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Abstract: Compression combustion engines are a source of air pollutants such as HC and Co, but
are still widely used throughout the world. The use of renewable fuels such as ethanol, which is a
low-carbon fuel, can reduce the emission of these harmful gases from the engine. A fundamental
analysis is proposed in this research to experimentally examine the emission characteristics of diesel–
ethanol fuel blends. Furthermore, a multi-objective genetic algorithm (e-MOGA) was developed
based on the experimental data obtained to fine the most effective or Pareto set of engine emission
and performance optimization solutions. So, the optimization problem had two inputs and seven
objectives. For this purpose, input variables for the search space were S (rpm) varied in the range
of (1600–2000) and E (%) varied in the range of (0–12). These design variables were chosen to be
varied in a prespecified range with a lower and upper band as same as experimental conditions. A
diesel engine using (DE2, DE4, DE6, DE8, DE10, and DE12) diesel–ethanol fuel blends, at the various
speed of 1600 to 2000 rpm, was utilized for the experiment. The findings showed that the use of
diesel–ethanol fuel blends decreased the concentration of CO and HC emissions by 3.2–30.6% and
7.01–16.25%, respectively, due to the high oxygen content of ethanol. As opposed to CO and HC
emissions, the NOx concentration showed an increase of 7.5–19.6%. This increase was attributed
to the high combustion quality in the combustion chamber, which resulted in a higher combustion
chamber temperature. The optimization results confirmed that the shape of the Pareto front obtained
from multi-objective ε-Pareto optimization could be convex, concave, or a combination of both. A
new parameter was introduced as emission index or EI for selection of the best solution among
the Pareto set of solutions. This parameter had a minimum value of 4.61. The variables levels
for this optimum solution were as follows: engine speed = 1977 rpm, ethanol blend ratio = 10%,
CO = 0.27%, CO2 = 6.81%, HC = 3 ppm, NOx = 1573 ppm, SFC = 239 g/kW·h, P = 56 kW, and
T = 269.9 N·m. The EI index had a maximum value of 8.26. Conclusively, we can say that the
optimization algorithm was successful in minimizing emission index for all ethanol blend ratios,
especially at higher engine speeds.

Keywords: diesel-ethanol fuel blends; bioethanol; engine performance; exhaust emission; multi-
objective optimization; genetic algorithm

1. Introduction

The growing world population and fossil fuel consumption result in a steep rise in
energy demand. When population grows and living conditions rise, there is increasing
fear that there will be energy shortages to power the vehicles [1]. Due to environmental
considerations and the increase of petrol prices, many investigators are now trying to
discover renewable sources that could replace fossil fuels [2]. The use of renewable fuels
such as ethanol, which is a low-carbon fuel, can reduce CO2 as well as greenhouse gas
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emissions from the engine [3]. Due to the fact that alcoholic fuels contain oxygen and can
be produced sustainably, they can be considered as an alternative fuel to biofuels even in
compression combustion engines [4].

The prominent drivability and economic efficiency make diesel engines extensively
employed in many applications such as automobile propulsion source, engineering machin-
ery for technical purposes, and ship power requirement. It has been a major objective in the
development of diesel engines to reduce emissions. Alternative energies are sustainable,
safer and more efficient than traditional fuels [5]. Biofuels seem to be a great replacement
for fossil fuels, which are always accompanied by environmental, economic, and stability
issues. Here, biofuel is referred to as any liquid fuel produced from plant materials and
utilized as a replacement for petroleum. Biofuels such as ethanol–diesel, are considered to
be optimum alternative fuels for SI and CI engines because these fuels are renewable [6].

Since the late 1970s, the use of ethanol as a fuel has increased. This was first used as
an alternative for fuel due to oil shortages [7].

The current method of massive production of fuel ethanol in which the sugar and
starch grains are used as the main raw material is not favorable because they are considered
as the main food resources. Biomasses like agricultural residues (rice, corn, wheat straw),
woody biomass, industrial (waste from potato factories), and municipal solid waste algae
are potential bioethanol production resources worldwide [8].

Many studies in the 1980s revealed that ethanol–diesel blends are suitable for the
current diesel engine. The high cost of ethanol development suggested that it is only usable
when there is a shortage of fuel [7].

Some reasons for increased production and use of ethanol include:

1. Ethanol decreases the country reliance on imported oil, decreasing the trade deficit
and ensuring a stable supply of fuel in the event that international supplies are cut.

2. Farmers are seeing increased demand for grain that is helping to support prices.
3. The reduction emissions of carbon monoxide cause to improve the quality of environment.
4. Car owners benefit from improved gasoline octane, which eliminates “knock” or

“pinging” engines.

Ethanol-mixed fuels also remove moisture and clean up the fuel system. The aim
of employing ethanol as a part of gasoline blending is to reduce imports of fossil fuels
by 10–15%. Another advantage of the employment of ethanol is the improvement of the
domestic agricultural market [9].

Wu et al. (2020) [10] studied how the emission and combustion of diesel engines are af-
fected by various variables, such as TFH and ethanol levels in diesel fuel (Tetrahydrofuran–
ethanol–diesel blends) and ethanol. They concluded that NOx emissions are increased by
using TFH or 30% ethanol, while using 10% ethanol reduces NOx emissions. Using TFH or
ethanol raises the emissions of Co and HC substantially.

By using E85 and diesel fuels under different load conditions, Sajovaara and his
colleagues [11] studied dual-fuel combustion and stated that an improvement in the E85
ratio caused NOx emissions to decrease.

In Di Blasio et al. (2013) [12], characteristics of a mixture of glycerol-based ethers usable
in a compression ignition engine, in terms of efficiency and emissions, were investigated.
The test methodology considers the comparison among three fuel blends: (1) a mixture
consisting of 90% v/v diesel and 10% v/v of GEM; (2) a blend consisting of 80% v/v diesel
and 20% v/v of GEM; and (3) a reference diesel. The results have shown the possibility to
burn the diesel/GEM blends without significant impact on combustion characteristics and
efficiencies while, due to the oxygen content of the GEM, important benefits are obtained
in terms of NOx-PM trade-offs and emission particles at the exhaust.

It can be inferred from previous studies that the performance of the diesel engine
and exhaust emissions are affected by ethanol–diesel blends. So, in this research diesel–
ethanol fuel blends are considered for evaluation of performance and exhaust emission of
a diesel engine.
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Reduction in environmental emissions and at the same time maximizing engine
output power using alternative fuels have undergone significant improvement over the
past decades [13]. In the literature based on improving the efficiency of diesel engines,
many attempts can be found [14]. Navid et al. compared multi-objective non-evolutionary
and evolutionary genetic algorithm optimization of a DI diesel engine performance [15].
They reported that the non-evolutionary method could reach global optima faster (at
run 41) compared to genetic algorithm (at run 84). The combined effect of the fuel injection
timing, the percentage of EGR and the fuel injection pressure on the NOx emission of a
diesel-fueled stationary diesel engine were examined [16]. In the optimum results obtained
by Multi response optimization, a decrease in NOx emissions was seen with a minimum
increase in the concentration of smoke. With a 5.5% increase in smoke concentration and
a 2.2% decrease in brake fuel conversion performance, this combination decreases NOx
by 15% compared to standard operating conditions. Research has been carried out to
achieve the optimum biodiesel ratio, which is followed by lower emissions, acceptable fuel
efficiency, and a wide operating range of engines.

First of all, the main emissions of the six-cylinder diesel engine—which are carbon
monoxide (CO), nitrogen oxides (NOx), and unburned hydrocarbons (HC)—and perfor-
mance parameters of the specific fuel consumption (SFC), engine brake power (P), and
engine torque (T) were tested experimentally in this study. The input or independent
variables were engine speed or S (1600, 1700, 1800, 1900, and 2000 rpm) and different levels
of ethanol–diesel blend volumetric ratios or E (0%, 2%, 4%, 6%, 8%, 10%, and 12%). Then
a proper epsilon Pareto Multi-objective genetic algorithm (e-MOGA) was developed to
find a global optimum or the efficient solution or the Pareto solution with the best engine
performance and least emissions. So, the optimization problem had two inputs and seven
objectives. For this purpose, input variables for the search space were S (rpm) varied in
the range of (1600 2000) and E (%) varied in the range of (0 12). These design variables
were chosen to be varied in a prespecified range with a lower and upper band as same
as experimental conditions. The objective functions were surfaces obtained from fitting
three-degree polynomials when output variables were a function of S and E; these output
variables were CO (%), CO2 (%), HC (ppm), NOx (ppm), SFC 9 g/kW·h), P (kW), and T
(N·m). This study demonstrated the remarkable potential of the Pareto optimization con-
cept for reducing emissions and finding best working conditions for possible applications
of blended ethanol–diesel fuel in IC engines as well as its performance analysis.

2. Materials and Methods
2.1. Test Fuels

Ethanol can generally be mixed with diesel without any engine modification needed [9].
The bioethanol used in this work was from molasses of cane with purity 99.6%. The
bioethanol was blended with the diesel fuel at blend ratios of 0/100, 2/98, 4/96, 6/94, 8/92,
10/90, and 12/88 by volume respectively, which were named as DE0, DE2, DE4, DE6, DE8,
DE10, and DE12.

2.2. The Experimental Study

A PERKINS A63544 diesel engine was utilized in the experiment. It has a volume of
5800 cm3, and consists of six cylinders and a water-cooled system.

The measurement of the emissions of CO, HC, and NOx from the engine was per-
formed employing the exhaust gas analyzer (model is MAHA MGT5, made by German
company MAHA). The test set up is schematically shown in Figure 1.
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Figure 1. Experimental test set up.

The fuel system in a PERKINS A63544 diesel engine operates in such a way that
first the diesel is taken from the tank by an electric pump and after passing through the
filter, it enters the high pressure pump. This pump, which draws its power from the valve
shaft, greatly increases the fuel pressure and compresses it into the fuel rail. This rail is
common to all cylinders and all injectors branch to this rail. The injectors are mechanical-
electromagnetic and operate at the command of the motor control unit. When fuel injection
is to be done by rotating the valve stem and reaching the valve stem cam to the injector
seat and compressing, this seat is continued by rotating the valve. The fuel enters the
injector control valve and provides the best conditions for excellent combustion compared
to engine, vehicle, and environmental conditions by precisely adjusting the pressure and
injection time at the beginning and end and during injection.

Experiments were performed at steady states for five different speeds (1600, 1700,
1800, 1900, and 2000 rpm). During the test, all the gaseous emissions were monitored and
reported constantly. The experiment was divided into two stages: operating the engine
with (1) the diesel and (2) the blends. The regulated emission of unburned hydrocarbon
(UHC), nitrogen oxide (NOX), and carbon monoxide (CO) as well as carbon dioxide (CO2)
concentration in the exhaust gas were investigated and compared using diesel–ethanol fuel
blends and diesel fuel.

2.3. Epsilon Pareto Multi-Objective Optimization Using Genetic Algorithm (e-MOGA)

The main objective of the current research is to enhance the performance of the engine
(SFC minimization, maximization of P and T) and the reduction of emissions (minimization
of CO, CO2, HC, and NOx). A Multi-objective Genetic Algorithm (MOGA) comprising of
two inputs and seven objectives was used. For this purpose, input variables for the search
space were S (rpm) varied in the range of (1600 2000) and E (%) varied in the range of (0–12).
The objective functions were surfaces obtained from fitting three-degree polynomials when
output variables were a function of S and E; these output variables were CO (%), CO2
(%), HC (ppm), NOx (ppm), SFC 9 g/kW·h), P (kW), and T (N·m). To achieve the global
minimum or the Pareto solution for all objectives, all objective functions would need to
be a minimization problem. To do this, the reverse values of P and T (1/P and 1/T) were
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used, but the results were reported as P and T. The general form of the objective function is
presented in Equation (1) shown below:

Fk(θi) = Minimize {f (xi , yi)}, ∀i 1600 ≤ xi ∈ S ≤ 2000 & 0 ≤ yi ∈ E ≤ 12 (1)

f (xi , yi) = p00 + p10∗xi + p01∗yi + p20∗xiˆ2 + p11∗xi∗yi + p02∗yiˆ2 + p30∗xiˆ3+p21
∗xiˆ2∗yi + p12∗xi∗yiˆ2 + p03∗yiˆ3

(2)

where Fk(θ) is the kth Objective function, in this study they are (CO (θ), CO2 (θ), HC
(θ), NOx (θ), SFC (θ), 1/P (θ), 1/T (θ)), and θ is a set of design variables, each varies in a
different range prespecified with lower and upper levels. In this research, these variables
are θ = {S, E} and their ranges are reported in Table 1. To use MOGA, the objective functions,
Fk(θ), were determined using the experimental results and a suitable curve fitting approach
in MATLAB software (developed by MathWorks, University of New Mexico, Albuquerque,
NM, USA). The input variables were engine speed (S) and ethanol blend ratio (E), while
the outputs were CO, CO2, HC, NOX, SFC, P, and T. The fit type was set to be polynomial
with a degree of three for all models. As a result, seven different surfaces, f (xi, yi), were
obtained to be used in the optimization process. The algorithm parameters are given in
Table 1.

Table 1. e-MOGA parameters and setup values for engine performance optimization.

Algorithm Parameters Value and Notation Equation or Value

Objectives CO, CO2, HC, NOx, SFC, P, and T f (S, E), Three-degree polynomials as a
function of S and E

Input variables Engine speed, S (rpm)
Ethanol Blend ratio, E (%)

(1600–2000)
(0–12)

Population size 200 -

Max number of generations (iterations) 200 -

Uniform crossover percentage 25% -

Gaussian Mutation probability 0.2 -

We used the MOGA algorithm in this research to find the optimal set of objectives of
Pareto. This way, we would have a ε-MOGA problem that would find the best solution
among the obtained set of optimum solutions. In other words, the Pareto solution set
does not have a member that dominates other members or solutions in the set. Pareto
dominance is defined as: A solution θ1 dominates other solution θ2 or θ1 ≺ θ2, if and only
if for the objective function of Fk(θ):

∀i, j (1 ≤ i and j ≤ number of objectives) (3)

Fi(θ1) ≤ Fi(θ2)
∧
∃ Fj(θ1) ≤ Fj(θ2) then the Pareto front, Θp, is obtained as :

Θp =
{
θ | @θ̃ : θ̃ ≺ θ

}
Θp =

{
θ | @θ̃ : θ̃ ≺ θ

}
(4)

We denote this solution as the best solution in a multi-objective genetic algorithm [17,18].
Figure 2 shows the MOGA algorithm used in this research and its steps.
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Figure 2. Flowchart of the optimization process.

3. Results
3.1. Properties of Test Fuels

The fuels used in this study include diesel and ethanol. The major properties of these
fuels are shown in Table 2.

Table 2. Properties of diesel and ethanol.

Diesel Ethanol

Formula C12H23 (C10H20~C15H28) C2H5OH
Mole weight 190–220 46.07

Density at 20 ◦C 0.840 0.789
Oxygen content (wt.%) 0 34.8
Carbon content (wt.%) ~86 52.2

Hydrogen content (wt.%) ~14 13
Viscosity at 20 ◦C (10−6 v/m2/s) 3.35 1.2

Cetane number 40~50 8~9
Lower heat value (MJ/kg) 42.5 26.4

Some important properties of diesel–ethanol fuel blends were measured. These are
summarized in Table 3.

Table 3. Properties of testing fuel blends.

Fuel Density
(g/cm3)

Dynamic
Viscosity (MPa·s)

Kinematic
Viscosity (mm2/s)

Water and
Sediment (%)

1 Diesel 0.8216 2.3167 2.8305 0.025
2 Ethanol 0.7748 0.8675 1/1196 3.25
3 E2 0.8183 2.2577 2/7590 0.0277
4 E4 0.8175 2.2231 2/7194 0.0289
5 E6 0.8168 2.0835 2/5563 0.0319
6 E8 0.8151 2.0498 2/5148 0.0324
7 E10 0.8143 2.0021 2/5002 0.0346
8 E12 0.8137 1.9821 2/4360 0.0361
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3.2. Effect of Diesel–Ethanol Fuel Blends on Engine Performance

Figures 3–5, respectively, display the engine power, torque, and specific fuel consump-
tion (SFC) test results using diesel–ethanol fuel blends and conventional diesel. Figure 3
shows the average engine power at all speeds.

Figure 3. Comparison of engine power.

Figure 4. Comparison of engine torque.
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Figure 5. Comparison of fuel consumption.

The finding showed that the maximum power and torque of diesel–ethanol fuel blends
is 67.26 kW at 1900 rpm and 307.17 N·m at 1700 rpm, respectively. The engine torque
and power show a slight rise when bioethanol percentage is increased; this is because
of good combustion of ethanol due to the high oxygen content, which could improve
combustion [19–22]. The molecular formula of ethanol is C2H5OH, which is an oxygenated
hydrocarbon. It indicates that it contains oxygen, which results in improving combustion.

Due to the lower calorific value of bioethanol relative to conventional diesel fuel, the
specific fuel consumption increases with an increase of bioethanol in diesel–ethanol fuel
blends in comparison with net diesel fuel [23]. More fuel volume reaches the combustion
chamber and induces an increased rate of specific fuel consumption when diesel–ethanol
fuel blends are used [24].

3.3. Effect of Diesel–Ethanol Fuel Blends on Engine Exhaust Emissions
3.3.1. UHC Emission

The unburned hydrocarbon (UHC) emissions determined for the test engine are shown
in Figure 6 for diesel fuel and diesel–ethanol fuel blends at various engine speeds and
Figure 7 shows the average changes in UHC concentration at all speeds. Hydrocarbons are
molecules in the fuel that remain unchanged as a result of being unburned or incomplete
combustion and leaving the exhaust. Hydrocarbons produce near-surface ozone in the
presence of sunlight and nitrogen oxides, which are important contributors to the formation
of smog. The HC emissions are primarily a result of insufficient temperature that occur
near the cylinder wall and availability of oxygen in combustion chamber [25].

The curves illustrate that with an increase in the percentage of bioethanol in the
blends, the HC concentration in the emission tends to reduce. The use of diesel–ethanol
fuel blends in diesel engines results in more complete combustion and thereby decreases the
concentration of UHC in the gas emission. This is because, in the molecular structure, the
bioethanol consists of oxygen and accordingly needs fewer oxygen molecules to complete
the combustion. Researchers have also reported some similar trends for diesel–ethanol
blends [26–28].
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Figure 6. Comparison of UHC emission.

Figure 7. Average changes of UHC emission at all speeds.

3.3.2. NOx Emission

NOX emissions for the present research work are also shown in Figure 8 for diesel fuel
and diesel–ethanol fuel blends and Figure 9 shows average changes in NOX concentration
at all speeds. The formation of NOx strongly relies on the temperatures of the combustion
chamber and the concentration of oxygen.

Increasing the percentage of bioethanol in diesel–ethanol fuel blends raises NOX emis-
sions, as seen in Figures 8 and 9. This increase was attributed to the high combustion
quality in the combustion chamber, which resulted in a higher combustion chamber tem-
perature [8]. It has also been documented in most previous research sources that NOX
emissions increase through the use of ethanol–diesel blends [28–30].
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Figure 8. Comparison of NOx emission.

Figure 9. Average changes of NOx emission at all speeds.

3.3.3. CO Emission

The CO emissions for diesel and diesel–ethanol fuel blends are shown in Figures 10 and 11
shows average changes in CO concentration at all speeds. Carbon monoxide is caused by
incomplete combustion, and when the oxidation process does not occur completely, the
product becomes carbon monoxide instead of carbon dioxide.

The curves trend shows that when the percentage of bioethanol increases, the amount
of CO decreases. The reason is because bioethanol contains oxygen in its molecular struc-
ture and they, therefore, require fewer oxygen molecules to complete the combustion [21].
Studies have shown that the percentage of CO concentration in the emissions is decreased
as the percentage of bioethanol in the blends is increased [24,27,28,31–33]. This trend is
caused by lower carbon content in bioethanol than in diesel fuel. Furthermore, ethanol–
diesel fuel blends would help to increase the oxygen-to-fuel ratio in the fuel-rich region
that causes complete combustion and would also reduce CO concentration.
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Figure 10. Comparison of CO emission.

Figure 11. Average changes of CO emission at all speeds.

3.3.4. CO2 Emission

Figure 12 shows CO2 emissions for diesel and diesel–ethanol fuel blends and Figure 13
shows average CO2 concentration shifts at all engine speeds.

While Carbon Dioxide (CO2) emission released from combustion engine fuels is not a
harmful agent for public health itself, it plays an important role in global climate change.
Figures 11 and 12 show that the increase in CO2 concentration is followed by the bioethanol
percentage growth. The CO2 emission relies on the relative air–fuel ratio and CO emission
concentration [20]. Increasing ethanol percentages causes lean burning, and consequently,
the increase in CO2 emission due to the improved combustion [19–22].
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Figure 12. Comparison of CO2 emission.

Figure 13. Average changes of CO2 emission at all speeds.

3.4. Results of Optimization Using Epsilon Pareto Multi-Objective Genetic Algorithm (e-MOGA)

To optimize the engine performance, first, a set of objective functions were obtained
using a curve fitting toolbox in MATLAB. The fitted polynomial degree was three for all
output variables. Input variables are engine speed presented as S or x, and Ethanol blend
ratio as E or y. The output variables or objectives were CO, CO2, HC, NOX, SFC, P, and
T presented as f (x, y). These functions and their coefficients are presented in Table A1
(Appendix A) and the fitted surface can be seen in Figures 14 and 15. As this table shows,
all of the obtained models have an adjusted R-square of more than 0.93, except for the SFC,
whose R-square value is 0.724. In multi-objective optimization, these experimental models
are used as objective functions.

As explained in Section 2.3, a multi-objective genetic algorithm was developed in
MATLAB software to find an efficient solution or an ε-Pareto solution that maximizes the P
and T and simultaneously minimizes the CO, CO2, HC, NOX, and SFC. The input variables,
their lower and upper bounds, and MOGA setup and specification were given in Table 1.
The set of best solutions or efficient solutions and the corresponding Pareto front obtained
using curve fitting are presented in Figures 16–20; additionally, detailed results are given
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in Table 4. It illustrates the efficient solution and the Pareto set for the best 40 solutions,
but the real Pareto front comprises 200 obtained solutions which represent the imaginary
Pareto front in engine performance optimization.

Figure 14. The objective function obtained from experimental data for engine power (P), Torque (T),
and specific fuel consumption (SFC) as a function of engine speed (S) and Ethanol blend ratio (E).

Figure 15. The objective function obtained from experimental data for engine emissions CO, CO2,
HC, and NOx as a function of engine speed (S) and Ethanol blend ratio (E).
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Figure 16. The Pareto front and the efficient solution set obtained for Power (P) and CO emission
from multi-objective Pareto optimization of the engine performance.

Figure 17. The Pareto front and the efficient solution set obtained for Power (P) and CO2 emission
from multi-objective Pareto optimization of the engine performance.
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Figure 18. The Pareto front and the efficient solution set obtained for Power (P) and HC emission
from multi-objective Pareto optimization of the engine performance.

Figure 19. The Pareto front and the efficient solution set obtained for Power (P) and NOx emission
from multi-objective Pareto optimization of the engine performance.
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Figure 20. The Pareto front and the efficient solution set obtained for Power (P) and SFC emission
from multi-objective Pareto optimization of the engine performance.

Table 4. The results of a Pareto multi-objective optimization (MOGA) of the engine performance.

Solution
Rank S (rpm) E (%) CO

(V%)
CO2
(V%)

HC
(ppm)

NOx
(ppm)

SFC
(g/kW·h) P (kW) T (N·m) EI

1 1665.59 1.07 0.76 8.35 21.96 1787.17 220.22 56.30 310.59 7.55
2 1738.37 1.27 0.91 8.78 20.65 1749.71 211.78 60.39 322.28 7.52
3 1652.33 7.86 0.58 8.51 19.66 1879.77 234.32 56.00 311.57 7.74
4 1654.49 0.04 0.75 8.18 22.85 1723.56 216.18 55.46 306.41 7.25
5 1695.23 1.32 0.80 8.49 21.33 1788.60 216.86 57.84 315.44 7.51
6 1933.89 7.63 0.68 8.15 14.48 1630.65 231.69 61.69 293.15 6.24
7 1968.21 2.61 0.53 7.06 14.01 1424.73 247.91 51.84 247.31 4.89
8 1796.44 8.06 0.81 9.13 17.41 1822.22 223.09 64.02 323.20 7.77
9 1962.78 10.12 0.42 7.35 13.52 1594.05 236.69 58.75 282.48 5.28

10 1824.86 3.13 1.05 9.30 18.12 1721.35 216.60 64.80 326.46 7.89
11 1875.21 4.42 1.00 9.13 16.55 1680.23 222.87 64.86 316.38 7.56
12 1848.34 4.80 1.01 9.28 17.09 1733.48 220.50 65.47 323.19 7.82
13 1601.76 9.11 0.67 8.84 20.28 1826.15 237.98 56.11 318.47 8.26
14 1652.20 8.61 0.55 8.50 19.47 1873.86 234.61 55.84 310.68 7.64
15 1898.28 4.96 0.93 8.87 15.82 1654.22 226.50 63.86 307.71 7.19
16 1667.26 8.45 0.55 8.49 19.27 1880.76 233.23 56.32 310.61 7.57
17 1724.51 9.30 0.59 8.68 18.21 1870.78 229.42 59.12 313.25 7.47
18 1761.59 5.93 0.81 9.01 18.42 1856.76 222.32 62.27 322.93 7.86
19 1914.10 5.22 0.86 8.60 15.32 1632.92 229.40 62.67 299.90 6.84
20 1785.93 11.17 0.68 9.04 16.91 1825.84 230.35 62.66 318.57 7.67
21 1977.70 10.03 0.27 6.81 13.04 1573.00 239.88 56.02 269.91 4.61
22 1827.58 5.87 0.95 9.28 17.28 1779.83 220.53 65.38 325.29 7.89
23 1923.70 5.50 0.80 8.41 14.99 1622.36 231.26 61.82 294.64 6.59
24 1868.89 5.88 0.96 9.16 16.40 1718.71 222.81 65.50 318.90 7.61
25 1624.94 10.54 0.53 8.61 19.42 1845.39 237.39 55.29 311.48 7.70
26 1661.05 10.13 0.49 8.47 18.92 1869.05 235.29 55.70 308.08 7.42
27 1897.21 7.09 0.86 8.84 15.54 1684.98 226.04 64.70 310.66 7.14
28 1849.12 3.68 1.05 9.28 17.39 1701.69 219.25 65.13 322.99 7.80
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Table 4. Cont.

Solution
Rank S (rpm) E (%) CO

(V%)
CO2
(V%)

HC
(ppm)

NOx
(ppm)

SFC
(g/kW·h) P (kW) T (N·m) EI

29 1687.11 4.36 0.71 8.59 20.06 1886.60 227.41 57.80 315.62 7.86
30 1665.59 1.07 0.76 8.35 21.96 1787.17 220.22 47.74 224.36 3.61
31 1995.35 5.02 0.13 5.95 12.41 1487.92 255.12 59.01 292.39 6.32
32 1911.32 0.30 1.03 8.48 17.21 1357.92 223.61 53.86 253.55 4.77
33 1973.17 5.64 0.39 6.92 13.27 1541.67 244.98 58.91 313.82 7.52
34 1717.74 8.54 0.60 8.66 18.48 1877.64 228.86 55.56 309.42 7.54
35 1649.63 9.65 0.51 8.49 19.25 1865.81 235.46 65.47 316.25 7.23
36 1889.01 9.42 0.81 8.91 15.49 1700.30 226.29 59.65 317.29 7.70
37 1722.88 6.75 0.69 8.74 18.82 1884.21 226.42 58.86 278.96 5.95
38 1944.39 5.20 0.67 7.89 14.36 1579.95 236.71 63.74 321.34 7.41
39 1850.09 1.01 1.14 9.18 18.56 1553.71 212.47 59.13 314.11 7.52
40 1721.70 8.63 0.61 8.68 18.41 1875.65 228.64 56.30 310.59 7.84

According to Table 4, the best solution or the most efficient solution is the first row,
which ranked first in ε-MOGA where the S value was 1665.59 rpm and E was 1.07%.
The variables levels for this solution were: CO = 0.76%, CO2 = 8.35%, HC = 21.96 ppm,
NOx = 1787.17 ppm, SFC = 220.22 g/kW·h, P = 56.30 kW, and T = 310.59 N·m.

All the solutions in Table 4 can be regarded as efficient solutions. However, one could
choose among this Pareto set of solutions based on the importance of input variables or
their limitations. For example, the efficient solution should be able to reduce the emissions
at higher engine speeds (real IC engines applications); on the other hand, for fuel economy
and environmental purposes, we could search for solutions with higher ethanol blend
ratio and lower emissions. In addition, the efficient solution can be the solution among
the Pareto set (Table 4) for which the emissions and fuel consumption are lower and the
Power and torque would have their maximum value. It can be seen that we need a tradeoff
between these variables.

Figures 16–22 show that the shape of the Pareto front obtained from multi-objective
ε-Pareto optimization of engine performance could be convex, concave, or a combination
of both. According to these figures, in this study, because the Pareto front could not be
considered as a convex plot for all the desired range, we cannot find an efficient solution
for some weight vector of “w” that at the same time satisfies our set of objectives. To
overcome this situation and find a way for decision making, we could introduce another
parameter to represent the emissions objectives altogether. We name this parameter as
emission index (EI) and it would be the sum of values of emissions for each solution minus
the minimum value of that emission objective. This way, we would search for a minimum
value while it is normalizing for each objective, because the objectives’ units are different.
Now, we could search for the solution with minimum EI value, while input variables and
other performance objectives would have their importance as before. All the emission
objectives are considered to have the same weight, so, the output of this linear scalarization
is represented as:

EI =
m

∑
i = 1

n

∑
j = 1

[Objective {i}(j)−min(Objective{i})]
mean(Objective{i}) (5)

Where m is the number of emission objectives and here m = 4 because we have four
objectives of (CO, CO2, HC, NOx); further, n is the number of solutions in the Pareto
set and in this study n = 200 and has the Pareto solution. The results of calculated EI
are presented in a new column in Table 4. Of course, one can choose different weights
to emphasize or prioritize some objectives over others. As Table 4 shows for EI values,
this parameter has its minimum in solution with the rank 21, and its value is 4.61. The
variables values for this optimum solution were S = 1977.70 rpm, E = 10.03%, CO = 0.27%,
CO2 = 6.81%, HC = 3.04 ppm, NOx = 1573.00 ppm, SFC = 239.88 g/kW·h, P = 56.02 kW,
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T = 269.91 N·m, and EI = 4.61. The EI index has its maximum in solution number 13 with a
value of 8.26.

Figure 21. The Pareto front and the efficient solution set obtained for Power (P) and T emission from
multi-objective Pareto optimization of the engine performance.

Figure 22. The efficient or Pareto solution obtained for engine Power (P) and Toque (T) from multi-
objective Pareto optimization.
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It is obvious in Table 4 that the engine power and torque would have their maximum
values (65.50 kW and 318.90 N·m) in solution rank number of 24. For this solution set, the
variables values were obtained to be S = 1868.89 rpm, E = 5.88%, CO = 0.96%, CO2 = 9.16%,
HC = 16.40 ppm, NOx = 1718.71 ppm, SFC = 223.81 g/kW·h, and EI = 7.61.

The maximum value for optimum ethanol blend ratio was obtained to be E = 11.17%,
and it was for a solution with the rank numbers of 20. Other variables in this solution set
were S = 1785.93 rpm, CO = 0.68%, CO2 = 9.04%, HC = 16.91 ppm, NOx = 1825.84 ppm,
SFC = 230.35 g/kW·h, P = 62.66 kW, T = 318.57 N·m, and EI = 7.67.

The least amount of NOx emission seen in Table 4 is 1357.92 ppm with the solution rank
number of 32; the variables in this solution set were S = 1911.32 rpm, E = 0.30%, CO = 1.03%,
CO2 = 8.48%, HC = 17.21 ppm, SFC = 223.61 g/kW·h, P = 53.86 kW, T = 253.55 N·m, and
EI = 4.77.

Figures 22–26 show the surface model obtained from using curve fitting and the Pareto
set of solutions in Table 4. In all models, the fitted curve was of type polynomial with the
degree of three. The obtained models could be used as a predictor tool to find the optimum
set of variables for which a diesel engine with the specific parameters tested in this research
would have efficient performance.

As Figure 22 shows for P and T, their values increase with engine speed until it reaches
maximum around 1800 rpm and then the values decrease rapidly. P and T values increase
with ethanol blend ratio, and this effect is more observable at higher engine speeds. In
other words, the engine speed is the dominant factor compared to ethanol blend ratio in
engine P and T, especially at lower engine speeds.

Figure 23. The efficient or Pareto solution obtained for engine SFC and HC from multi-objective Pareto optimization.
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Figure 24. The efficient or Pareto solution obtained for CO2 and NOx from multi-objective Pareto optimization.

Figure 25. The efficient or Pareto solution obtained for CO from multi-objective Pareto optimization.
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Figure 26. The emission index obtained (Equation (4)) for multi-objective Pareto optimization of engine optimization.

According to Figure 23, the SFC values decrease with increasing engine speed until it
reaches the speed around 1800 rpm, then, the SFC values would increase with increasing
engine speed with a steeper slope. This trend is the opposite of the trend for engine P
and T in Figure 22. The SFC at lower engine speeds slightly increases with increase in
ethanol blend ratio, but at higher engine speeds (near 2000 rpm), this trend becomes the
opposite. According to Figure 23, the optimization algorithm successfully reduced the SFC
in comparison with the experimental data, especially at higher engine speeds. For the HC
emission, we can see that S is the dominant factor, and the HC is linearly decreased with
increasing S.

The ethanol blend ratio or E has little effect on the HC at higher engine speeds, but at
lower S values, the HC would decrease with the increasing E. In comparison to experimental
data, the optimized results in Figure 24 show a great improvement in reduction of HC
emission especially in higher engine speed, and the reduction is 30% around 2000 rpm.
According to Figure 24, the CO2 values increase with increasing in S until it reaches the
speeds around 1800 rpm, then, it would decrease with increasing S with a steeper slope.
This trend is like the trend observed for P and T and the opposite of the trend for engine
SFC. The ethanol ratio (E) seems to have little effect on the CO2 emission level; the CO2
values show a slight increase in higher E values. The NOx emission was affected with
the changes in S and E values and these variations are opposite of one another. The NOx
increases with increasing E values, but decreases with increasing S.

According to Figure 25, the CO emission slightly decreases with an increase in E, but it
shows a more complex behavior when increasing S. Its value decreases until it reaches the
speeds around 1700 rpm, then, it would increase up to speeds around 1850 rpm, and then
decreases again with a steeper slope at higher speeds. This trend is almost the same for EI
index, as shown in Figure 25. According to this figure, the variation in E has little effect on
the EI value. We can conclusively say that the optimization algorithm was successful in
minimizing emission index (Equation (5)) for all ethanol blend ratios, especially at higher
engine speeds.

4. Conclusions

In this research, the emissions characteristics of the Perkins A63544 diesel engine
employing diesel–ethanol fuel blends were studied, and the results were compared to those
released by diesel fuel. The following results were obtained:
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(1) The application of diesel–ethanol fuel blends reduced UHC emissions by 7.01–16.25%.
(2) Using diesel–ethanol fuel blends reduced CO emissions by 3.2–30.6%.
(3) Diesel–ethanol fuel blends led to an insignificant increase of NOx and CO2 emissions

in a range of 7.5–19.6% and 3.5–5%, respectively, at test conditions.
(4) In summary, diesel–ethanol fuel blends can be directly used in a diesel engine with

lower UHC and CO emissions.
(5) The results confirmed that the shape of the Pareto front obtained from multi-objective

ε-Pareto optimization of engine performance could be convex, concave, or a combi-
nation of both. A new parameter was introduced as an emission index or EI for the
selection of the best solution among the Pareto set of solutions. This parameter had its
minimum in solution with the rank 21, and its value is 4.61. The variables values for
this optimum solution were S = 1977.70 rpm, E = 10.03%, CO = 0.27%, CO2 = 6.81%,
HC = 3.04 ppm, NOx = 1573.00 ppm, SFC = 239.88 g/kW·h, P = 56.02 kW, T = 269.91
N·m, and EI = 4.61. The EI index has its maximum in solution number 13 with a value
of 8.26. The variation in E has little effect on the EI value, and we can conclusively
say that the optimization algorithm was successful in minimizing emission index
(Equation (4)) for all ethanol blend ratios, especially at higher engine speeds.
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Appendix A

Input variables are engine speed (x) and ethanol blend ratio (y), and the output model
is f (x,y). f(x,y) = p00 + p10*x + p01*y + p20*xˆ2 + p11*x*y + p02*yˆ2 + p30*xˆ3 + p21*xˆ2*y+
p12*x*yˆ2 + p03*yˆ3.

Table A1. The fitted polynomials and their coefficients.

Output Variable
(Objective Function)

Coefficients
(with 95% Confidence Bounds) Goodness of Fit

CO emission, CO

p00 = 508.7 (434.6, 582.8)
p10 = −0.8779 (−1.002, −0.754)

p01 = 1.628 (0.5552, 2.7)
p20 = 0.0005042 (0.0004353, 0.0005732)

p11 = −0.001752 (−0.002926, −0.0005787)
p02 = −0.01719 (−0.039, 0.004621)

p30 = −9.619 × 10−8 (−1.09 × 10−7, −8.342 × 10−8)
p21 = 4.636 × 10−7 (1.399 × 10−7, 7.874 × 10−7)
p12 = 8.11 × 10−6 (−2.947 × 10−6, 1.917 × 10−5)

p03 = 0.0001354 (−0.0003522, 0.000623)

SSE: 0.09685
R-square: 0.9738

Adjusted R-square: 0.9643
RMSE: 0.06224
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Table A1. Cont.

Output Variable
(Objective Function)

Coefficients
(with 95% Confidence Bounds) Goodness of Fit

CO2 emission, CO2

p00 = 1527 (1262, 1792)
p10 = −2.636 (−3.08, −2.192)

p01 = 3.729 (−0.1121, 7.57)
p20 = 0.001521 (0.001274, 0.001768)

p11 = −0.003864 (−0.008067, 0.0003387)
p02 = −0.04408 (−0.1222, 0.03402)

p30 = −2.917 × 10−7 (−3.374 × 10−7, −2.459 × 10−7)
p21 = 1.033 × 10−6 (−1.262 × 10−7, 2.192 × 10−6)

p12 = 1.25 × 10−5 (−2.71 × 10−5, 5.21 × 10−5)
p03 = 0.001007 (−0.0007392, 0.002753)

SSE: 1.242
R-square: 0.9799

Adjusted R-square: 0.9726
RMSE: 0.2229

Hydrocarbon emission, HC

p00 = 622.5 (175, 1070)
p10 = −1.034 (−1.783, −0.2847)

p01 = 4.781 (−1.699, 11.26)
p20 = 0.0006028 (0.000186, 0.00102)

p11 = −0.006513 (−0.0136, 0.0005779)
p02 = 0.03095 (−0.1008, 0.1627)

p30 = −1.19 × 10−7 (−1.962 × 10−7, −4.19 × 10−8)
p21 = 1.913 × 10−6 (−4.267 × 10−8, 3.869 × 10−6)
p12 = 2.083 × 10−5 (−4.597 × 10−5, 8.764 × 10−5)

p03 = −0.002778 (−0.005724, 0.0001682)

SSE: 3.536
R-square: 0.9907

Adjusted R-square: 0.9874
RMSE: 0.3761

NOx emission, NOx

p00 = −5.773 × 104 (−1.167 × 105, 1247)
p10 = 95.66 (−3.035, 194.4)
p01 = 3.103 (−850.8, 857)

p20 = −0.05038 (−0.1053, 0.004544)
p11 = −0.0391 (−0.9735, 0.8953)

p02 = 0.08393 (−17.28, 17.45)
p30 = 8.631 × 10−6 (−1.535 × 10−6, 1.88 × 10−5)

p21 = 4.943 × 10−5 (−0.0002083, 0.0003072)
p12 = −0.006094 (−0.0149, 0.00271)

p03 = 0.409 (0.02081, 0.7972)

SSE: 6.14 × 104

R-square: 0.9513
Adjusted R-square: 0.9338

RMSE: 49.56

Specific Fuel
Consumption, SFC

p00 = −4625 (−1.505 × 104, 5798)
p10 = 9.911 (−7.534, 27.36)

p01 = −194.5 (−345.4, −43.54)
p20 = −0.006563 (−0.01627, 0.003146)

p11 = 0.2364 (0.07129, 0.4016)
p02 = −1.839 (−4.908, 1.23)

p30 = 1.415 × 10−6 (−3.815 × 10−7, 3.212 × 10−6)
p21 = −6.938 × 10−5 (−0.0001149, −2.382 × 10−5)

p12 = 0.0005879 (−0.0009682, 0.002144)
p03 = 0.0392 (−0.02942, 0.1078)

SSE: 1918
R-square: 0.7971

Adjusted R-square: 0.724
RMSE: 8.759

Power, P

p00 = 8655 (6649, 1.066 × 104)
p10 = −15.09 (−18.44, −11.73)

p01 = 39.89 (10.85, 68.93)
p20 = 0.008795 (0.006927, 0.01066)

p11 = −0.04686 (−0.07864, −0.01509)
p02 = 0.03039 (−0.56, 0.6208)

p30 = −1.702 × 10−6 (−2.048 × 10−6, −1.357 × 10−6)
p21 = 1.392 × 10−5 (5.159 × 10−6, 2.269 × 10−5)

p12 = −5.705 × 10−5 (−0.0003564, 0.0002423)
p03 = 0.001882 (−0.01132, 0.01508)

SSE: 70.99
R-square: 0.9567

Adjusted R-square: 0.9412
RMSE: 1.685
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Table A1. Cont.

Output Variable
(Objective Function)

Coefficients
(with 95% Confidence Bounds) Goodness of Fit

Torque, T

p00 = 3.286 × 104 (2.339 × 104, 4.233 × 104)
p10 = −57.77 (−73.62, −41.93)

p01 = 331.6 (194.5, 468.7)
p20 = 0.03407 (0.02525, 0.04289)

p11 = −0.3681 (−0.5181, −0.218)
p02 = −1.893 (−4.681, 0.8946)

p30 = −6.676 × 10−6 (−8.308 × 10−6, −5.044 × 10−6)
p21 = 0.0001025 (6.113 × 10−5, 0.0001439)

p12 = 0.000898 (−0.0005155, 0.002311)
p03 = 0.01144 (−0.05089, 0.07377)

SSE: 1583
R-square: 0.9719

Adjusted R-square: 0.9618
RMSE: 7.957
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