO2 ecosystem exchange with a parameter estimation module [38,39]. FBEM covers
two major carbon cycling processes: canopy-level photosynthesis (Ac) and ecosystem respiration (ER).
In the model, the two processes are mainly regulated by four environmental variables: leaf area index
(LAI), air temperature (Ta), relative humidity (RH) and photosynthetically active radiation (PAR).
Leaf-level photosynthesis (A) is calculated by electron transport rates (Je) of light and the rates of
carboxylation enzymes (Jc), and it is finally scaled up to Ac in FBEM. Details of each part of the model
and its equations are listed in Table 1.

Table 1. Symbols, definitions, units, initial values, ranges and sources of 16 parameters of the Flux-based
ecosystem model (FBEM) used in a sensitivity analysis.

Parameter Definition Unit Value
Range

Reference
Minimum Maximum

αq
Canopy quantum efficiency of
photon conversion mol mol−1 photon 0.28 0 0.5 [40]

K25
c

Michaelis–Menten constant for
carboxylation µ mol mol−1 460 50 600 [40]

EKc Activation energy of K25
c Jmol−1 59,356 30,000 150,000 [40]

EKo Activation energy of K25
o Jmol−1 35,948 10,000 60,000 [40]

K25
o

Michaelis–Menten constant for
oxygenation mol mol−1 0.33 0.2 0.5 [40]

EVm Activation energy of V25
m Jmol−1 58,520 10,000 100,000 [40]

Γ25
∗

CO2 compensation point
without dark respiration µmol mol−1 42.5 10 200 [40]

rJmVm
Ratio of Jm to V25

m at 25 °C - 1.79 1 5 [40]

ER0
Whole ecosystem
respiration at 0 ◦C µmol CO2 m−2 s−1 2.5 1 5 [41]

Q10
Temperature dependency of
ecosystem respiration - 2 1 3 [41]

V25
m

Maximum carboxylation rate at
25 ◦C µmol CO2 m−2 s−1 29 10 300 [40]

fCi Ratio of internal CO2 to air CO2 - 0.87 0.5 0.9 [40]

Kn
Canopy extinction coefficient
for light - 0.8 0.7 0.9 [40]

EΓ25
∗

Activation energy of CO2
compensation point at 25 ◦C J mol−1 60,000 30,000 100,000 [40]

gl
Empirical coefficient in
Leuning model - 1657 100 2000 [42]

D0
Empirical coefficient in
Leuning model kPa 2.74 1 10 [42]

2.1.1. Leaf-level photosynthesis

Leaf-level photosynthesis (A) is based on the model developed by Farquhar [43]. For C3 plants,
gross leaf CO2 uptake (A, µ mol CO2 m−2 s−1) is calculated as follows:

A = min{JC, Je} (1)
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where Je and JC represent light electron transport (µ mol CO2 m−2 s−1) and the rates limited by
carboxylation enzymes (µ mol CO2 m−2 s−1), respectively.

JC = Vm ×
Ci − T∗

Ci + Kc × (1 +
Ox
Ko
)

(2)

Ci = fCi ×Ca (3)

Vm= V25
m× exp

Evm×(T k−298)
R× Tk×298

(4)

where Ci is the leaf’s internal CO2 concentration (µmol CO2 mol−1 air), Ca is ambient CO2 concentration,
fCi the ratio of the leaf’s internal CO2 content to its concentration in the ambient air, Ox is oxygen
concentration in the air (0.21 mol O2 mol−1 air), and Vm is the maximum carboxylation rate (µ mol
CO2 m−2 s−1), Evm is the activation energy, V25

m is the maximum carboxylation rate at 25 ◦C, and R is
the universal gas constant (8.314 J K−1mol−1), respectively. The CO2 compensation point without dark
respiration is represented as Γ∗ (µ mol CO2 m−1). It is modified by using Arrhenius’s equation.

Γ∗= Γ25
∗ × exp

 EΓ25
∗
× (Tk−298)

R× Tk×298

 (5)

where, Γ25
∗ is the CO2 compensation point without dark respiration at 25 ◦C and EΓ25

∗
describes the

temperature dependence of Γ∗. Two Michaelis–Menten constants have a temperature dependence
based on Arrhenius’s equation similar to Vm . Kc, the Michaelis–Menten constant for carboxylation
(µ mol mol−1), is calculated by using the following function:

Kc= K25
c × exp(

EKC×(T k−298)
R× Tk×298

) (6)

where, EKC is activation energy and K25
c is the Michaelis–Menten constant for carboxylation at 25 ◦C.

Ko, the Michaelis–Menten constant for oxygenation (µ mol mol−1), is computed by using the
following function:

KO = K25
O × exp

(
EKO × (Tk − 298)

R× Tk × 298

)
(7)

where, EKO is activation energy and K25
O is the Michaelis–Menten constant for oxygenation at 25 ◦C.

The light electron transport processes (Je with the unit of µ mol CO2 m−2 s−1) are described by using
the following function:

Je =
αq × I × Jm√
J2
m + α2

q × I2
×

Ci − Γ∗
4× (Ci + 2Γ∗)

(8)

where, I is the absorbed PAR (µ mol m−2 s−1), αq is the quantum efficiency of photon capture (mol mol−1

photon), and Jm is the maximum electron transport rate (µ mol CO2 m−2 s−1), respectively. Jm depends
on temperature, and is computed by using the following function:

Jm= rJmVm
×V25

m × exp(
EVm×(T k−298)

R× Tk×298
) (9)

where, rJmVm
is the ratio of Jm to V25

m at 25 ◦C.
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2.1.2. Stomatal conductance

Stomatal conductance (Gs) is coupled with leaf-level photosynthesis by the Leuning model [44,45].
The flux in carbon at the top layer of the leaf (An) is estimated by using the following equations:

An = Gs × (Ca −Ci) (10)

Gs= gl ×
A

(C a−Γ∗) × (1+ D
D0

)
(11)

where, gl and D0 (kPa) are empirical coefficients, and D is a deficit in vapor pressure (kPa) calculated
by air temperature (Tk) and RH (in %):

ln es= 21.382−
5347.5

Tk
(12)

D = 0.1 × es × 1 − RH (13)

where, es is saturation vapor pressure (mbar), RH is relative humidity.

2.1.3. Canopy-level Photosynthesis

An approach developed by Sellers [46] is used to scale up leaf-level photosynthesis to canopy-level
photosynthesis. It describes the relationship between canopy photosynthesis (Ac) and the carbon influx
at the top leaf layer.

Ac = An ×
1− exp(−kn × LAI)

kn
(14)

where kn is the light extinction coefficient, and Ac equals to GPP.

2.1.4. Ecosystem Respiration

Ecosystem respiration (ER ) is modeled as a function of temperature (Ta,
◦C) by using the

widely-used van’t Hoff equation:
ER = ER0 ×QTa/10

10 (15)

where, ER0 is ecosystem respiration at 0 ◦C and Q10 is the relative increase (ER /ER0) in respiration per
10 ◦C in temperature. NEE is calculated by using the following function:

NEE = GPP − ER (16)

In total, 16 parameters dominate model behaviors (Table 1).

2.2. Data

Driving data, used in this experiment, were collected flux tower site (68.740◦ W, 45.204◦ N) in
Howland forest from 2002~2006, Maine, USA, and the vegetation was mainly evergreen needle leaf
forest (ENF), and the climate was warm summer continental. The vegetation of the old evergreen
needle leaf forest was red spruce (Pinus rubens Sarg), eastern hemlock (Tsuga canadensis (L.) Carr.) and
other conifers. The mean annual temperature (MAT) is 5.27 ◦C and the mean annual precipitation
(MAP) is 1070 mm [37,47,48]. The flux dataset contained daily ecological and environmental data
from 2000 to 2006, such as photosynthetically active radiation (PAR), air temperature (Ta), and relative
humidity (RH). In addition, the flux and ecological data, such as net ecosystem carbon exchange (NEE),
gross primary productivity (GPP), leaf area index (LAI), and ecosystem respiration (ER) were collected
from the AmeriFlux (http://ameriflux.lbl.gov/sites). The observations of Howland forest flux site are
comprehensive and of high quality, so a large number of ecological models, model-data fusion and

http://ameriflux.lbl.gov/sites


Sustainability 2020, 12, 2584 6 of 18

remote sensing studies selected the site as a case [28,37,48,49]. This study also selected this flux site for
parameter sensitivity and uncertainty research of the forest ecosystem model.

2.3. Extended Fourier Amplitude Sensitivity Test (EFAST)

The EFAST is a well-recognized global SA algorithm that is especially widely applied in the
sensitivity analysis for nonlinear models [11], such as the Biome-BGC model [50], crop growth
model [12], canopy reflectance model [51], microwave remote sensing models [18]. The algorithm
utilizes the main sensitivity index (MSI) and total sensitivity index (TSI) to quantify the sensitivity of
the model outputs on various model inputs. The EFAST has also been extensively applied in evaluating
the sensitivity of ecosystem models [12,13,52]. Since the algorithm has been well documented and
applied, we briefly introduced how to combine the algorithm and FBEM to analyze the sensitivity
of the parameters on the model output. In this study, a total of 16 parameters to the FBEM were
comprehensively evaluated by computing their MSI and TSI:

MSI =
ˆVari(Y)
ˆVar(Y)

(17)

TSI =
1− ˆVar−i(Y)

ˆVar(Y)
(18)

where, ˆVar(Y) is the estimated conditional variance of the output Y refers to GPP and NEE in this
study), and ˆVari(Y) is the variance of ith parameter as a factor, ˆVar−i(Y) is the variance of all except for
the ith parameter as a factor, MSI is supposed to the contribution of each input parameter to the ˆVar(Y).
TSI is the total amount of the MSI and all interaction effects involving the parameter, and additional
information is available in [11,23].

2.4. Numerical Experiments for Sensitivity Analysis

2.4.1. Parameters’ SI Variation with Parameter Range

Determining the range and distribution of each parameter was significant in a global SA [53]
because they may affect SIs and importance rankings of the parameters. Thus, the purpose of
this experiment was to test the impact of parameter ranges on their SIs and importance rankings.
The ranges of parameter variation were used to set the upper and lower limits of the 16 parameters of
the EBFM, as derived from the references [28,54,55] (Table 1), and GPP was the major model output in
this experiment.

One set range was determined by ±10% perturbation and ±30% perturbation of the parameter
values described in Table 1, and another was between the minimum and maximum (described in
Table 1) to improve the parameter estimation based on the SA. Uniform distribution was in this
experiment. Moreover, the foremost objective of the models was the estimation of the GPP, which was
therefore considered the model output to assess the influence of the range of parametric variation
on the SA.

2.4.2. Comparison of Parameter SIs for GPP and NEE

The above-mentioned experiments were designed to analyze the parameter SIs on GPP. However,
for different model outputs, e.g., GPP, NEE and ER, the same parameter may present significantly
different SI on them. Therefore, analyzing the roles of the parameters for various state variables was
useful. To this end, this numerical experiment was designed to compare the SIs of parameters on
different model outputs, which are GPP and NEE.
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2.4.3. Temporal Characteristics of Parameter Sensitivity for GPP

The main eco-physiological processes of vegetation vary in each growth stage. For example,
in the initial growth stage, vegetation growth was dominant, whereas reproductive growth was
dominant after anthesis [2]. The dominant biological processes differ throughout the entire growth
period, which results in differences among the dominant parameters. To this end, this experiment was
designed to analyze the temporal characteristics of the parameter SIs.

The GPP and NEE were the basis of the model outputs and were thus selected as the target of the
analysis of the temporal characteristics of the parameters. In the numerical experiment, minimum and
maximum values described in Table 1 were set as the lower and upper boundary of parameter ranges,
respectively, and the TSI was used as an evaluation criterion.

2.4.4. Results of Uncertainty Analysis based on Parameter Sensitivity Analysis and Parameter
Estimation

We selected the most sensitive parameters from all input parameters through sensitivity analysis.
We then determined whether this could enhance our understanding of model uncertainty and help
optimize the configuration of the model and whether replacing this model’s parameters with another
quickly yields the most appropriate parameter configuration.

Two experiments were carried out to compare the results: (1) Experiment 1: All 16 input parameters
were selected and optimized by the Markov chain Monte Carlo (MCMC) method. (2) Experiment 2:
Four input parameters with a high SI were used to optimize the model. The results of the experiments
were compared to reduce errors in the model and make the optimization more efficient.

The MCMC method can be used to estimate model parameters by incorporating observations into
the model. According to Bayes theorem, the posterior probability density functions (PDFs) of the model
parameters (p) can be calculated from prior knowledge and information generated by comparing the
model with the observed values. The method can be expressed as [36,56]:

p(θ|Z) =
p(θ|Z) p(θ)

p(Z)
(19)

where p(θ|Z) is the posterior distribution of parameters θ given observations Z, p(θ) is a set of uniform
distributions over the ranges specified in Table 1, and p(Z) is the probability distribution function of
the observations. p(θ|Z) is a likelihood function.

We used the initial ranges of model parameters proposed by [55], and details of the MCMC
process are described in the references [36,56].

3. Results

3.1. Parameters’ SI variation with Parameter Range

In this experiment, the model output was GPP and three-parameter ranges were set as listed
in Table 1: ± 10% and ± 30% perturbation of the values and between the minimum and maximum
values. It was found that parameter sensitivities varied with the ranges (Figure 1). For the range
of ± 10% perturbation of value, only fci and V25

m showed the highest SIs on the GPP (Figure 1a).
The two parameters’ MSIs all exceeded 0.1, and their TSIs were 0.67 and 0.22 respectively. For this
experiment, however, the other 14 parameters had a relatively weak influence on the GPP. These
observations indicated that in the given range, V25

m and fci dominated model behavior. For the range
of ± 30% perturbation of value, Parameters fci and αq, for which the TSIs were 0.54 and 0.43, were the
most sensitive on GPP (Figure 1b). When the ranges were determined by the minimum and maximum
values, the sensitivities parameters were as shown in Figure 1c. Parameters fci and αq, for which the
TSIs were 0.51 and 0.49, were the most sensitive on GPP, and the TSIs of V25

m and EVm were 0.19 and
0.16, as well those of the other parameters.
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different ranges of variation: (a) 10% perturbation of model parameters value, (b) 30% perturbation of
model parameters value and (c) between the minimum and maximum from Table 1.

By comparing the two cases, it can be seen that the ranges of the parameter significantly influenced
their sensitivities and importance order [18]. The range selected in the first experiment was narrower
and limiting some important but small parameters, such as αq, so the range was given in the second
experiment was suggested for FBEM. Overall, in the two cases, the common findings were that the
most sensitive parameters were fci, αq, V25

m , and EVm, which was similar to the results of the earlier
studies [57,58]. V25

m was the key parameter for estimating photosynthesis and respiration, its inaccurate
estimation may lead to non-negligible uncertainty in GPP estimation [59]. In addition, fci, αq were
a highly sensitive parameter, and relative experiments were also focused on them [60].
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3.2. Parameter Sensitivity for GPP and NEE

For different model outputs, the importance of a given parameter may vary. This experiment
examined differences in parameters’ SIs for NEE and GPP, and the results were shown in Figure 2.Sustainability 2020, 12, x FOR PEER REVIEW 2 of 3 
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minimum and maximum from Table 1): (a) Gross primary productivity (GPP) as output and (b) net 
ecosystem carbon exchange (NEE) as output. 

  

Figure 2. MSIs and TSIs of 16 parameters with different outputs (The parameters’ range between the
minimum and maximum from Table 1): (a) Gross primary productivity (GPP) as output and (b) net
ecosystem carbon exchange (NEE) as output.

As the model output was the GPP, the most sensitive parameters were αq, fci, V25
m , and EVm .

However, if the model output changed to NEE, ecosystem respiration (Q10), whose TSI was 0.40,
was the most sensitive parameters and was followed by the temperature dependence of ecosystem
respiration at 0 ◦C (ER0) and EVm. Both fci and EVm were sensitive to GPP and NEE. αq and V25

m were
sensitive to the GPP but not to the NEE, and ER0 and Q10 were only sensitive to the NEE. The results
indicated that the sensitive parameters and sensitive degree varied for different model outputs.

3.3. Temporal Characteristics of Parameter SA

The total sensitivity index variation of the primary model parameters with the DOY for two outputs,
namely GPP and NEE during the entire growing season was shown in Figures 3 and 4.
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Figure 4. Temporal TSI variation of the main parameters from DOY10 to DOY340 when model output
was NEE. (a) TSI of EVm vs. DOY; (b) TSI of ER0 vs. DOY; (c) TSI of Q10 vs. DOY; (d) TSI of fci vs. DOY.
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As for GPP as shown in Figure 3, the TSI of EVm and D0 obviously changed over time. TSI of EVm
decreased from DOY10 to DOY150, and was less than 0.01 from DOY160 to DOY240, and then increased
from DOY260 to DOY340. SIs of D0 was less than 0.01 before DOY100, and increased to the maximum at
DOY220, and then declined. The SIs of the main parameters αq and fci vary weakly with DOY, and TSI
of V25

m did not change with DOY, So TSI of V25
m was not shown in Figure 3. As for NEE (Figure 4),

ER0 and Q10 played key roles, and the variation in them correlated with time. TSI of ER0 and Q10 were
very small between DOY110 and DOY210, and increased quickly to 0.423 and 0.463, respectively.

The analysis of temporal change of SIs showed that the parameters were not invariable and
changed prominently in different growth periods.

The study found that the variation in sensitivity had a trade-off effect. The αq, fci, and EVm
declined with time, whereas ER0 and Q10 increased and became more sensitive from DOY110 to
DOY210. After DOY210, ER0 and Q10 declined, and fci, EVm and αq increased.

3.4. Parameter Uncertainty Analysis based on Sensitivity Analysis

To analyze the sources of uncertainty in the parameters, two experiments were designed for
comparison. Based on the sensitivity analysis, four parameters fci, V25

m , αq, and EVm had the highest
sensitivity when the model’s output was the GPP. We designed two parameter estimation experiments
to analyze uncertainty in the model based on the sensitivity analysis. Experiment I estimated four
sensitive parameters and experiment II estimated 16 based on MCMC. The results are shown in Figure 5.
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The results of GPP optimization are shown in Figure 5. The results obtained using the four most
sensitive parameters through MCMC were almost identical to those obtained using 16 parameters.
The RMSE values were 1.657 and 1.496, respectively, and the bias values of the simulated GPP were
−0.03 and −0.055, respectively.

4. Discussion

It is worthy to further discuss the experimental results and related studies of sensitive parameters,
the variability of parameter SIs due to different model outputs (GPP and NEE) and the relationship
between parameter sensitivity and environmental factors at different growth stages.

4.1. Comparing to Previous Studies of Sensitive Parameters

In the flux-based ecological model, the sensitive parameters were V25
m , αq, and fCi for GPP, and ER0,

Q10, and fCi for NEE. The variation of V25
m and SIs of V25

m were the main factor causing the uncertainty of
GPP simulation. The results of related studies showed that varying with species, seasonal, nitrogen (N),
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and light intensity [58,59]. Walker found that global GPP varied between 108.1~128.2 PgC yr−1 with
nine implementations of the global distribution of V25

m [59], and greater effort was needed to pay close
attention to the sensitivity of the variation in V25

m in the growing season and Fluxnet-stations. So, future
research of the comparison of the SIs of parameters, especially V25

m , would be in demand. fCi was also
important, and the most sensitive parameter overall for the GPP and NEE output, and a recent study
indicates that fCi was not a constant and varies along with environmental gradients [61], which was
coincided with the parameter SA experiment. According to the above, the SA and other studies need to
discover some parameters vary with the environment, the initial setting of the parameters as a constant
was thus a crucial source of uncertainty [1,62].

4.2. Analysis of Variation of Parameters SIs

The variation of parameter SI was influenced by parameter range. The SA in 3.1 results showed
that smaller parameters were more susceptible to ranges. The narrow range will limit the sensitivity
index of the small-value parameters. Therefore, the value range of principle is very important for
accurate SI. For this model, the recommended parameter ranges are given in Table 1. Similar to
the previous study [19], the SIs of ±30% perturbation range was applicable when the specific range
cannot be given.

The above results showed that the most sensitive parameters of GPP were different from that of
NEE, and the reason was needed to discuss. GPP and NEE were the main products of photosynthesis
and respiration processes, and their physiological processes are expressed by formulas. According to
formulas (15) and (16), NEE was a direct result of ER, while ER was directly calculated with ER0 and
Q10. Thus, the two parameters were more sensitive to NEE but insensitive to GPP.

4.3. Environmental Factors Analyses of Temporal Variance of Parameter SIs

The numerical experiment results showed that the SIs of key parameters have temporal variations
on the GPP and NEE. More importantly, the mild trade-off effect was found in the parameter SIs during
the growth season. An earlier study also found that sensitivities of several soil respiration-associated
parameters have strong seasonal variations [29]. Therefore, temporal characteristics and the trade-off

effect were essential features of parameters’ SIs.
As for GPP (Figure 3a), the SIs of EVm and D0 changed over the growing season. SIs of EVm

increased from DOY10 to DOY150, weakened from DOY160 to DOY240, and increased from DOY160
to DOY240.

The study found that the variation in sensitivity had a trade-off effect (Figure 4). The SIs of αq, fci,
and EVm declined with DOY, whereas SIs of ER0 and Q10 increased and became more sensitive from
DOY110 to DOY210. After DOY210, SIs of ER0 and Q10 declined, and SIs of fci, EVm, and αq increased.

The dynamic evolution of the parameter SI indicated that the sensitive parameters from DOY10
to DOY340 for different outputs (GPP and NEE) were fluctuant. To further explore the causes of
this phenomenon, the correlation between average air temperature(Ta), minimum air temperature
(Tmin), maximum air temperature (Tmax), precipitation (P), PAR and showed SI of αq, D0, fci and EVm
was analyzed. The result illustrates that only Ta was the more important environmental factor that
influences the temporal variation of parameter, as shown in Figures 6 and 7.
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Figure 6. Correlation analyses of average air temperature (Ta) and variation in the sensitivity index of
the main parameter from DOY10 to DOY340 when model output was GPP: (a) SI of αq vs. Ta; (b) SI of
D0 vs. Ta; (c) SI of fci vs. Ta; (d) SI of EVm vs. Ta.

Parameters SI of fci and ER0 did not change significantly with an increase in Ta, this was due to
the two parameters that were not closely related to temperature. So, the temperature change is not the
cause of variation of these two parameters in the whole growth season. Unfortunately, what causes
changes of SI of fci for NEE during the growing season Figure 7b was unclear and remained to be
discussed in future studies.

Parameters SI of EVm decreased with an increase in Ta, and the trend of Q10 was identical to that
of Ta. SA experiment found that the effect of Q10 for the model output was different. However, Q10 was
regarded as a constant in previous studies and had caught uncertainty in CO2 simulation [63,64].
Therefore, it was worth further investigate that the parameters were taken as constants and the
uncertainty analysis resulting from parameters on the model output in the existing model.
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4.4. SA Improves the Effect of Parameter Optimization

The SA showed that each parameter has a different degree of influence on the result and varied
with time. The results can help us better understand the effects of parameter optimization and reduce
uncertainty in the model. Therefore, the perspective of parameter SA needs to be emphasized in
uncertainty analysis, parameter optimization, and model structure.

Yuan design a two-step Bayesian inversion method to improve parameter estimates when model
parameters converge undesirably [65]. In this method, whole parameters were optimized, and according
to the convergence effect of the optimization, split into two or more steps. However, the SA recognized
still more sensitive parameters and improved the two-step method. This study can help enhance the
comprehension of the structure of ecological models. It can also be used to reformulate the controls of
the GPP in next-generation ecological models.

5. Conclusions

A comprehensive SA was conducted for an ecosystem model, FBEM, based on a globally
quantitative SA algorithm, EFAST. The sensitive parameters were distinguished from all parameters
by quantifying the parameter’s SIs and ranking their importance of the FBEM. The following findings
were obtained by various numerical experiments. First, the effects of the range of parameter variation
on the SIs were significant. It is found in the experiment that the SIs of parameters were changed
with a different value range, therefore, the suggested range of parameter sensitivity analysis in FBEM
was given. Second, Sensitive parameters of the FBEM model for GPP and NEE were identified,
the most sensitive parameters were αq, fCi and V25

m for GPP, while ER0, Q10 and fCi were most sensitive
for NEE. Second, an uncertainty analysis of the results of comparative experiments on parameter
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optimization was used to understand the performance of the model and the dynamics of the parameters.
The results of this SA and uncertainty analysis are discussed in a more general framework. Furthermore,
the temporal characteristics of the parameters’ SI on GPP and NEE were subsequently described:
the sensitivity index clearly changed in different growth stages of the plants. SI of EVm gradually
decreased while SI of D0 and αq parameters were changing with a different value range, kept increasing
at the beginning of the growth season with the model output GPP. SI of fci, Q10 and EVm were variation
in the growth season for NEE. The reasons for SI variation were discussed, temporal characteristic of
αq, Q10 and EVm were found to be mainly explained by the change of Ta. Moreover, more importantly,
the mild trade-off effect was observed in the variation of the parameter SIs during the growing season
in the EBEM. This study provided an improved understanding of the uncertainty of the ecological
model caused by the parameters’ sensitivity and it also insights into potential approaches for the
improvement of GPP simulation.
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