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Abstract: The urban heat island (UHI) poses a significant threat to urban ecosystems, human health,
and urban energy systems. Hence, days with a relatively higher UHI intensity should be selected for
UHI observation and analysis. However, there is still a lack in the method and criteria for selecting
the typical meteorological days for UHI survey and simulation. In this study, field measurements
were conducted based on Local Climate Zone (LCZ) schemes over a one-year period to assess the UHI
behavior in Guangzhou, China. The relationship between the diurnal temperature range (DTR) and
UHI intensity was evaluated and analyzed quantitatively under different meteorological conditions
classified by precipitation. The average daily maximum UHI intensity (UHIImax) during precipitation
days was approximately 1.8 ◦C lower than that during non-precipitation days, confirming that
precipitation has a negative effect on UHI development. The monthly DTR distribution was similar
to the daily UHIImax distribution, which was higher in autumn and winter, but lower in spring
and summer. DTR has a significant linear correlation with the daily UHIImax, with a Pearson’s
correlation coefficient of >0.7 and statistical significance of <0.001. Based on a quantitative evaluation
of our results, we determined that 10 ◦C could be regarded as the appropriate DTR threshold to
identify the meteorological conditions conducive to UHI development; the meteorological conditions
exhibited a high daily UHIImax in Guangzhou. This study provides a simple method to select typical
meteorological days for UHI measurement and simulation, and a method to early-warning of intense
UHI events based on weather forecasts.
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1. Introduction

Accompanying global warming and accelerated urbanization, the urban heat island
(UHI) effect has become an established urban environment phenomenon. The UHI effect
occurs when the temperature in urban areas is significantly higher than in suburban areas.
The temperature difference between urban and suburban areas, which occurs due to an
energy imbalance [1], is referred to as the UHI intensity (UHII). UHI poses a significant
threat to urban ecosystems, human health, and urban energy systems [2,3].

Many factors significantly affect the formation and development of UHIs. Broadly,
these factors are classified into two categories based on their influence on the occurrence
and development of UHIs [4]. The first category is the characteristics of the city, such as
geographical location, topography, morphology, demography [5], land cover and land
use [6], built-up intensity, and anthropogenic heat emissions [7]. These factors contribute
significantly to the development of UHIs. The second category is meteorological conditions,
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such as precipitation, humidity and temperature, cloud cover, wind speed and direction,
and solar radiation that affect the UHI intensity [8–11]. The daily maximum UHI intensity
(UHIImax) can be regarded as a measure of UHI development.

For a specific city, identifying the days with full UHII development over an extended
period is required to study the mechanism of UHIs. Many studies have focused on iden-
tifying the days when the UHI is fully developed [12,13], e.g., the influence of different
meteorological conditions on UHI development and the methods for identifying the meteo-
rological conditions conducive to the UHI development. Extensive research has established
the significant effect of precipitation on UHIs; most cities show a negative correlation
between these phenomena. Arifwidodo and Tanaka [14] reported that the weakest UHI
(2 ◦C) in Bangkok, Thailand, occurred in August, which was also the month with maximum
precipitation. Unal [15] demonstrated that the UHII during the daytime on rainy summer
days is 1 ◦C higher than on dry days, regardless of the precipitation amount in Istanbul,
Turkey. The cloud coverage, as well as the evaporation of rainwater, increases before
and after rainfall; further, these factors are considered to be the reason for precipitation
leading to UHI variations as they remove urban sensible and latent heat [4]. Previous
studies have identified strong UHI when meteorological conditions were clear and calm, or
during cloudless days with weak winds. However, the quantitative descriptions of these
conditions vary according to the study. Both cloud cover and wind speed factors are used
to identify clear and calm days, which are considered conducive to UHI development.
These factors differ according to the region and must be adjusted accordingly. Oke and
Maxwell [16] selected variable thresholds with winds under 1.3 m/s and cloud cover
of less than two-tenths as the appropriate meteorological conditions to determine UHI
development in Montreal and Vancouver, Canada. Based on a study by Leconte [17] in
Nancy, France, high daily UHIImax prefers meteorological conditions that have less than
two-tenths cloud cover and wind speeds less than 9 m/s. Yang [18] suggested wind speeds
of less than 2 m/s and under three-tenths cloud cover for the examination of UHIs in
Nanjing, China. Yang [18] suggested that the criteria of wind speeds and cloud cover must
be re-calibrated because it varies according to the characteristics of the city. Although wind
factors are easily measured, cloud cover data are difficult to obtain, implying that this
method cannot be applied simply and rapidly.

Oke [19] proposed a new method, i.e., the weather factor, that combines the effects
of wind speed and clouds, including the cover and type. In previous studies, these
meteorological variables were adopted to identify clear and calm conditions, or cloudless
with weak wind conditions for UHI development [20,21]. Despite the efficiency of the
proposed method, obtaining cloud data for several regions remains challenging, primarily
because cloud data consisting of cover and type used to determine coefficient k are required
to calculate weather factors. Yang [18] derived an indicator from the daily diagnostic
equation to identify the meteorological conditions conducive to UHI development in
Nanjing, China. However, further investigations are required to determine the effectiveness
of this proposed indicator. Recently, to overcome this challenge, studies have begun to
explore the possibility of using diurnal temperature ranges (DTRs) in suburban or rural
areas as an indicator of the meteorological conditions and identify days with high daily
UHIImax because this is related to the difference in cooling rates in urban and suburban
areas. DTR is the difference between the highest and the lowest daily temperatures in a
suburban area. Holmer [22] stated that DTR states can be adopted for weather classification.
A positive correlation between the DTR and daily UHIImax was found in northwestern
Europe by Theeuwes [23]. Yao et al. [24] measured the UHII of different local climate
zones (LCZs) in Nanjing, finding that the suburban DTR had a strong positive correlation
with UHIImax. Moreover, they determined that the DTR as an index can be employed to
identify days with high daily UHIImax. Yang [18] investigated the performance of cloud
cover and wind speed, DTR, and the weather factor on identifying days with full UHII
development. The quantitative relationship between the DTR and UHIImax were analyzed
and established, showing that the correlation coefficient between them is greater than 0.67.
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They proposed that high UHIImax was observed when DTR ≥ 10 ◦C in Nanjing based
on their observations. This method can be used effectively to identify the days with full
UHI development. The geographical location and climate of other cities are different from
those of Nanjing, resulting in significant differences in the DTR; thus, the method requires
evaluation in other cities. UHI research has generally focused on the characteristics of
DTR in the process of urbanization [25–27]. The quantitative analysis of DTR and UHII
development has gradually increased [28].

We emphasize that reliable assessments of UHIs depend, to a large degree, on the
days selected for observation and analysis. The selection of the sample days with full UHI
development is crucial for the field measurement of the UHI. Methods to identify days
with full UHI development have been developed; however, the methods for measuring
cloud cover and wind speed, weather factor, and the daily diagnostic equation are not
straightforward and not easy to use for field measurements due to the several parameters
involved and the difficulty in obtaining them. DTR is easy to use because only routine
observations are required. The methods to identify days with full UHI development have
not been previously studied in Guangzhou, China, which has a typical subtropical climate
different from Nanjing. This study aims to establish a method for selecting the typical days
with full urban heat island development by investigating the correlation between the DTR
and UHIImax in Guangzhou. Annual hourly observation data were used to quantitatively
analyze the relationship between the DTR and UHIImax under different meteorological
conditions classified according to the precipitation. The appropriate threshold for the
DTR, as an index, was determined to identify days conducive to the development of UHIs
in Guangzhou. The quantitative relationship between the DTR and UHIImax can help
establish a method for selecting days with full UHII development for the measurement
and simulation of UHI phenomena. This study and the results are also beneficial for the
prediction of intense UHI events.

2. Methods
2.1. Study Area

Guangzhou spans 7434.4 km2 on both sides of the Pearl River from 112◦57” to
114◦03” E and 22◦26” to 23◦56” N in south-central Guangdong. The Pearl River flows
through the city. Guangzhou is the capital city of Guangdong Province, and the central
city of the Guangdong-Hong Kong-Macao Greater Bay Area and Pan-Pearl River Delta
Economic Zone. Figure 1 shows an overview of the study area. Guangzhou is characterized
by hot summers and warm winters. The months of June to September are the hottest
months of the year, with daily average temperatures ranging from 27.7 to 29.2 ◦C, daily
maximum temperatures ranging from 34.5 to 36 ◦C, and a daily average relative humidity
of approximately 80%. The annual number of rainy days is approximately 152, and the
annual precipitation is 1696.5 mm. The UHII is higher in the summer and autumn in
Guangzhou. The average UHII is 1.2 ◦C in the summer and 1.5 ◦C in the autumn [29]. The
built-up area is approximately 1249.11 km2 and is located around the river. As shown in
Figure 1, more rural farmland, represented by large yellow areas, is situated adjacent to
the estuary. The large green areas in Figure 1 are mainly evergreen trees or shrubs, where
the terrain is low elevation mountains. Most buildings in the city are air-conditioned in
the summer.
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According to the guidelines for using the LCZ classification system suggested by Oke 
[7], a LCZ is defined as an area with a minimum radius of 200–500 m, which has uniform 
features in terms of surface cover, structure, material, and human activity. Additionally, 
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of the sites (represented by red spots). One site (THB) is located in the new town center of 
the city, characterized by high building density and several types of buildings (office 
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in the old town center of the city. Table 1 lists the detailed site parameters and satellite 
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Figure 1. Study area of Guangzhou, China. Satellite images of the meteorological observation sites
(Tian He Bei abbreviated as THB and Tong Fu Xi abbreviated as TFX) and two temperature measuring
points at the observation sites; location of the International Meteorological Station.

2.2. Field Measurement
2.2.1. Site for Urban Air Temperature Measurements

The data on hourly air temperature in the suburbs and urban areas are required to
explore the relationship between the DTR and UHII. The air temperature was obtained
through field measurements in this study. Selecting an appropriate site for urban tem-
perature measurement is highly important; the temperature should reflect the physical
structure, surface properties, and thermal climate of the city, as well as a high UHII. LCZ
schemes proposed by Stewart and Oke [7] have been widely adopted to globally study
UHIs; these schemes aim to provide an objective and standardized classification criterion
for UHI studies. The LCZ schemes enhance the description of surface conditions in urban
and rural areas, thereby easing the process of site selection. An area spanning hundreds of
meters to several kilometers with uniform features in terms of the structure, land cover,
material, and human activity can be described as an LCZ [7]. There are 10 LCZ built types
and seven LCZ land cover types in this study area. Each LCZ is expected to present a
characteristic screen-height (1–2 m above ground) temperature. The site for the urban air
temperature field experiments was selected based on the LCZ schemes in Guangzhou.

According to the guidelines for using the LCZ classification system suggested by
Oke [7], a LCZ is defined as an area with a minimum radius of 200–500 m, which has
uniform features in terms of surface cover, structure, material, and human activity. Addi-
tionally, different LCZs with a radius of 500 m were selected to study the thermal behavior
of LCZs in Nanjing, China [10]. A total of 10 different LCZs were selected to study the
thermal behavior in Guangzhou (represented by the black spot in Figure 1). Based on the
relationship between UHII and DTR, two LCZ sites (THB and TFX) with a radius of 500 m
were selected for meteorological observations in this study. These two sites were selected
because they exhibited a higher UHII in a previous study [30]. Figure 1 shows the location
of the sites (represented by red spots). One site (THB) is located in the new town center
of the city, characterized by high building density and several types of buildings (office
buildings, residential buildings, and hotels). This site is classified as LCZ 2. The other site
(TFX), characterized by mid-rise residential buildings, belongs to the LCZ 3 and is located
in the old town center of the city. Table 1 lists the detailed site parameters and satellite
images. Figure 2 shows the satellite images of the selected LCZs.
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Table 1. Characteristics of the local climate zone (LCZ) sites.

Building Type Satellite Images
Properties

Zone Parameter Value Indicator Range for the LCZ Type [7]

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 15 
 

  
(a) (b) 

Figure 2. Temp/RH data logger at the urban sites: (a) THB; (b) TFX. 

Table 1. Characteristics of the local climate zone (LCZ) sites. 

Building Type Satellite Images 
Properties 

Zone Parameter Value Indicator Range for the LCZ Type [7] 

 

 

H/W 1: 2.24 
SVF: 0.48 * 

BSF: 30.55% * 
ISF: 49.28% 
HRE: 35 m 

H/W: >2 
SVF: 0.2–0.4 
BSF: 40–60% 
ISF: 40–60% 
HRE: >25 m LCZ 1: Compact high-rise 

 

 

H/W: 0.84 
SVF: 0.57 

BSF: 44.86% 
ISF: 51.61% * 
HRE: 11 m * 

H/W: 0.75–1.5 
SVF: 0.2–0.6 
BSF: 40–70% 
ISF: 20–50% 
HRE: 3–10 m LCZ 3: Compact low-rise 

1 H/W: aspect ratio; SVF: sky view factor; BSF: building surface fraction; ISF: impervious surface fraction; HRE: height of 
roughness elements; *: value deviates from the parameter value range specified by the corresponding LCZ types. 

2.2.2. Experiment Design  
The air temperatures measured at the THB and TFX sites were used to represent the 

urban temperature of Guangzhou. The hourly temperatures of the two sites were derived 
from the temperature observation experiment of the Guangzhou LCZ, which was con-
ducted in July 2019 and is still ongoing. At each site, two fixed points located in the core 
area of the site within a radius of 100 m were equipped with temp/RH data loggers (HOBO 
U23X-001) inside a matching radiation shield to collect the hourly air temperature. Figure 
1 shows the locations of the data loggers. The temp/RH data logger used was the HOBO 
U23X-001, manufactured by Onset (Bourne, MA, USA), with a measuring range of 0 to 50 
°C and uncertainty of ±0.2 °C. For instrument safety, the temp/RH data logger was in-
stalled on street lampposts or poles at a height of 2.1–2.5 m from the ground. To avoid the 
influence of any artificial heat sources and ensure adequate ventilation, the point was 
placed far from vehicles and air conditioners, and at a distance of over 3 m from walls. 
The loggers were installed in the open area which is taken as the area never covered by 
tree shadow all day long. Figure 2 shows one data logger installed at THB and TFX. The 
average value of the temperature readings obtained at the two measuring points was 
taken as the air temperature value of the site. 

2.2.3. Air Temperature in Suburban Area 
We obtained the hourly suburban air temperatures in Guangzhou from the National 

Meteorological Station (NMS) No. 59287. Hourly temperature data from the NMS can be 
accessed via the China Meteorological Data Service Center (CMDC, http://data.cma.cn). 

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 15 
 

  
(a) (b) 

Figure 2. Temp/RH data logger at the urban sites: (a) THB; (b) TFX. 

Table 1. Characteristics of the local climate zone (LCZ) sites. 

Building Type Satellite Images 
Properties 

Zone Parameter Value Indicator Range for the LCZ Type [7] 

 

 

H/W 1: 2.24 
SVF: 0.48 * 

BSF: 30.55% * 
ISF: 49.28% 
HRE: 35 m 

H/W: >2 
SVF: 0.2–0.4 
BSF: 40–60% 
ISF: 40–60% 
HRE: >25 m LCZ 1: Compact high-rise 

 

 

H/W: 0.84 
SVF: 0.57 

BSF: 44.86% 
ISF: 51.61% * 
HRE: 11 m * 

H/W: 0.75–1.5 
SVF: 0.2–0.6 
BSF: 40–70% 
ISF: 20–50% 
HRE: 3–10 m LCZ 3: Compact low-rise 

1 H/W: aspect ratio; SVF: sky view factor; BSF: building surface fraction; ISF: impervious surface fraction; HRE: height of 
roughness elements; *: value deviates from the parameter value range specified by the corresponding LCZ types. 

2.2.2. Experiment Design  
The air temperatures measured at the THB and TFX sites were used to represent the 

urban temperature of Guangzhou. The hourly temperatures of the two sites were derived 
from the temperature observation experiment of the Guangzhou LCZ, which was con-
ducted in July 2019 and is still ongoing. At each site, two fixed points located in the core 
area of the site within a radius of 100 m were equipped with temp/RH data loggers (HOBO 
U23X-001) inside a matching radiation shield to collect the hourly air temperature. Figure 
1 shows the locations of the data loggers. The temp/RH data logger used was the HOBO 
U23X-001, manufactured by Onset (Bourne, MA, USA), with a measuring range of 0 to 50 
°C and uncertainty of ±0.2 °C. For instrument safety, the temp/RH data logger was in-
stalled on street lampposts or poles at a height of 2.1–2.5 m from the ground. To avoid the 
influence of any artificial heat sources and ensure adequate ventilation, the point was 
placed far from vehicles and air conditioners, and at a distance of over 3 m from walls. 
The loggers were installed in the open area which is taken as the area never covered by 
tree shadow all day long. Figure 2 shows one data logger installed at THB and TFX. The 
average value of the temperature readings obtained at the two measuring points was 
taken as the air temperature value of the site. 

2.2.3. Air Temperature in Suburban Area 
We obtained the hourly suburban air temperatures in Guangzhou from the National 

Meteorological Station (NMS) No. 59287. Hourly temperature data from the NMS can be 
accessed via the China Meteorological Data Service Center (CMDC, http://data.cma.cn). 

H/W 1: 2.24 H/W: >2
SVF: 0.48 * SVF: 0.2–0.4

BSF: 30.55% * BSF: 40–60%
ISF: 49.28% ISF: 40–60%

LCZ 1: Compact high-rise HRE: 35 m HRE: >25 m

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 15 
 

  
(a) (b) 

Figure 2. Temp/RH data logger at the urban sites: (a) THB; (b) TFX. 

Table 1. Characteristics of the local climate zone (LCZ) sites. 

Building Type Satellite Images 
Properties 

Zone Parameter Value Indicator Range for the LCZ Type [7] 

 

 

H/W 1: 2.24 
SVF: 0.48 * 

BSF: 30.55% * 
ISF: 49.28% 
HRE: 35 m 

H/W: >2 
SVF: 0.2–0.4 
BSF: 40–60% 
ISF: 40–60% 
HRE: >25 m LCZ 1: Compact high-rise 

 

 

H/W: 0.84 
SVF: 0.57 

BSF: 44.86% 
ISF: 51.61% * 
HRE: 11 m * 

H/W: 0.75–1.5 
SVF: 0.2–0.6 
BSF: 40–70% 
ISF: 20–50% 
HRE: 3–10 m LCZ 3: Compact low-rise 

1 H/W: aspect ratio; SVF: sky view factor; BSF: building surface fraction; ISF: impervious surface fraction; HRE: height of 
roughness elements; *: value deviates from the parameter value range specified by the corresponding LCZ types. 

2.2.2. Experiment Design  
The air temperatures measured at the THB and TFX sites were used to represent the 

urban temperature of Guangzhou. The hourly temperatures of the two sites were derived 
from the temperature observation experiment of the Guangzhou LCZ, which was con-
ducted in July 2019 and is still ongoing. At each site, two fixed points located in the core 
area of the site within a radius of 100 m were equipped with temp/RH data loggers (HOBO 
U23X-001) inside a matching radiation shield to collect the hourly air temperature. Figure 
1 shows the locations of the data loggers. The temp/RH data logger used was the HOBO 
U23X-001, manufactured by Onset (Bourne, MA, USA), with a measuring range of 0 to 50 
°C and uncertainty of ±0.2 °C. For instrument safety, the temp/RH data logger was in-
stalled on street lampposts or poles at a height of 2.1–2.5 m from the ground. To avoid the 
influence of any artificial heat sources and ensure adequate ventilation, the point was 
placed far from vehicles and air conditioners, and at a distance of over 3 m from walls. 
The loggers were installed in the open area which is taken as the area never covered by 
tree shadow all day long. Figure 2 shows one data logger installed at THB and TFX. The 
average value of the temperature readings obtained at the two measuring points was 
taken as the air temperature value of the site. 

2.2.3. Air Temperature in Suburban Area 
We obtained the hourly suburban air temperatures in Guangzhou from the National 

Meteorological Station (NMS) No. 59287. Hourly temperature data from the NMS can be 
accessed via the China Meteorological Data Service Center (CMDC, http://data.cma.cn). 

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 15 
 

  
(a) (b) 

Figure 2. Temp/RH data logger at the urban sites: (a) THB; (b) TFX. 

Table 1. Characteristics of the local climate zone (LCZ) sites. 

Building Type Satellite Images 
Properties 

Zone Parameter Value Indicator Range for the LCZ Type [7] 

 

 

H/W 1: 2.24 
SVF: 0.48 * 

BSF: 30.55% * 
ISF: 49.28% 
HRE: 35 m 

H/W: >2 
SVF: 0.2–0.4 
BSF: 40–60% 
ISF: 40–60% 
HRE: >25 m LCZ 1: Compact high-rise 

 

 

H/W: 0.84 
SVF: 0.57 

BSF: 44.86% 
ISF: 51.61% * 
HRE: 11 m * 

H/W: 0.75–1.5 
SVF: 0.2–0.6 
BSF: 40–70% 
ISF: 20–50% 
HRE: 3–10 m LCZ 3: Compact low-rise 

1 H/W: aspect ratio; SVF: sky view factor; BSF: building surface fraction; ISF: impervious surface fraction; HRE: height of 
roughness elements; *: value deviates from the parameter value range specified by the corresponding LCZ types. 

2.2.2. Experiment Design  
The air temperatures measured at the THB and TFX sites were used to represent the 

urban temperature of Guangzhou. The hourly temperatures of the two sites were derived 
from the temperature observation experiment of the Guangzhou LCZ, which was con-
ducted in July 2019 and is still ongoing. At each site, two fixed points located in the core 
area of the site within a radius of 100 m were equipped with temp/RH data loggers (HOBO 
U23X-001) inside a matching radiation shield to collect the hourly air temperature. Figure 
1 shows the locations of the data loggers. The temp/RH data logger used was the HOBO 
U23X-001, manufactured by Onset (Bourne, MA, USA), with a measuring range of 0 to 50 
°C and uncertainty of ±0.2 °C. For instrument safety, the temp/RH data logger was in-
stalled on street lampposts or poles at a height of 2.1–2.5 m from the ground. To avoid the 
influence of any artificial heat sources and ensure adequate ventilation, the point was 
placed far from vehicles and air conditioners, and at a distance of over 3 m from walls. 
The loggers were installed in the open area which is taken as the area never covered by 
tree shadow all day long. Figure 2 shows one data logger installed at THB and TFX. The 
average value of the temperature readings obtained at the two measuring points was 
taken as the air temperature value of the site. 

2.2.3. Air Temperature in Suburban Area 
We obtained the hourly suburban air temperatures in Guangzhou from the National 

Meteorological Station (NMS) No. 59287. Hourly temperature data from the NMS can be 
accessed via the China Meteorological Data Service Center (CMDC, http://data.cma.cn). 

H/W: 0.84 H/W: 0.75–1.5
SVF: 0.57 SVF: 0.2–0.6

BSF: 44.86% BSF: 40–70%
ISF: 51.61% * ISF: 20–50%

LCZ 3: Compact low-rise HRE: 11 m * HRE: 3–10 m
1 H/W: aspect ratio; SVF: sky view factor; BSF: building surface fraction; ISF: impervious surface fraction; HRE: height of roughness
elements; *: value deviates from the parameter value range specified by the corresponding LCZ types.
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2.2.2. Experiment Design

The air temperatures measured at the THB and TFX sites were used to represent
the urban temperature of Guangzhou. The hourly temperatures of the two sites were
derived from the temperature observation experiment of the Guangzhou LCZ, which was
conducted in July 2019 and is still ongoing. At each site, two fixed points located in the
core area of the site within a radius of 100 m were equipped with temp/RH data loggers
(HOBO U23X-001) inside a matching radiation shield to collect the hourly air temperature.
Figure 1 shows the locations of the data loggers. The temp/RH data logger used was the
HOBO U23X-001, manufactured by Onset (Bourne, MA, USA), with a measuring range
of 0 to 50 ◦C and uncertainty of ±0.2 ◦C. For instrument safety, the temp/RH data logger
was installed on street lampposts or poles at a height of 2.1–2.5 m from the ground. To
avoid the influence of any artificial heat sources and ensure adequate ventilation, the point
was placed far from vehicles and air conditioners, and at a distance of over 3 m from walls.
The loggers were installed in the open area which is taken as the area never covered by
tree shadow all day long. Figure 2 shows one data logger installed at THB and TFX. The
average value of the temperature readings obtained at the two measuring points was taken
as the air temperature value of the site.

2.2.3. Air Temperature in Suburban Area

We obtained the hourly suburban air temperatures in Guangzhou from the National
Meteorological Station (NMS) No. 59287. Hourly temperature data from the NMS can be
accessed via the China Meteorological Data Service Center (CMDC, http://data.cma.cn).
These data were used to classify the meteorological conditions in Guangzhou and calculate
the UHII and suburban DTR. The station is a standard meteorological station that sends
and receives data internationally. The station, represented by black pentagram in Figure 1,
is located on the northeast of the city. These data include meteorological variables, such

http://data.cma.cn
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as solar radiation, air temperature, humidity, wind speed and direction, precipitation,
and atmospheric pressure. The minimum and maximum temperature, humidity and
wind direction observed in this station appear in daily weather forecast and represent the
weather conditions in Guangzhou.

2.3. Calculation of UHII and DTR
2.3.1. UHII

The difference in the hourly air temperature between that measured in urban areas
and that observed in suburban areas was defined as the UHII (UHII = Turban − Tsuburban).
The maximum UHII in a day is UHIImax, which represents the development level of the
UHI. To capture the complete diurnal cycle of the climatic processes (nocturnal cooling
after daytime warming), a 24 h period from 08:00 a.m. to 07:00 a.m. was defined as a day
to calculate the UHIImax and DTR. The average daily UHIImax at each site for the study
duration was defined as UHIImax. A day was regarded as a full UHI development day
when UHIImax > UHIImax.

2.3.2. DTR in Suburban Areas

The suburban DTR is considered a measure of the cooling potential at night in subur-
ban areas. This can be quantified according to the maximum hourly temperature minus
the hourly minimum temperature in a day (DTR = Tmax − Tmin). DTR represents the
comprehensive effect of multiple meteorological variables in suburban areas and can be
used to estimate the change in the regional thermal environment. During sunny and
cloudless conditions, the open space in a suburban area and strong solar radiation result in
a relatively high daily maximum temperature. At night, due to the large sky view factor
and enhanced long-wave radiative cooling, the daily minimum temperature reaches a
relatively low minimum value. The UHII is generally high under such meteorological
conditions because the cooling rate in a suburban area is faster than that in an urban area,
especially after sunset [1].

2.4. Meteorological Conditions during Experiments

The hourly data for a year from 1 August 2019 to 31 July 2020, at the sites observed
by the NMS in the suburban area and those measured by temp/RH data loggers in the
urban area were used in this study. Excluding missing data for 26 days, data from a
total of 337 days were used in this study. To analyze the influence of different meteoro-
logical conditions on the UHI in Guangzhou, the influence of rainfall on the UHI must
be examined. Three categories of meteorological conditions were classified by the NMS
(59,287) precipitation data. Days with precipitation events recording a minimum daily-
accumulated (≥0.1 mm) precipitation were defined as precipitation days (PDs); 114 days
were analyzed. Days without rainfall following the PDs were defined as the days following
precipitation (FPDs). Our study period included 29 FPDs. Other days without precipitation
were defined as non-precipitation days (NPDs); 194 NPDs were analyzed. Table 2 lists
the number of PDs, FPDs, and NPDs used for analysis and the monthly meteorological
conditions, including air temperature and precipitation from the NMS in the suburban
area. The monthly average temperature and precipitation were consistent with the climatic
characteristics of Guangzhou, whereby higher temperatures occur in the summer and
autumn and precipitation is more likely to occur in the spring and summer. During the
study period, the mean temperatures from May to September all exceeded 27.0 ◦C. The
most precipitation occurred in May, and the least in November.



Sustainability 2021, 13, 320 7 of 15

Table 2. Number days in three meteorological categories and monthly mean air temperature and precipitation from National
Meteorological Station (NMS) in Guangzhou.

Month Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Total

PDs 1 4 10 15 11 16 16 9 17 9 6 0 1 114
NPDs 24 16 10 10 7 5 17 6 17 23 30 29 194
FPDs 3 3 5 2 1 3 2 3 4 2 0 1 29

precipitation 22.4 124.9 150.2 83.5 511.1 250.8 65.5 452.5 104.6 39.5 0 5.6 1811
Mean T (◦C) 16 16.8 20.2 20.7 27.3 28.5 30.3 28.5 27.0 24.5 19.8 16.5 -

1 PDs: Precipitation days; FPDs: days following a precipitation day; NPDs: non-precipitation days.

3. Results
3.1. Characteristics of Daily UHIImax

Research on the seasonal characteristics of the UHI is necessary to alleviate the UHI
effect. Figure 3 depicts the monthly statistics and analysis of the daily UHIImax for the
study duration at the THB and TFX sites. The UHIImax was 4.19 ◦C for 337 days at the THB
site, as indicated by the red line in Figure 2a. At the THB site, the maximum of the monthly
averages of the daily UHIImax was 6.0 ◦C in December while the minimum was 2.3 ◦C in
May; the monthly average daily UHIImax values for September, October, November, and
December were significantly higher than the UHIImax. Furthermore, more than 20 days
and over 75% of every month had a daily characteristic of UHIImax > UHIImax during
these months. However, during the hotter months of May, June, July, and August, the
monthly average daily UHIImax values were lower than the UHIImax, during which no
more than 25% of the days exhibited UHIImax > UHIImax. The characteristics of the daily
UHIImax distribution at the TFX site were consistent with the THB site.
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The UHIImax of TFX was 4.62 ◦C for 337 days; Figure 2b shows the monthly distri-
bution of UHIImax. At the TFX site, the maximum of the monthly averages of the daily
UHIImax was 6.45 ◦C in December while the minimum was 2.57 in May. The average daily
UHIIs of the two urban areas were lower in the spring and summer than in the autumn and
winter. However, due to the small number of research samples and the number of years
analyzed, this seasonal UHI characteristic trend in Guangzhou requires further research.

Analyzing the occurrence time frequency of the daily UHIImax is necessary to reveal
the characteristics of the UHI. Figure 4 shows the statistics of the occurrence time of the
daily UHIImax at THB and TFX in a 24-h period. We divided the study period into three
categories to interpret the occurrence time frequency results. The maximum frequency of
NPDs occurred at 23:00 at TFX and 20:00 at THB. PDs occurred at 23:00 at both TFX and THB.
The daily UHIImax generally occurred from 20:00 to 2:00 during the night for both stations,
indicating that the UHI prefers to develop at night and the intensity reaches its maximum at
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night due to the differences in cooling rates caused by the thermal characteristics between
urban and suburban areas [14]. This observation is consistent with the findings of several
previous studies [18]. After sunset, the air layer structure is stable, and the cooling rate is
faster because of the increased long-wave radiation in the suburban area due to large open
spaces. The urban area retains significant heat during the day due to slow heat dissipation,
resulting from the geometric shape of the urban block. This results in a high temperature
in urban areas and a low temperature in suburban areas, increasing the UHII.
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3.2. Influence of Precipitation on UHIImax

Guangzhou experiences approximately 114 days of precipitation per year. Therefore,
examining the influence of precipitation on the development of the UHI is necessary.
Figure 5 depicts the effect of precipitation on the UHII in Guangzhou. At the THB site, the
average daily UHIImax was 3.1 ◦C during the PDs, which was approximately 1.8 ◦C lower
than the value during the NPDs. At the TFX site, the average daily UHIImax decreased by
1.8 ◦C due to precipitation. Both sites recorded an approximately 1.8 ◦C lower average daily
UHIImax during PDs than during NPDs. This indicates that precipitation has a negative
effect on UHI development. For the FPDs, the average daily UHIImax was higher than that
for the PDs; however, a lower average daily UHIImax than that during NPDs proved that
FPDs are not conducive to UHI development.
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Figure 6 depicts the monthly precipitation and box plots of the daily UHIImax for
three categories of meteorological conditions classified by precipitation. There is a negative
correlation between the daily UHIImax and precipitation. The monthly average daily
UHIImax was lower during PDs than NPDs, except when more than half of the months
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were PDs and precipitation was heavy. Precipitation had the least influence on the UHI in
the autumn and winter, and a significant impact in the spring and summer. A negative
correlation exists between precipitation and daily UHIImax because precipitation weakens
UHI development.
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3.3. Relationship between DTR and UHI

To reveal the effect of the DTR on UHI development, the seasonal features and distri-
bution of the DTR should be examined first, especially on the PDs and NPDs. Figure 7a
shows the DTR statistics distribution for the 337-day study period. During this time, the
minimum recorded DTR value in the suburbs was 1.3 ◦C, the maximum value was 16.0 ◦C,
and the average value was 8.38 ◦C. A significant difference existed in the distribution of the
monthly average DTR ranges from 5.75 to 11.25 ◦C. The DTR in autumn and winter was
higher than that in the spring and summer, which may be due to increased precipitation
during the spring and summer. Figure 7b shows the DTR statistics distribution of the PDs
and NPDs. The difference in the monthly average DTR between the PDs and NPDs was
significant where the DTR showed a negative correlation with the temperature. NPDs were
used to analyze the relationship between the DTR and UHI, owing to the negative effect of
precipitation on UHI development.
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Figure 8 depicts the distribution of the UHIImax during NPDs and the relation to
the DTR at THB and TFX. In the figure, r and P, which represent Pearson’s correlation
coefficient and statistical significance, respectively, can be used to measure the intensity of
the linear association between the and DTR. The correlation criteria of the absolute value of
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r were very weak (0.00–0.19), weak (0.20–0.39), moderate (0.40–0.59), strong (0.60–0.79), and
very strong (0.80–1.0) [31]. In general, the correlation analysis was considered statistically
significant when p < 0.05. The daily UHIImax was positively correlated with the DTR at both
the THB and TFX sites, which is consistent with previous findings [18,23,32]. The absolute
value of r represents correlation coefficients that exceeded 0.7 at both sites, indicating
strong correlations between the DTR and daily UHIImax in Guangzhou. Previous study
in Nanjing showed that the daily UHIImax is positively correlated with DTR, where the
correlation coefficient is 0.67 and p < 0.005 [31]. The correlation coefficient in Guangzhou is
higher than that in Nanjing. Therefore, the DTR can be used as an index to identify days
with high daily UHIImax in Guangzhou.
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3.4. Thresholds for Identifying Days with High Daily UHIImax

A significant correlation between the DTR and UHIImax indicates that the DTR can
be used to identify days with high daily UHIImax in Guangzhou. Figure 9 shows the
relationship between the DTR and UHIImax for 194 NPDs. The UHIImax for 194 NPDs was
4.78 ◦C and 5.22 ◦C for the THB and TFX sites, respectively. The same trend can be observed
at both sites; the average daily UHIImax increased, and the number of days with a daily
UHIImax > UHIImax decreased with an increasing DTR. At the THB site, 183 days were
selected when the DTR was ≥5 ◦C, and the average daily UHIImax was 4.93 ◦C. Only 48.6%
of the days were characterized by UHIImax > UHIImax. At the TFX site, the average daily
UHIImax was 5.37 ◦C and 48.6% of the days recorded UHIImax > UHIImax when the DTR
was ≥5 ◦C. When the DTR increased to 12 ◦C, only 44 days were recorded. However, the
ratios of the number of days with a daily UHIImax > UHIImax to the number of the days
when the DTR was ≥12 ◦C were 84.1% and 81.8% for the THB and TFX sites, respectively.

With the increase in the DTR, fewer sample days were selected, resulting in a decrease
in the sample size and an increase in the identification rate. The meteorological conditions
conducive to UHI development can be identified by selecting an appropriate DTR to ensure
a sufficient sample size and identification rate. In a previous study [18], a sample size
higher than 30% and an identification rate of more than 70% were defined as the criteria to
determine the DTR threshold value in Nanjing. In this study, when the DTR was 10 ◦C,
the sample size and identification rate at the THB and TFX sites were 48% and 77%, and
33.5% and 74%, respectively. A DTR of 10 ◦C can, thus, be regarded as the threshold to
identify days with high daily UHIImax because both sites meet the criteria proposed by
Yang [18]. Days with DTR ≥10 ◦C can be considered conducive to UHI development in
Guangzhou. However, the regional climate and geographical features of a city influence
the DTR in a significant manner. Hence, a more extended period of data should be collected
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and analyzed to verify UHI development in Guangzhou; further, more cities should be
examined to fully evaluate the effectiveness and threshold.
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4. Discussion

Meteorological conditions impact the UHI in a significant manner. Therefore, selecting
the days with a high daily UHIImax from different meteorological conditions is crucial to
assess and understand the UHI. In this study, the DTR for 337 days was used as an index
to select days with a high daily UHIImax in Guangzhou.

The geography, topography, anthropogenic heat, and regional climate of a city have
complex effects on urban and suburban thermal behavior. In addition, the air temperature
is also affected by the soil type, vegetation type, and coverage. Previous studies have
discussed the various characteristics of the UHI. For example, the largest UHII values were
found in summer in Istanbul [15], while a strong UHI was observed in both the summer
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and winter seasons in northern west Siberian cities [33] and in the winter in Beijing [34].
The monthly distribution of the daily UHIImax in the two urban areas of Guangzhou was
studied for a one-year study duration; the results revealed that the UHII in the autumn and
winter is more pronounced than that in the spring and summer, which is consistent with
Jiang [35]. The characteristics of the UHI during autumn in Guangzhou may be related to
the meteorological conditions. The meteorological conditions are stable, with more sunny
days and less cloud cover, which are conducive to UHI development. However, further
research with an extended period is required to establish the seasonal characteristics of the
UHI in Guangzhou.

Guangzhou experiences heavy precipitation, such that the average daily UHIImax
increased by 1.8 ◦C during NPDs as compared with PDs at both sites. This indicates that
precipitation negatively affects UHI development, which is consistent with the researches
in Bangkok [14] and Istanbul [15]. During FPDs, the study sites recorded a lower average
daily UHIImax than that during NPDs, indicating that FPDs are not conducive to UHI
development. Future research should focus on the analysis of more data including over a
more extended period to verify these results.

For practical applications, this method not only can be used for selecting the typical
meteorological days for UHI survey and simulation, but also can be used to forecast an
early-warning of intense UHI events based on weather forecasts, which can provide the
diurnal maximum and minimum temperature. For the study period, the difference in the
monthly average distribution of the suburban DTR was moderate in Guangzhou, ranging
from 5.75 to 11.25 ◦C. The DTR during NPDs was higher than that during PDs and FPDs,
which was similar to the daily UHIImax. In other words, more precipitation days will be
eliminated with an increasing DTR. Based on these observations, the relationships between
the DTR and daily UHIImax during NPDs were quantitatively evaluated. Here, 10 ◦C can
be regarded as the appropriate DTR threshold for NPDs to identify typical meteorological
days with high daily UHIImax in Guangzhou.

Figure 10 shows the performance of a DTR threshold of ≥10 ◦C for identifying days
with a high UHIImax during PDs and FPDs. Here, a stricter UHIImax for 194 NPDs, 4.78 and
5.22 ◦C for the THB and TFX sites, respectively, was used to calculate the identification rate
during PDs and FPDs. When DTR was ≥10 ◦C, only 23 days were selected as sample days,
yielding an identification rate of 50% and 69% for the THB and TFX sites, respectively. Al-
though the identification rate was less than 70% at THB, only 23 sample days were selected,
indicating that most of the PDs and FPDs were excluded. For practical applications, we
suggest that a threshold of 10 ◦C be used directly for all samples to identify days with full
UHI development when focusing only on days with high UHIImax and the precipitation
data is difficult to obtain. Otherwise, a higher accuracy will be observed when identifying
days with full UHI development using DTR ≥ 10 ◦C for NPDs in Guangzhou.

The method by DTR to select the typical days with full UHI Development is very
straightforward and easy to use, which only observation or forecasting of screen level
temperature are required. However, there are limitations for this method. The observations
of this study are limited by the amount of data analyzed. The DTR threshold in Guangzhou
used to select the typical days with full UHI Development need to be examined over a
more extended period data in future research. It is better to determine an appropriate DTR
thresholds by season if a city with clear seasonal variability in the UHI effect. Moreover, the
climate and geographical features of a city influence the DTR in a significant manner and
the factors lead to UHI development and its intensity are not equal in all regions. Hence,
the DTR threshold may not be suitable for other cities, and more cities with different climate
conditions and properties are encouraged to examine and evaluate the effectiveness and
threshold to adjust the method.
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5. Conclusions

Selecting days with a high daily UHIImax from different meteorological conditions
is crucial to assess and understand UHIs. In this study, DTR was applied as an index to
identify days with a high daily UHIImax; a year of observation data was collected from
Guangzhou. The seasonal characteristics of the daily UHIImax were consistent with the
findings of previous studies. Notably, precipitation negatively affects UHI development,
resulting in a daily UHIImax occurring more frequently during NPDs. The correlation
between the daily UHIImax and DTR was significant during NPDs. Further, more days
were selected when UHIImax > UHIImax. A DTR of 10 ◦C can be used as a threshold
to identify the meteorological conditions conducive to UHI development in Guangzhou.
It is important to choose the typical days with full UHI Development in UHI research.
We anticipate that the findings of this study will be useful for UHI studies, not only in
Guangzhou but also in other cities. We suggest a greater focus on evaluations of this method
and the DTR threshold in other cities with different climate conditions and properties.
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