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Abstract: Floating treatment wetland (FTW) is an innovative, cost effective and environmentally
friendly option for wastewater treatment. The dyes in textile wastewater degrade water quality and
pose harmful effects to living organisms. In this study, FTWs, vegetated with Phragmites australis and
augmented with specific bacteria, were used to treat dye-enriched synthetic effluent. Three different
types of textile wastewater were synthesized by adding three different dyes in tap water separately.
The FTWs were augmented with three pollutants degrading and plant growth promoting bacterial
strains (i.e., Acinetobacter junii strain NT-15, Rhodococcus sp. strain NT-39, and Pseudomonas indoloxydans
strain NT-38). The water samples were analyzed for pH, electrical conductivity (EC), total dissolved
solid (TDS), total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen demand
(BOD), color, bacterial survival and heavy metals (Cr, Ni, Mn, Zn, Pb and Fe). The results indicated
that the FTWs removed pollutants and color from the treated water; however, the inoculated bacteria
in combination with plants further enhanced the remediation potential of floating wetlands. In FTWs
with P. australis and augmented with bacterial inoculum, pH, EC, TDS, TSS, COD, BOD and color of
dyes were significantly reduced as compared to only vegetated and non-vegetated floating treatment
wetlands without bacterial inoculation. Similarly, the FTWs application successfully removed the
heavy metal from the treated dye-enriched wastewater, predominately by FTWs inoculated with
bacterial strains. The bacterial augmented vegetated FTWs, in the case of dye 1, reduced the
concentration of Cu, Ni, Zn, Fe, Mn and Pb by 75%, 73.3%, 86.9%, 75%, 70% and 76.7%, respectively.
Similarly, the bacterial inoculation to plants in the case of dye 2 achieved 77.5% (Cu), 73.3% (Ni),
83.3% (Zn), 77.5% (Fe), 66.7% (Mn) and 73.3% (Pb) removal rates. Likewise in the case of dye 3, which
was treated with plants and inoculated bacteria, the metals removal rates were 77.5%, 73.3%, 89.7%,
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81.0%, 70% and 65.5% for Cu, Ni, Zn, Fe, Mn and Pb, respectively. The inoculated bacteria showed
persistence in water, in roots and in shoots of the inoculated plants. The bacteria also reduced the
dye-induced toxicity and promoted plant growth for all three dyes. The overall results suggested
that FTW could be a promising technology for the treatment of dye-enriched textile effluent. Further
research is needed in this regard before making it commercially applicable.

Keywords: floating treatment wetlands; bio-augmentation; dye degradation; bacteria; Phragmites
australis

1. Introduction

Industrialization is a main source of water pollution. The negative impact of polluted water is
more severe in developing countries as compare to developed nations [1]. Textile wastewaters contain
dyes, and these dyes are one of the worst polluters of our environment [2]. Almost 17% to 20% of
industrial water pollution is due to textile dyeing and finishing treatments given to fabrics [3]. Many
dyes are derived from heavy metals such as copper (Cu), lead (Pb) and cadmium (Cd). The uses of
these metal-complex dyes is a source of heavy metals contamination in water bodies [4]. The release
of textile wastewater into open waters causes oxygen level depletion. Dyes block the sunlight in
water bodies, thus stopping photosynthesis [5]. These textile contaminants are also carcinogenic and
mutagenic for all life forms [3].

Some plants have the capacity to take up pollutants from the environment into themselves [6]. In
the past, many plant species have proved to remove or degrade dyes, such as Sesuvium portulacastrum
that removed Green HE4B, Portulaca grandiflora that removed Navy blue HD2R, Brassica juncea that
removed methyl orange and Glandularia pulchella that removed green HE4B [7–9]. Bacteria has the
potential to remove dyes from wastewater [10]. Bacteria can also degrade synthetic dyes and use them
as a sole source of carbon and energy [11]. There are many examples like degradation of crystal violet
by Enterobacter sp. CV-S1 [12].

Wetland technology has emerged as a sustainable approach for wastewater treatment as compared
to conventional treatment processes [13–15]. Floating treatment wetland (FTW) is a variant of pond
and wetland land technology (Figure 1), that has been proven as an innovative tool for wastewater
treatment [16]. In FTWs, plants are vegetated on an artificial floating mat, such that their roots are
submerged in the contaminated water and the aerial parts of the plants remain above the water [13].
The mat can be made of PVC pipes, polyethylene or any other suitable material that can support plants
on a water surface [13,17]. Roots play an integral role in and provide space for biofilm formation [16].
Organic matter and other pollutants like heavy metals are taken up by the plants’ roots and eventually
degraded by bacteria inside the plants and on the roots’ surface [11,18]. The roots of plants also act
as biological filters as they help in filtration, sedimentation and adsorption of organic matter and
suspended particles, as well as other pollutants [19]. In contrast to conventional wetlands, floating
wetlands can be installed on any aquatic pond without digging, earth moving and additional land
acquisition [13].

The application of specific microorganisms in combination with macrophytes in FTW systems is a
recent approach to enhance the pollutant removal efficiency of the system [20,21]. Naturally occurring
bacteria and fungi reside inside and outside the plant roots and water, and contribute to pollutants
removal process [22]. However, these microorganisms may have limited potential to degrade and
remove toxic pollutants [23]. To overcome this concern, FTWs can be restorative by appropriate
plant–microbe partnerships [24,25]. This plant–bacteria association may be plant–rhizospheric and or
plant–endophytic, depending upon the nature of the bacteria and macrophytes [26,27].
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Figure 1. Schematic representation of floating treatment wetland and associated pollutant
removal process.

Floating wetlands have been widely used for the treatment of wastewater from different
sources [28,29]. However, the potential of FTWs composed of Phragmites australis in combination with
inoculated bacteria has not been fully explored for the treatment of dye-enriched textile effluent. This
study was carried out to analyze the potential of P. australis and selected bacteria in the degradation
of dyes, pollutants reduction and the ultimate alleviation of toxicity of dye enriched water. Further,
the focus of this study was on the persistence and survival of inoculated bacteria within the floating
wetland system.

2. Materials and Methods

2.1. Synthesis of Textile Effluent

Three different types of textile effluent were synthesized in the laboratory by mixing three different
dyes (500 g) in tap water separately. The first type of effluent contained Bemaplex Navy Blue DRD (D1),
the second type of effluent contained Bemaplex Rubine DB (D2) and third one contained Bemaplex
Black DRKP Bezma (D3). The concentration of these dyes was 500 mg L−1 in each type of synthetic
textile effluent. These dyes were selected because of their common use in the textile industry and the
high concentration of these toxic dyes and associated degraded products in textile effluent [30]. The
experiments were performed individually on each type of effluent.

2.2. Macrophytes

The Phragmites australis commonly known as common reed was used to carry out this research.
It was selected because it has previously proven its effectiveness in reducing the toxicity of polluted
wastewater in different studies [11,25,31]. The P. australis has an extensive root and shoot system
that helps in better oxygen supply to the root zone, thereby enhancing the bacterial propagation and
increased pollutants degradation [32].

2.3. Endophytic Bacterial Strains

In this study a consortium of three bacterial strains was applied, namely Rhodococcus sp. (NCBI
Accession: MF326802), Pseudomonas indoloxydans (NCBI Accession: MF478985) and Acinetobacter junii
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(NCBI Accession: MF478980) [25,30]. The strain P. indoloxydans was endophyte because it was isolated
from the root interior of Polygonum aviculare. The strain Rhodococcus sp. was rhizospheric as it was
isolated from the rhizosphere of Poa labillardierei, and the strain A. junii was isolated from activated
sludge [28]. These specific bacterial strains were chosen due to their potential to reduce textile dyes
and assist the macrophytes to alleviate pollutant-induced toxicity without compromising plant growth
and development.

The bacterial strains were cultured as separate cultures at 30 ◦C for 24 h in Luria–Bertani (LB)
broth. The bacterial cell pellets were isolated by centrifugation at 4 ◦C, followed by resuspension in
0.9% NaCl solution [25]. The optical density of each bacterial inoculum was adjusted to 0.9 at 600 nm
according to the guidelines of the turbid metric method [33]. The bacterial consortium (108 colony
forming units (CFU) mL−1) was prepared by mixing all bacterial inoculum together in equal proportion.
This bacterial consortium was used as an inoculum to inoculate the floating treatment wetlands.

2.4. Fabrication of FTWs and Experimental Setup

The macrocosms experimental setup was comprised of nine tanks with 1000 liter capacity each,
and the dimensions were 1.2 m (L ×W × H). The tanks were painted black form all sides to minimize
the algal growth. The floating mats were fabricated from expanded polystyrene (EPS)-based sheets
manufactured by Diamond® Foam Private Ltd., Pakistan [11,34–36]. EPS sheets are rigid, have low
thermal conductivity, are moisture resistant and consist of non-porous closed cell foam [37]. The size of
the floating mats was adjusted so that they could float in each tank with >95% coverage on the water
surface. All four sides of the floating mats were wrapped with aluminum foil to protect the sheets
from sun and water damage. In each floating sheet eight equidistant holes, equal in diameter, were
made for the plantation of macrophytes on the floating mats. Each hole was planted with three healthy
seedlings of P. australis, thus having 24 seedlings in each mat. Each seedling weighed 45 to 65 g and
their length was 55–65 cm. The seedlings were supported by coconut shavings and soil in the floating
mat. The seedlings were allowed to grow in fresh water for one month to gain optimum growth of
roots and shoots. After one month, the average height of the plants was about 145 cm, and the fresh
water in tanks was replaced with the synthetic textile effluent enriched with dyes. The experiment was
run in triplicate with the subsequent treatment design:

T1D1, T1D2, T1D3: Only dye;
T2D1, T2D2, T2D3: Containing dye and plants;
T3D1, T3D2, T3D3: Dye, plants and bacterial consortium;
T4: Fresh water and plants.
(D1: Bemaplex Navy Blue DRD, D2: Bemaplex Rubine DB, D3: Bemaplex Black DRKP Bezma).
The treatments T3D1, T3D2, T3D3 were inoculated by pouring one liter of inoculum into each

tank. The experiment lasted for 20 days until a maximum of dye and pollutants were removed from
treated water. One liter of sample was collected from each tank every 5 days starting from day 0 using
a sequencing fill-and-draw batch mode method (for convenience, data of only the 0, 10th and 20th day
are presented in results). The samples were stored in a cool and dry place for further analysis [38].
The collected water samples were analyzed for pH, electrical conductivity (EC), total dissolved solids
(TDS), total suspended solids (TSS), dye concentration, chemical oxygen demand (COD), biological
oxygen demand (BOD), colony forming unit (CFU) and metal concentration (Cu, Fe, Mn, Ni, Zn and
Pb) according to standard methods [38]. The evapo-transpiration losses were recovered by pouring
fresh water in treatment tanks up to the level of 1000 L in each tank [34]. In case of rain, the tanks were
covered with plastic sheets.

2.5. Persistence of Inoculated Bacteria in Treated Water and Plants

The persistence of bacteria in water, root and shoot samples were periodically analyzed during the
experiment using the cultivation-dependent plate count method [24,25]. The collected roots and shoots
samples were surface sterilized by 70% ethanol and 2% sodium hypochlorite solution. Then these roots
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and shoots were homogenized in a 0.9% NaCl solution and serial dilution of these suspensions was
spread on LB agar plates. Similarly, the collected water samples from all treatments were spread on LB
agar plates and these plates were incubated at 37 ◦C for 48 h for CFU analysis [35,39].

2.6. Plant Biomass

In order to determine the effect of bacterial inoculation and dye-induced toxicity on plants growth
and development, the data about plants agronomic parameters (root and shoot length and dry biomass)
were noted at the end of the experiment. The root and shoot length was measured manually by a
measuring scale. The root and shoots were harvested near the surface of the floating mat and oven
dried at the 80 ◦C for 72 h until a constant weight was achieved [11,34].

2.7. Statistical Analysis

The results of physicochemical parameters (pH, EC, TDS, TSS, BOD, COD, color and heavy metals),
bacterial persistence and plant biomass were evaluated by the SPSS software package. The comparison
between treatments was executed by analysis of variance (ANOVA) followed by a Post-Hoc Tukey test
(p ≤ 0.05) [40]. The alphabet labels over the values show the significant/non-significant differences
among treatments.

3. Results

3.1. Changes in Physicochemical Parameters of Treated Textile Effluent

The graphs in Figures 2–4 represent the changes in the physicochemical parameters of the
dye-enriched tap water treated by floating treatment wetlands. The floating wetlands had a positive
impact and predominately reduced the pH, EC, TSS, TDS, COD, BOD and color within the retention
period of 20 days. All of the above-mentioned pollutants were reduced sharply in vegetated treatments
(T2D1, T2D2, T2D3 and T3D1, T3D2, T3D3) as compared to non-vegetated treatments. However,
the vegetated treatments inoculated with bacterial consortium (T3D1, T3D2, T3D3) achieved highest
pollutants removal rate, outperforming all other treatments in all three types of dyes.

In the treatment containing dye 1, P. australis and bacterial consortium (T3D1), maximum pollutants
removal efficiency was achieved. In this treatment, pH was reduced to 6.7 from 8.5, EC was reduced
from 6.13 to 1.00 mS cm−1, TDS was reduced from 400 to 60 mg L−1, TSS was reduced from 92 to
19 mg L−1, COD was reduced from 310 to 30 mg L−1, BOD was reduced from 121 to 20 mg L−1 and
color was reduced from 40.0 to 6.0 m−1.

Similarly, in the case of dye 2, maximum pollutant removal efficiency was obtained from T3D2, in
which pH was reduced to 6.8 from 8.5, EC was reduced from 6.13 to 1.02 mS cm−1, TDS was reduced
from 400 to 63 mg L−1, TSS was reduced from 92 to 21 mg L−1, COD was reduced from 308 to 33 mg L−1,
BOD was reduced from 121 to 18 mg L−1 and color was reduced from 40.0 to 6.7 m−1.

As in the case of dye 1 and dye 2, the maximum pollutant removal rate was achieved by T3D3
containing dye 3, P. australis and bacterial consortium. In this treatment, pH was reduced to 6.7 from
8.5, EC was reduced from 6.15 to 1.05 mS cm−1, TDS was reduced from 401 to 62 mg L−1, TSS was
reduced from 91 to 24 mg L−1, COD was reduced from 309 to 31 mg L−1, BOD was reduced from 120
to 19 mg L−1 and color was reduced from 40.0 to 6.4 m−1.
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Figure 2. Effect of floating treatment wetlands on pH (A), EC (B), TDS (C), TSS (D), COD (E), BOD
(F) and color (G) after 20 days of retention time. D1: Bemaplex Navy Blue DRD. Each value is a
mean of three replicates and error bars represent the standard deviation. Lettering shows that various
treatments are significantly different at p ≤ 0.05.
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Figure 3. Effect of floating treatment wetlands on pH (A), EC (B), TDS (C), TSS (D), COD (E), BOD (F)
and color (G) after 20 days of retention time. D2: Bemaplex Rubine DB. Each value is a mean of three
replicates and error bars represent the standard deviation. Lettering shows that various treatments are
significantly different at p ≤ 0.05.
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Figure 4. Effect of floating treatment wetlands on pH (A), EC (B), TDS (C), TSS (D), COD (E), BOD
(F) and color (G) after 20 days of retention time. D3: Bemaplex Black DRKP Bezma. Each value is a
mean of three replicates and error bars represent the standard deviation. Lettering shows that various
treatments are significantly different at p ≤ 0.05.



Sustainability 2020, 12, 3731 9 of 17

3.2. Removal of Heavy Metals from Water

The concentration of six heavy metals (Cu, Fe, Mn, Ni, Zn and Pb) considerably reduced in the
FTWs-treated water samples (Table 1). All vegetated treatments (T2 and T3) showed significantly better
removal of trace metals from the dye-polluted water (D1, D2 and D3) as compared to the non-vegetated
treatments (T1D1, T1D2 and T1D3). Next, the efficiency of bacterial augmented treatments (T3D1,
T3D2 and T3D3) was significantly better than non-inoculated vegetated treatments (T2D1, T2D2 and
T2D3). In treatment T3D1, the metal concentrations for Cu, Ni, Zn, Fe, Mn and Pb were reduced by up
to 75%, 73.3%, 86.9%, 75%, 70% and 76.7%, respectively, in the 20 days retention time. Similar results
were achieved for dye 2 and dye 3 in the case of treatment T3, in which bacterial inoculation efficiently
removed the metals from dye water as compared to non-inoculated vegetated treatments (T2) and
un-vegetated non-inoculated treatments (T1).

Table 1. Percentage (%) reduction in concentration of metals with time by floating treatment wetlands.

Treatment
T1 T2 T3

Only Dye Dye + Plant Dye + Plant + Bacteria

Dye Metals 10 Days 20 Days 10 Days 20 Days 10 Days 20 Days

D1

Cu
20.0 b,c 30.0 c,d 58.5 e 65.9 e,f,g 67.5 e,f,g 75.0 g

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Ni
19.4 b,c 32.3 d,e 40.0 e,f 60.0 g,h 60.0 g,h 73.3 h

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Zn
8.8 c 21.1 d 60.0 e,f 66.7 f 75.4 g 86.9 h

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Fe
7.5 b,c 12.5 c 48.8 e 65.9 g 62.5 f,g 75.0 h

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Mn
13.3 b,c 23.3 c,d 34.5 d,e 48.3 e,f 56.7 f,g 70.0 h

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Pb
20.0 b,c 26.7 c,d 40.0 d,e,f 60.0 g 46.7 f 76.7 h

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

D2

Cu
20.0 c 27.5 c 55.0 d,e,f 65.0 f,g,h 70.0 g,h,i 77.5 i

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Ni
16.7 b,c 30.0 c 46.7 d 60.0 d,e,f 60.0 d,e,f 73.3 f

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Zn
13.3 b,c 33.3 c 56.9 d,e 65.5 e,f 75.0 f,g 83.3 g

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Fe
5.1 a,b 12.8 b,c 48.8 c,d 65.9 e,f 62.5 e 77.5 f

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Mn
22.6 b 25.8 b,c 40.0 c,d,e 50.0 e,f,g 60.0 f,g 66.7 g

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Pb
22.6 b 29.0 b,c 43.3 c,d,e 56.7 e,f,g 50.0 e,f 73.3 g

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

D3

Cu
20.0 a,b,c 30.0 a,b,c,d,e 55.0 d,e,f,h 65.0 f,g 67.5 e,f,g 77.5 g

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Ni
20.0 c,d 30.0 d,e 43.8 e,f 59.4 g,h 60.0 g,h,i 73.3 i

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Zn
10.5 c 24.6 d 58.3 e 70.0 f,g,h 75.9 g,h 89.7 i

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Fe
14.6 b,c 19.5 c 52.4 d,e 69.0 f,g 66.7 e,f 81.0 g

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Mn
10.0 a,b,c 26.7 c,d,e 35.7 d,e,f 46.4 f,g,h 63.3 g,h 70.0 h

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Pb
23.3 bc 30.0 cd 43.3 ef 56.7 hi 44.8 fg 65.5 i

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

T symbolizes treatments (T1, T2, T3) and D symbolizes dye (D1: Bemaplex Navy Blue DRD, D2: Bemaplex Rubine
DB, D3: Bemaplex Black DRKP Bezma). Values represent the means of three replicates and standard deviations are
presented in parenthesis. Lettering shows that various treatments are significantly different at p ≤ 0.05.
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3.3. Bacterial Persistence in Roots, Shoots and Water

The presence of a significantly high population of bacteria in water (Table 2), roots and shoots
(Table 3) in the bacterial inoculated treatment (T3) as compared to non-inoculated treatments (T1
and T2) confirmed the persistence of inoculated bacteria during the treatment process in inoculated
treatments for all three dyes. The bacteria showed the highest population in wastewater compared to
roots and shoots. On the other hand, the count of bacteria was found higher in roots than shoots.

Table 2. Average concentration of bacteria in water (colony forming unit (CFU) mL−1).

Treatment Days Dye 1 Dye 2 Dye 3

Only Dye
(T1)

5
1.5 × 103 a 1.6 × 103 a 1.5 × 103 a

(0.3) (0.2) (0.4)

10
1.6 × 103 a 1.6 × 103 a 1.7 × 103 a

(0.4) (0.5) (0.5)

15
1.9 × 103 a 1.8 × 103 a 1.8 × 103 a

(0.6) (0.7) (0.6)

20
1.8 × 103 a 1.8 × 103 a 2.0 × 103 a

(0.6) (0.8) (0.9)

Dye + Plant
(T2)

5
2.1 × 105 b 2.3 × 105 b 2.2 × 105 b

(1.0) (1.0) (0.9)

10
2.7 × 105 b 2.9 × 105 b 2.5 × 105 b

(1.1) (1.2) (1.1)

15
3 × 105 b,c 3.3 × 105 b,c 3.4 × 105 b,c

(0.9) (0.8) (0.9)

20
3.7 × 105 c 3.5 × 105 c 3.6 × 105 c

(1.1) (1.1) (1.1)

Dye + Plant +
Bacteria

(T3)

5
9.6 × 108 d 9.8 × 108 d 9.9 × 108 d

(0.5) (0.6) (0.5)

10
7.1 × 109 e 7.2 × 109 e 7.1 × 109 e

(0.7) (0.5) (0.4)

15
6.4 × 109 f 6.6 × 109 f 6.6 × 109 f

(0.2) (0.6) (0.6)

20
5.0 × 108 g 5.1 × 108 g 4.9 × 108 g

(0.6) (0.6) (0.7)

Dye 1: Bemaplex Navy Blue DRD, Dye 2: Bemaplex Rubine DB, Dye 3: Bemaplex Black DRKP Bezma. Values
represent the means of three replicates and standard deviations are presented in parenthesis. Lettering shows that
various treatments are significantly different at p ≤ 0.05.

3.4. Plant Growth in Response to Bacterial Inoculation

It is well established that the presence of toxic pollutants in water inhibits plant growth and
ultimately phytoremediation efficiency. The root and shoot length (Table 4) and root and shoot dry
mass (Table 5) were noted at the end of the experiment and it was found that the plants grown in dye
water inoculated with bacteria (T3) showed more growth as compared to the plants grown only in dye
water. The plants grown in only tap water with no dye showed maximum growth out of all treatments.
The dye water hindered the growth of plants and root and shoot length were reduced in case of all
three dyes. Similarly, the plants grown in dye water inoculated with bacteria gained high shoot and
root dry biomass due to good growth as compared to plants grown in dye water without bacterial
inoculation. These results showed that despite the toxic effect of dyes, the inoculation of bacteria to
dye water predominantly increased the length and dry weight of shoot and root of P. australis.
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Table 3. Average concentration of bacteria in roots and shoots (CFU mL−1).

Root/Shoot Treatment Days Dye 1 Dye 2 Dye 3

Root

Dye + Plant
(T2)

5
2 × 102 a 2.2 × 102 a 2.2 × 102 a

(0.8) (0.9) (0.8)

10
3.2 × 102 b 3.3 × 102 b 3.3 × 102 b

(1.0) (1.0) (1.0)

15
3.7 × 102 b,c 3.7 × 102 b,c 3.7 × 102 b,c

(0.8) (0.8) (0.8)

20
4.1 × 102 c 4.0 × 102 c 4.1 × 102 c

(0.9) (0.9) (0.9)

Dye + Plant +
Bacteria

(T3)

5
4 × 103 d 4.4 × 103 d 4.3 × 103 d

(1.2) (1.3) (0.9)

10
11.9 × 103 e 12.0 × 103 e 11.6 × 103 e

(1.1) (1.3) (1.1)

15
17.2 × 103 f 17.6 × 103 f 18.5 × 103 f

(1.1) (1.3) (0.9)

20
22.8 × 103 g 23.1 × 103 g 23.4 × 103 g

(1.1) (1.1) (1.1)

Shoot

Dye + Plant
(T2)

5
1.1 × 102 a 1.2 × 102 a 1.2 × 102 a

(0.2) (0.2) (0.3)

10
1.2 × 102 a 1.0 × 102 a 1.2 × 102 a

(0.4) (0.5) (0.3)

15
1.3 × 102 a 1.3 × 102 a 1.2 × 102 a

(0.2) (0.2) (0.7)

20
1.3 × 102 a 1.2 × 102 a 1.3 × 102 a

(0.2) (0.3) (0.5)

Dye + Plant +
Bacteria

(T3)

5
1.4 × 103 b 1.6 × 103 b 1.5 × 103 b

(0.3) (0.2) (0.4)

10
6.2 × 103 c 6.0 × 103 c 6.2 × 103 c

(0.7) (0.7) (0.8)

15
10.5 × 103 d 10.1 × 103 d 11.2 × 103 d

(0.4) (0.9) (1.3)

20
14.3 × 103 e 13.9 × 103 e 14.0 × 103 e

(2.1) (2.3) (2.5)

Dye 1: Bemaplex Navy Blue DRD, Dye 2: Bemaplex Rubine DB, Dye 3: Bemaplex Black DRKP Bezma. Values
represent the means of three replicates and standard deviations are presented in parenthesis. Lettering shows that
various treatments are significantly different at p ≤ 0.05.

Table 4. Comparison between shoot lengths and root lengths in different treatments.

Treatments
Shoot Length (cm) Root Length (cm)

Dye 1 Dye 2 Dye 3 Dye 1 Dye 2 Dye 3

Dye + Plants 187.7 d 197.7 c,d 202.7 b,c,d 29.7 c 30.7 c 31.0 c

(T2) (24.9) (7.8) (3.8) (0.58) (1.2) (0.0)

Dye + Plants+ Bacteria 222.0 a,b,c 228.0 a,b 224.3 a,b,c 38.0 b 39.0 b 38.3 b

(T3) (10.8) (2.6) (9.3) (1.0) (1.0) (1.2)

Fresh water + Plants 233.3 a 232.3 a 230.0 a,b 43.0 a 44.3 a 43.7 a

(T4) (3.1) (2.5) (2.6) (1.0) (0.58) (2.1)

Dye 1: Bemaplex Navy Blue DRD, Dye 2: Bemaplex Rubine DB, Dye 3: Bemaplex Black DRKP Bezma. Values
represent the means of three replicates and standard deviations are presented in parenthesis. Lettering shows that
various treatments are significantly different at p ≤ 0.05.
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Table 5. Shoot and root dry weight of the plants.

Treatments
Shoot Dry Weight (g) Root Dry Weight (g)

Dye 1 Dye 2 Dye 3 Dye 1 Dye 2 Dye 3

Dye + Plants 492.0 c 517.7 b,c 533.0 a,b,c 62.3 c 64.3 c 64.7 c

(T2) (65.3) (20.3) (9.6) (1.2) (3.2) (0.6)

Dye + Plants+ Bacteria 572.7 a,b 591.3 a,b 581.3 a,b 79.3 a,b,c 81.0 b,c 80.3 a,b,c

(T3) (29.3) (7.1) (21.4) (2.1) (1.7) (2.1)

Fresh water + Plants 605.0 a 609.0 a 603.7 a 89.3 a,b 93.0 a 90.0 a,b

(T4) (8.2) (9.5) (8.3) (3.1) (1.7) (1.7)

Dye 1: Bemaplex Navy Blue DRD, Dye 2: Bemaplex Rubine DB, Dye 3: Bemaplex Black DRKP Bezma. Values
represent the means of three replicates and standard deviations are presented in parenthesis. Lettering shows that
various treatments are significantly different at p ≤ 0.05.

4. Discussion

In this study, pH, EC, TDS, TSS, COD, BOD and color of the dye-enriched water and heavy
metals contents were significantly decreased in the vegetated and vegetated-inoculated floating
treatment wetlands. The reductions in pollutants load in treated dye-contaminated water emphasize
the prominent role of vegetation and bacteria in floating wetlands.

The pH might be decreased due to the release of organic acids by the roots of the plants as reported
in earlier studies [31,41]. The decrease in EC might be associated with the uptake of nutrients by plants
and the biological and physicochemical binding of pollutants to roots and soil particles [13,36]. The pH
and EC reduction was highest in treatment vegetated with plants and augmented with bacteria. This
suggests the key role of plants and bacteria in pH and EC reduction through the release of organic acids
and the uptake of nutrients by plants and bacteria [25,34,35]. The TDS and TSS loads were reduced
due to the combination of physical and biological processes supported by floating wetlands [41]. The
suspended particles in the water are trapped in the biofilm of the roots of macrophytes, and there they
either precipitate at the bottom or adsorb on biofilm where they might be degraded [42]. Physical
entrapment in roots, sorption and settlement at the bottom might contribute to the removal of TDS
and TSS from treated water [16,19,43]. Further, the roots of plants act as physical filters and provide
appropriate organic matter that acts as a bio-sorbent and contributed to the removal of particulate
matter [11,21].

Roots allow microbial communities to assimilate carbon compounds and reduce BOD and
COD [44]. In this study, the high removal of BOD in wetland systems might be attributed to the
deposition and filtration of organic compounds that can be settled. The speedy and high removal rate in
bacterial augmented FTWs could be attributed to the biofilm on roots, which contributes to the removal
of organic matter by decomposing it into simple nutrients, thus aiding in the direct uptake by the
plant [20,45]. Uptake by plants’ roots is an important method of nutrient removal [42]. The nutrients
in the wastewater might be taken up by the roots of the plants. There, they can either accumulate in
the plant biomass or be degraded by endophytic bacteria present inside the plants [25,46]. The similar
findings have been reported by earlier studies, where plants and bacterial combinations enhanced the
removal of organic pollutants from highly polluted wastewater [31,47,48].

Color was also removed to a great extent in this study by the vegetated treatment and the
vegetated-inoculated treatment. It has been well reported that COD, a measure of oxidizable
contaminants, has a positive correlation with color in textile wastewater [11]. Correspondingly, in
this study color was reduced with the reduction in COD. However, the rate of decolorization was
high in vegetated-inoculated floating wetlands. This could be associated with the combined action of
plant and bacteria in the degradation of dyes and removal of color [11]. This emphasized the key role
of bacteria in the decolorization of dye from textile effluent. The previous studies also showed that
many bacteria are helpful in the removal of dyes, and that bacteria have the ability to degrade dyes by
aerobic as well as anaerobic mechanisms [11,49].
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In this study, the concentration of six heavy metals (Cr, Ni, Zn, Fe, Pb and Mn) was decreased
significantly in the treated dye-containing wastewater. The unique potential of P. australis to remove
heavy metals has been reported by many researchers [25,34]. In the previous studies, P. australis
showed similar pattern of removal of heavy metals from industrial effluent [11,28,36]. These previous
studies also demonstrated that the heavy metals from wastewater were taken up by the P. australis in
its roots and shoots [41,50,51]. The maximum concentrations of heavy metals were found in the roots
of the plant, meaning that the root has most potential to uptake heavy metals [50].

In the case of inoculation of P. australis with bacteria, the heavy metal removal capacity was
further enhanced. The improved performance of bacterially augmented FTWs emphasized the role
of bacteria in the removal of heavy metals from polluted water. The inoculated bacteria reduced the
metals load in polluted water by their bioaccumulation potential [31]. These bacteria might contribute
to reducing metal-induced toxicity and increase the bioavailability and metals uptake of plants [27].
It is well reported that in FTWs the inoculated bacteria may boost the metals removal process by
entrapment of metals in root biofilms, sorbing of metallic ions on the bacterial cell wall and oxidation
of metal ions [52,53]. Further, the plaque formation by the combined action of plant and bacteria on
plant roots may increase the Fe, Mn, Cu and Zn binding in roots biofilms [13,54]. This emphasizes
that P.australis and inoculated bacterial combined role, which contributes to metals removal from
treated dye-contaminated wastewater. The significantly substantial removal of metals from bacterial
inoculated treatments relative to non-inoculated vegetated treatments could be attributed to a high
population of bacteria in the inoculated treatment.

The inoculated bacteria showed persistence in polluted water being treated by floating treatment
wetlands. The periodic analysis of water from all three treatments showed the high population of
bacteria in inoculated treatments as compared to the non-inoculated treatments. The higher population
of bacteria in the water of inoculated treatments confirmed that inoculated bacteria showed persistence
and were responsible for dye removal and pollutant removal. This could be due to the fact that
the inoculated bacteria successfully made mutualistic relationships with plants, which supported
the survival of inoculated bacterial [55]. This finding is consistent with previous studies in which
inoculated bacteria improved the pollutant removal process [24,34]. The survival of inoculated bacteria
depends upon the nutrient supply, pH, temperature and the interaction with the host [56,57]. In
this study, the bacterial population in the roots and shoots of inoculated plants were found to be
higher as compared to non-inoculated vegetated treatment. This could be due to the preferential
survival of bacteria in roots and shoots of P. australis in inoculated treatments, as reported in previous
studies [28,58]. Further, these bacteria were initially isolated from the roots and shoots of the plants;
hence these bacteria possibly have an adaptive mechanism to survive and grow in these parts of the
plant in this hostile environment [18,27]. In order to make FTWs a potential wastewater treatment
method, periodic inoculation of bacteria should be performed in order to overcome the problem of
decreasing bacteria with time in inoculated water [57,59].

Toxic pollutants in the environment inhibit plant growth [27]. Dyes containing toxic chemicals and
potentially toxic heavy metals also inhibit plant growth [28]. In this study, the P. australis, synergistic
with bacteria, achieved high root and shoot growth as compared to plants without inoculation.
The control tank having only water and plants with no added dye showed maximum growth of
roots and shots of plants due to the absence of any toxic pollutant. The bacteria present in the
system can promote plant growth by decreasing biotic and abiotic stress [60]. Bacteria also positively
affect plant growth by releasing phyto-hormones and by the solubilisation of essential nutrients [61].
Pollutant-degrading rhizospheric and endophytic bacteria have been proven as effective to enhance
plant growth development and phytoremediation efficacy [53]. Similar results have been reported by
previous studies where inoculated bacteria promoted plant growth by alleviating pollutant-induced
toxicity and improved plant nutrition, health and disease resistance [34,62].
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5. Conclusions

The present study evaluated the potential of P. australis in FTWs along with three inoculated
bacterial strains to remove dye as well as organic and inorganic pollutants from dye-enriched water.
The results clearly indicated that P. australis along with inoculated strains have a great potential to
remove different types of dyes and pollutants, including potentially toxic metals, from textile effluent.
The floating wetlands are capable of efficiently decreasing the levels of pH, EC, TDS, TSS, BOD,
COD, color and toxic metals from dye-polluted wastewater. The high rate of pollutants removal by
vegetated-inoculated FTWs validates the potential role of bacteria in FTWs. The bacteria showed high
persistence in water as well as in the roots and shoots of the inoculated plants. It suggests that bacteria
have the ability to make a mutualistic relationship with P. australis in FTWs system to collectively
remove pollutants form the water body. These plant growth-promoting rhizospheric and endophytic
bacteria also increased the plants’ ability to tolerate pollutant-induced toxicity and alleviate the toxicity
of textile effluent. We conclude that the FTWs can be a promising technology to treat textile effluent
and can be a propitious substitute for conventional wastewater technology for the treatment of textile
effluent. The pollutant removal efficiency of already existing water retention ponds can be enhanced
by installing floating wetland systems. However, there is a need for conducting meticulous research
about the careful and objective-based selection of plants and bacteria, which can further enhance the
efficiency of the FTWs system.
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