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Abstract: The conventional electrical power system economic dispatch (ED) often only pursues
immediate economic benefits but neglects the harmful environment impacts of gas emissions from
thermal power plants. To address this shortfall, economic emission dispatch (EED) has drawn a lot of
attention in recent years. With the increasing penetration of renewable generation, the intermittence
and uncertainty of renewable energy such as solar power and wind power increase the difficulties
of power system scheduling. To enhance the dispatch performance with significant penetration of
renewable energy, a modified multi-objective cross entropy algorithm (MMOCE) is proposed in this
paper. To solve multi-objective optimization problems, a crowding–distance calculation technique
and a novel external archive mechanism are introduced into the conventional cross entropy method.
Additionally, the population updating process is simplified by introducing a self-adaptive parameter
operator that substitutes the smoothing parameters, while the solution diversity and the adaptability
in large scale systems are improved by introducing the crossover operator. Finally, a two-stage
evolutionary mechanism further enhances the diversity and the rate of convergence. To verify
the efficacy of the proposed MMOCE, eight benchmark functions and three different test systems
considering different mixes of renewable energy sources are employed. The dispatch results by the
proposed MMOCE are compared with other multi-objective cross entropy algorithms and published
heuristic methods, confirming the superiority of the proposed MMOCE over other methods in all
test systems.

Keywords: economic emission dispatch; renewable energy sources; multi-objective cross entropy
algorithm; crossover operator

1. Introduction

The economic dispatch (ED) is a fundamental issue in electrical power system schedul-
ing that aims to maximize the economic profits by the optimal allocation of the output of
each generator unit [1]. It is shown that more than 10% of the total energy consumption can
be saved by means of economic dispatch [2]. However, in the last decades, environmental
issues have drawn substantial attention worldwide, and much effort has been made to
mitigate the negative effects of climate change and environment pollution [3]. As such,
managing pernicious gases emissions has become an important consideration when it
comes to the ED problem. The economic emission dispatch (EED) retains the original
characteristics while incorporating the emission factors, resulting in a multi-objective opti-
mization problem, which simultaneously minimizes the generating cost and the emission
level to the lowest possible values.

In China, about 70% of electricity supply comes from coal-fired power stations; ad-
dressing climate change while meeting future energy needs will inevitably impose greater
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pressures on traditional energy sources [4]. Today, high penetration of renewable energy
sources is expected for electric power systems, and many attempts to integrate renewable
energy resources into the EED problems are reported [5]. As of 2015, more than 9% of
electricity generation comes from renewable resources [6]. Renewable energy refers to
the resources that can be used repeatedly to produce energy, such as solar energy, wind
energy, biomass energy, geothermal energy, etc., [7]. It is also often referred to as alternative
energy. Utilizing abundant renewable energy resources reduces the emission of harmful
gases to a great extent. The majority of studies revealed that integrating renewable energy
resources such as wind energy conversion systems (WECS) and PV solar systems into the
power system is a promising technology and practically feasible. Nevertheless, the existing
grid faces unpredictable and intermittent power supply from the resources, particularly
from wind and photovoltaic solar. The electric power production from renewable energy
resources such as wind speed and solar radiation can be very indeterminate, variable with
time, and undispatchable with limited control, imposing major challenges on the schedul-
ing of power systems [8]. Their intermittent power output imposes various difficulties on
the scheduling, operation, and control of the power system networks. Therefore, handling
renewable energy resources requires sophisticated planning and operation scheduling as
well as state-of-the-art technologies.

As a research hotspot in the field of power system optimization, some progress has
been reported on solving the EED problems incorporating renewable energy resources in
recent years. In [9], the multi-objective economic emission dispatch problem is considered,
which combines heat and wind power generation in a large micro-grid (MG), and IEEE
30-bus and 69-bus systems are used to represent a large MG. In [10], a solar–wind–thermal
ELD problem integrating a pumped-storage hydraulic unit is considered. In [11], there is
an analysis of the economic dispatch and unit commitment problem where five scenarios
are considered to predict the power system operations by 2030. In [12], the EED model of
an IEEE 30-bus system incorporating solar photovoltaic, wind and battery storage is built
and multiple objectives are considered. The authors of [13] present an EED model that
integrates thermal, natural gas, and renewable energy systems, considering both emission
levels and generation cost. These reports describe the EED model considering renewable
energy resources in detail, and various optimization strategies are utilized. Since there
exist a number of EED problem types with renewable energy, most studies only consider
one type of EED model, and the proposed methods may be difficult to apply to other
kind of models. It is therefore meaningful to consider multiple types of EED models with
different renewable energy sources. Under this consideration, this paper will investigate
three different types of EED problems integrated renewable energy resources.

For the EED problem, a number of algorithms have been attempted so far. Generally
speaking, these algorithms can be mainly grouped into two categories [14,15]. In the first
category, all objectives are combined linearly so that the EED problem can be regarded
as a single objective optimization problem [16–18]. Meanwhile, given the nonlinear and
nonconvex nature of the dispatch problem, the classical deterministic techniques such
as weighted sum method, ε−constraints, and linear programming may fail to solve the
problem due to the sheer computational complexity of the problem, inclination to fall
into local optima, and discontinuities and nonsmoothness in the process of handling
functions. Hence, nature-inspired metaheuristic algorithms have attracted substantial
interests. The drawbacks of this approach, however, are multi-faceted: First, only one
solution is generated in a single run, so it is time-consuming. Second, the exact weight
parameters in the objective function are rather difficult to optimize.

The second category of algorithms is to deal with the two objectives in the EED prob-
lem simultaneously. The Pareto front can be easily obtained with a single run so that
the optimal solution can be chosen according to different principles. Many Pareto-based
multi-objective algorithms have been adopted to solve the EED problem successfully, such
as NSGAII, MOPSO, and SPEA. Qiao [19] employed a self-adaptive multi-objective differ-
ential evolution algorithm on a novel dynamic economic emission dispatching framework
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integrating both electric vehicles and wind farms and demonstrated that the proposed
method can improve the results efficiently in different test systems based on 10-unit
generators. Habibi [20] applied a multi-objective particle swarm optimization (MOPSO)
algorithm by optimizing the objective function of the storage and additional cost to solve
the EED problem incorporating stochastic wind in multi-area power systems. Jiang [21]
used gravitational particle swarm optimization algorithm (GPSOA) to solve the EED prob-
lem considering wind power availability for the wind-thermal power system. Li [22]
established a dynamic economic emission scheduling model incorporating wind power,
solar power, and hydropower under tradable green certificate and proposed a new multi-
objective moth-flame optimization (MOMFO) to resolve the model. Liao [23] presented a
multi-objective optimization by learning automata (MOLA) and implemented it on the EED
model such that the objective functions are formulated as a combination of cost, emission
and voltage stability. Ghasemi [24] developed a new Honey Bee Mating Optimization
(HBMO) with blended online learning mechanism for the EED model with uncertain wind
power. However, these methods may still fail to obtain better results despite of their
complexity or they have several parameters to pre-determine in the process of optimization
that may greatly affect the optimization results. It is therefore worthwhile to develop a
simple yet efficient algorithm to solve multiple objective optimization problems.

The cross entropy (CE) method proposed by Robinstein [25,26] is an innovative meta-
heuristic algorithm based on rare events resampling and the Kullback–Leibler distance
minimization. The main idea of the CE method is to select elite samples from the best
performing populations and generate new populations according to the distribution of
elite samples. The superiority of CE lies in its diversified structure and its simple process of
updating populations. Hence, the CE method has been successfully applied to a range of
engineering problems [27–29] including the ED problem [30]. In [31], the CE method was
firstly extended to multi-objective optimization and achieved good performance. In recent
years, the multi-objective cross entropy method has been further improved and applied
to a range of problems, such as finance [32], computer network [33], and engineering
design [34]. For example, in [35], a cascaded algorithm combining the cross-entropy (CE)
and Tabu search (TS) was successfully applied to building an effective boiler efficiency
prediction model and improved the economic benefit and reliability of generating units.
Dorini et al. [36] proposed a novel algorithm based on the noisy cross-entropy sensor
locator (nCESL) to detect accidental and/or intentional contamination in water distribution
systems. Sun et al. [37] improved the CE method and used it to solve the multi-objective
energy routes problem in a WPTN system. Perelman et al. [38] extended the conventional
CE method to multi-objective combinatorial optimization of water distribution systems
design and demonstrated its better robustness comparing with NSGAII. Bekker et al. [39]
adapted the CE method to multi-objective optimization and applied the proposed algo-
rithm to a dynamic, stochastic problem and demonstrated its effectiveness and efficiency.
However, it is worth mentioning that only limited papers reported to have applied the
multi-objective CE methods to solving the EED problems so far. For instance, in [40], a cross
entropy optimization based on decomposition was proposed to solve a multi-objective
optimization problem for a model of a wind/hydro/thermal/photovoltaic power system
with 10 generators. However, the performance of most CE methods tends to be less opti-
mistic in solving relatively large-scale EED problems. In addition, they have a number of
smoothing parameters, which may cause premature convergence and limit the algorithm
performance. Therefore, it is necessary to improve the design of the multi-objective cross
entropy algorithm with far fewer smoothing parameters and improve their applicability in
solving complex EED problems.

As mentioned earlier, the conventional CE method has the advantage of a versa-
tile structure and simple updating procedure. Nevertheless, the drawbacks of the CE
method are also evident: they easily fall into local optimum and need to predetermine
several constant parameters such as the smoothing parameters (different values of constant
parameters may result in different optimization performance). While in the field of multi-
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objective optimization, the performances of most existing multi-objective CE methods are
still yet to be satisfactory when dealing with large scale problems. In this paper, a modified
multi-objective cross entropy algorithm (MMOCE) is presented to solve EED problems
considering the presence of renewable energy sources. First, a self-adaptive operator
substitutes the smoothing parameters in the updating formula for the mean value and
the standard deviation. This new updating process is proposed to reduce the number of
pre-defined constant parameters, which makes the algorithm simpler and more stable. Sec-
ond, the crossover operator is employed in present population and the external archive to
improve the global search mechanism and the scalability to large-scale test systems. Third,
different parameter evolutionary mechanisms as stated in [41], which are implemented to
calculate the mean value and the standard deviation of the present population according
to population generation, are introduced into MMOCE to enhance the diversity of solu-
tions and to further speed up the convergence. With these improvements, the algorithm
efficiency is greatly enhanced. Eight benchmark functions and two performance indicators
are used to verify the feasibility and superiority of the proposed MMOCE by comparing
with other state-of-the-art algorithms such as NSGAII, MOPSO, MOEA/D, and PESA2.
Additionally, in this paper, three different types of EED problems with different scales and
combinations of renewable energy resources are introduced to testify the superiority of the
proposed method. The first problem is a combined heat, emission, and economic dispatch
(CHEED) problem integrating wind and solar power generations. The second problem
is an IEEE 30-bus and six-generator system that incorporates stochastic wind and solar
power. The third problem is a 40-unit combined emission economic dispatch problem with
wind penetration. The results obtained from the above three examples confirm that the
proposed method outperforms other competing algorithms.

2. Mathematical Model

This paper mainly focuses on three different environmental economic dispatch models
considering renewable sources, including the combined heat, emission, and economic
dispatch (CHEED), and applies the proposed method to a modified IEEE 30-bus and
six-generator system with renewable energy and combined emission economic dispatch
problems with wind penetration. The overall dispatching framework of the first model are
shown in Figure 1.

Figure 1. The CHEED system.

2.1. Problem Formulation of CHEED

The system considered in this paper contains conventional generators, cogeneration
units, and heat-only units. The feasible operating region (FOR) of the cogeneration units
is illustrated in Figure 2 [42], which is enclosed by the boundary curve ABCDEF. For the
CHEED problem, the power is derived from the thermal units and cogeneration units while
the heat is derived from cogeneration units and heat-only units. Under the condition of
ensuring the power balance of the system and satisfying the constraints, the output of each
unit is reasonably allocated to achieve the goal of minimizing the cost of heat and power
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production while minimizing the emission level. Thus, CHEED can be mathematically
elaborated as follows.

Figure 2. Feasible operation region for a cogeneration unit.

2.1.1. Objective Functions

1. Total cost is defined as:

Ctotal =
Nn
∑

i=1
Ci(Pi) +

Nc
∑

j=1
Cj
(

Pj, Hj
)
+

Nh
∑

k=1
Ck(Hk)

=
Nn
∑

i=1

(
ai + biPi + diP2

i
)

+
Nc
∑

j=1

(
mj + njPj + ljP2

j + xjPj Hj + yj Hj + zj H2
j

)
+

Nh
∑

k=1

(
αk + βk Hk + γk H2

k
)

(1)

2. Emission is defined as:

Etotal =
Np

∑
i=1

Epi(Pi) +
Nc
∑

j=1
Ecj
(

Pj, Hj
)
+

Nh
∑

k=1
Ehk(Hk)

=
Nn
∑

i=1

(
δi + εiPi + ξiP2

i
)
+

Nc
∑

j=1
µjPj +

Nh
∑

k=1
σk Hk

(2)

2.1.2. Constraints

In this paper, the renewable energy is incorporated into the CHEED problem and
plays the role of negative loads in order to decrease the demand load. Simultaneously, the
electricity and heat production and capacity of each unit are subject to their respective con-
straints.

Np

∑
i=1

Pi +
Nc

∑
j=1

Pj + Psolar + Pwind = Pd + PL (3)

Nc

∑
j=1

Hj +
Nk

∑
k=1

Hk = HD (4)

Pmin
i ≤ Pi ≤ Pmax

i , i ∈ 1, 2, . . . , Np (5)

Hmin
k ≤ Hk ≤ Hmax

k , k ∈ 1, 2, . . . , Nk (6)

Pmin
j
(

Hj
)
≤ Pj ≤ Pmax

j
(

Hj
)
, j ∈ 1, 2, . . . , Nc (7)

Hmin
j
(

Pj
)
≤ Hj ≤ Hmax

j
(

Pj
)
, j ∈ 1, 2, . . . , Nc (8)
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The power transmission loss can be calculated by B-matrix coefficients as follows [43]:

PL =
Np+Nc

∑
i=1

Np+Nc

∑
j=1

PiBijPj +
Np+Nc

∑
i=1

BoiPi + Boo (9)

2.2. Mathematical Models of the Modified IEEE 30-Bus and Six-Generator System with Wind and
Solar Energy
2.2.1. Cost of Conventional Thermal Units

The overall dispatching framework of this model are shown in Figure 3. The cost of
conventional thermal units primarily refers to fossil fuel cost. Meanwhile, in order to make
the cost function more accurate and realistic, the valve effect, which is formulated as a
sinusoidal function and added to the basic cost function, is also taken into consideration.
Then, the ultimate cost function of convention thermal units can be expressed as follows in
Equation (10).

CTo(PTUj) =
NTU

∑
j=1

(
αj + β jPTUj + γ2

j P2
TUj

+
∣∣∣dj × sin

(
ej ×

(
Pmin

TUj
− PTUj

))∣∣∣) (10)

Figure 3. The overall dispatching framework of the IEEE 30-bus system.

2.2.2. Cost of Wind Energy

As one of the most common renewable energy resources, wind power is characterized
by its intermittency and uncertainty. Provided that wind farms are unable to provide
enough available scheduled power, an independent system operator (ISO) will take the
responsibility of handling the deficit in order to maintain spinning reserves. This case is
deemed as overestimation of renewable energy and the power generation cost will have
to increase in order to maintain the spinning reserves. In contrast, if these farms provide
excessive power, the ISO should accept the penalty. This case is called underestimation.
In general, the total cost of wind power includes direct cost, reserve cost, and penalty
cost [44].

The direct cost of wind power can be expressed as follows [45].

Cwind, i(Psw,i) = hiPsw,i (11)

In addition, the situations of overestimation and underestimation may always exist
and thus increase the overall costs. In summary, overestimation will lead to the reserve
cost and underestimation will lead to the penalty cost. They can be described, respectively,
as follows [45].

CRC,i(Psw,i − Pwa,i) = KRC,i(Psw,i − Pwa,i)

= KRC,i
∫ Psw,i

0 (Psw,i − Pw,i) fwp(Pw,i)dPw,i
(12)
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CPC,i(Pwa,i − Psw,i) = KPC,i(Pwa,i − Psw,i)

= KPC,i
∫ Prw,i

Psw,i
(Pw,i − Psw,i) fwp(Pw,i)dPw,i

(13)

In this paper, the Weibull probability density function (PDF) [46,47] is used to represent
the wind speed distribution and Figure 4a illustrates the Weibull PDF of the wind speed
data by employing 8000 Monte-Carlo scenarios. Thus, the probability of wind speed can
be described as below, where c is the scale factor and k is a shape factor.

fv(v) =
(

k
c

)(v
c

)k−1
e−(

v
c )

k
, v ≥ 0 (14)

The mean of the Weibull distribution is formulated as:{
Mwbl = c× Γ

(
1 + k−1)

Γ(x) =
∫ ∞

0 e−ttx−1dt
(15)

The power output of a wind turbine is approximately defined as follows:

Pw(v) =


0, v < Vin and v > Vout

Prw

(
v−Vin

Vr−Vin

)
, Vin ≤ v ≤ Vr

Prw, Vr < v ≤ Vout

(16)

Next, wind power probabilities can be piecewise calculated by [48]:

fwp(Pw){Pw = 0} = 1− exp

[
−
(

Vin
c

)k
]
+ exp

[
−
(

Vout

c

)k
]

(17)

fwp(Pw){Pw = Prw} = exp

[
−
(

Vr

c

)k
]
− exp

[
−
(

Vout

c

)k
]

(18)

fw(pw) =
k(Vr −Vin)

ck × prw

[
Vin +

pw

prw
(Vr −Vin)

]k−1
× exp

−(Vin +
pw
prw

(Vr −Vin)

c

)k (19)

2.2.3. Cost of Solar Photovoltaic Power

As the most popular renewable source, similar to wind power, the total cost of solar
power also contains direct cost, reserve cost, and penalty cost. Here, the direct cost involved
with solar power can be computed as:

Csolar ,j
(

Pss,j
)
= gjPss,j (20)

Reserve cost for the solar power plant is defined as:

CSR,j
(

Pss,j − Psa,j
)
= KSR,j

(
Pss,j − Psa,j

)
= KSR,j × fs

(
Psa,j < Pss,j

)
×
[
Pss,j − E

(
Psa,j < Pss,j

)] (21)

where fs
(

Psa,j < Pss,j
)

denotes the probability of event of solar power shortage associated
with the scheduled power Pss,j. E

(
Psa,j < Pss,j

)
denotes the expectation of solar power

below Pss,j. Penalty cost for underestimation is defined as [45]:

CPS,j
(

Psa,j − Pss,j
)
= KPS,j

(
Psa,j − Pss,j

)
= KPS,j × fs

(
Psa,j > Pss,j

)
×
[
E
(

Psa,j > Pss,j
)
− Pss,j

] (22)

Similarly, fs
(

Psa,j > Pss,j
)

denotes the probability of event of solar power shortage
associated with the scheduled power Pss,j. E

(
Psa,j > Pss,j

)
denotes the expectation of the

solar power above Pss,j.
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In this paper, the Longnormal PDF is illustrated in Figure 4b and adopted to describe
solar irradiance (Gsr). According to the Longnormal PDF with mean µ and standard
deviation ς, the probability of solar irradiance can be calculated as follows [49]:

fGss(Gsr) =
1

Gsrδ
√

2π
exp

{
−(ln x− µ)2

2δ2

}
, Gsr > 0 (23)

The mean of Lognormal distribution can be expressed as:

Mlgn = exp
(

µ +
σ2

2

)
(24)

Based on the analysis from [45], the overestimation cost of Equation (21) is calcu-
lated as:

CSR(Pss − Psa) = KSR(Pss − Psa)

= KSR
N−

∑
n=1

[Pss − Psn−]× fsn−
(25)

where Psn− represents the relevant power less than the scheduled power. fsn− denotes the
relative frequency of occurrence of Psn−. N− stands for the number of pairs (Psn−, fsn−)
generated for the PDF. According to [45], the underestimation cost of Equation (22) can be
computed as:

CPS(Psa − Pss) = KPS

N∗

∑
n=1

[Psn+ − Pss]× fsn+ (26)

where Psn+ represents the relevant power more than the scheduled power. fsn+ denotes the
relative frequency of occurrence of Psn+. N∗ is the number of pairs (Psn+, fsn+) generated
for the PDF.

Figure 4. Wind speed distribution and solar irradiance distribution.

2.2.4. Emission Function

It is generally understood that harmful gases (mainly SOx and NOx) will be emitted
into the atmosphere when electric power is generated from conventional fossil fuels.
The functional relationship between pollutants emissions and the produced power from
conventional thermal generators is defined as:

E(PTU) =
NTU

∑
i=1

[(
pi + qiPTUi + riP2

TUi

)
× 0.01 + sie

(ti PTUi
)
]

(27)
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In the past decade, the aggravated global warming and air pollution has driven many
countries to commit to reducing carbon emissions [46]. The carbon tax (Ctax) emerged in
order to penalize greenhouse gas emissions and encourage enterprise to invest renewable
energy. Therefore, the cost of emission can be expressed as:

CE = Ctax × E (28)

2.2.5. Objective Functions

Similar to conventional EED problems, the objective of this mathematical model is to
optimize the output of each generating unit to meet the load demand and simultaneously
reduce the generation cost and emission as much as possible under the condition of
satisfying various constraints. The difference lies in that decision variables here consist
of the produced actual power and generator bus voltages. The first objective function is
formulated incorporating the cost of conventional thermal units, direct cost, reserve cost,
and penalty cost as mentioned above. The second objective function principally takes
environment factors into account and aims to minimize the total emission of conventional
thermal generators. Moreover, the carbon tax is also incorporated into the objective function
as discussed above. Thus, all the objective functions can be expressed as follows:

F1 = CTo(PTU) +
NWG
∑

i=1
[Cwind,i(Psw,i) + CRC,i(Psw,i − Pwa,i) + CPC,i(Pwa,i − Psw,i)]

+
N
∑

j=1

[
Csolar ,j

(
Pss,j

)
+ CSR,j

(
Pss,j − Psa,j

)
+CPS,j

(
Psa,j − Pss,j

)] (29)

F2 = CE = Ctax × E (30)

2.2.6. Constraints

There are equality and inequality constraints that must be met. Equality constraints
refers to the balance between active and reactive power generated with load demand and
transmission losses. Hence, equality constraints are formulated as follows:

PGi − PDi −Vi

NB

∑
j=1

Vj
[
Gij cos

(
δij
)
+ Bij sin

(
δij
)]

= 0 (31)

QGi −QDi −Vi

NB

∑
j=1

Vj
[
Gij sin

(
δij
)
− Bij cos

(
δij
)]

= 0 (32)

The inequality constraints cover the operation limits on equipment and security
constraints on lines and load buses. Generator constraints:

Pmin
TUi
≤ PTUi ≤ Pmax

TUi
, i = 1, 2, . . . , NTU (33)

Qmin
TUi
≤ QTUi ≤ Qmax

TUi
, i = 1, 2, . . . , NTU (34)

Pmin
sw,j ≤ Psw,j ≤ Pmax

sw,j , j = 1, 2, . . . , NWG (35)

Qmin
sw,j ≤ Qsw,j ≤ Qmax

sw,j , j = 1, 2, . . . , NWG (36)

Pmin
ss,k ≤ Pss,k ≤ Pmax

ss,k , k = 1, 2, . . . , NSG (37)

Qmin
ss,k ≤ Qss,k ≤ Qmax

ss,k , k = 1, 2, . . . , NSG (38)

Vmin
Gi
≤ VGi ≤ Vmax

Gi
, i = 1, 2, . . . , NG (39)

Security constraints:

Vmin
Lp
≤ VLp ≤ Vmax

Lp
, i = 1, 2, . . . , NL (40)
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Slq ≤ Smax
lq , q = 1, 2, . . . , nl (41)

Based on the above formula, Equations (33) and (34) represent the limitation of the
active and reactive power generated by thermal generators. Equations (35) and (36) are the
limitations of the active and reactive power generated by wind generators. Equations (37)
and (38) formulate the limitation of the active and reactive power generated by solar
PV. Equation (39) represents the constraints on voltage of generator buses. Equation (40)
represents the limitation of voltage imposed on NL numbers of load buses. Equation (41)
denotes the line capacity constraints with total nl numbers of lines in the network.

2.3. Combined Emission Economic Dispatch Problems with Wind Penetration

Analogous to the conventional EED problem, the combined emission economic dis-
patch problem with wind power penetration also aims to achieve optimal scheduling of
power generators to minimize the fuel cost and emission generated by thermal generators
while simultaneously satisfying all the equality and inequality constraints. The objective
functions of this system are the same as defined in Equations (10) and (27). The only
difference is that wind energy becomes a part of energy mix and supplies a portion of
the power demand. Similarly to the CHEED model mentioned above, the wind energy is
counted as negative loads. The power balance constraint is converted into:

N

∑
i=1

PTi + Pwp = PD + PLoss (42)

where N is the number of thermal generators and PTi stands for the output power of i-th
thermal generator. Pwp and PD represent the outputs of the wind farm and the load demand
of the system, respectively. PLoss is the transmission loss, which can be formulated by the
B matrix coefficients:

PLoss =
N

∑
i=1

N

∑
j=1

PTiBijPTj +
N

∑
i=1

BoiPTi + Boo (43)

where Bij, Boi, and Boo are matrix coefficients of the transmission loss.

3. The Proposed Optimization Algorithm
3.1. Overview of the Cross Entropy Method

As mentioned above, the cross entropy (CE) method was first proposed in 1997 by
Robinstein [25,26] based on rare events resampling and the Kullback–Leibler distance
minimization. The cross-entropy method was initially employed in mathematics for the
calculation of low probability events and then extended to numerical optimization. It is
an optimization method that updates new parameters by collecting information in each
iteration. The implementation procedure of CE is briefly divided into two major parts:
First, random samples are generated based on the probability density function (PDF) and
obtain the fitness values according to objective functions. Second, the elite set is used to
update the PDF and create new samples.

For simplicity, the critical process of the conventional CE method is presented here. It
is assumed that every individual i solution has a D-dimensional position vector, which is
formulated by Xk

i =
(

xk
1, xk

2, . . . , xk
D

)
at iteration k. µn, σn are defined as the mean value

and the standard deviation of the dimension n, respectively. The components of each
individual solution are selected independently and specifically generated separately based
on the N

(
µn, σ2

n
)

distribution. Then, the fitness values of all individuals are calculated and
sorted in ascending order. For the minimization problems, ρ× Np best individuals are
chosen as the elite set Xelite to help guide the updating process of the mean value and the
standard deviation where Np is the population size and ρ is a quantile. The population can

be generated by Equation (44), where xj
n stands for the value of the j-th individual in the
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n-th dimension and randn() is a random variable based on normal distribution function
N(0, 1). The evolution of an individual to a new individual is conducted in terms of the
mean and standard deviation of the elite set. The updating process are normally given
as follows:

xj
n = µn + randn ()× σn (44)

Xelite
n (k) =

(
x1

n, x2
n, . . . , xρ×N

n

)
(45)

µn(k + 1) = mean
(

Xelite
n (k)

)
(46)

σn(k + 1) = std
(

Xelite
n (k)

)
(47)

However, it is far from being enough to merely rely on the elite set to update samples.
Hence, smoothing parameters are introduced for the improvement of the searching capacity.
In Equations (48) and (49), α and β are defined as smoothing parameters. µ(k + 1) and
ς(k + 1) are employed to produce new samples, hoping to discover better solutions. Here,
α and β are both constants (typically ranging from 0.8 and 0.99), corresponding to a fixed
version of the CE method (FCE).

µ(k + 1) = αµ(k + 1) + (1− α)µ(k) (48)

ς(k + 1) = βς(k + 1) + (1− β)ς(k) (49)

Moreover, it should be noted that FCE is able to show good performance in many
cases but not in some other situations. Therefore, a dynamic version of the CE method
(DCE) emerges. For µ, the same fixed parameter described in Equation (48) is used; the
dynamic adjustment of smoothing parameters for standard deviation is expressed by:

βn = C
(

1−
(

1− 1
k

)q)
(50)

where βn denotes the value of β of the n-th decision variable in the k-th iteration. C is a
constant between 0.8 and 0.99, and q is an integer between five and ten.

In the global search, the population is regenerated after the completion of the updating
process of the mean value and the standard deviation. Then, the individuals in the new
population are rearranged from largest to smallest according to fitness values and the
elite set is selected from among them. The above steps are repeated for a specific number
of iterations.

3.2. The Proposed Modified Multi-Objective Cross-Entropy Algorithm

Since most of the practical engineering optimization problems are multi-objective
optimization problems, the CE method needs to be improved to adapt to such problems.
In this paper, in order to enhance the adaptability of the algorithm in multi-objective opti-
mization, the CE method is extended to a multi-objective algorithm due to the introduction
of the framework of NSGA-II [50]. This method couples with a fast non-dominated sorting
approach to choose the elite set and stores the Pareto solutions in the external archive. The
modified multi-objective cross entropy algorithm (MMOCE) maintains the advantage of
fast convergence. However, there is a risk of falling into local optimum in the process of
global search, and the ability of the algorithm to solve large scale system is truly unsatisfac-
tory. Hence, a crossover operator is integrated into the algorithm to increase the diversity
of solutions and improve the evolutionary efficiency. Additionally, pre-determined pa-
rameters in the conventional CE method may influence the optimization results because
of improper choice. Although DCE and FCE can be sometimes effective, the options of
proper parameters are not so simple. To tackle this problem, a new version of the mean
value and the standard deviation updating process is proposed. With no need for setting a
constant parameter, the process of updating the mean value and the standard deviation
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is self-adaptive. This mechanism simplifies the algorithm and simultaneously ensure the
convergence. Moreover, different parameter evolutionary mechanisms as stated in [41] are
employed to this algorithm, which enhance the diversity of solutions and speed up the
convergence rate. Analogous to [41], in order to facilitate the balance between exploitation
and exploration searches, the whole iterative process is divided into the diversification
stage and intensification stage. The diversification stage highlights the diversity of sam-
pling points, while the intensification stage guarantees the rapid convergence. More details
of the different parameter evolutionary mechanisms can be found in [41]. The specific
introduction of the self-adaptive parameter updating process and crossover mechanism is
given as follows.

3.2.1. Updating of Self-Adaptive Parameter

As mentioned earlier, the updating process of the mean value and the standard
deviation involves the smoothing parameter. These constant parameters are often pre-
determined and application-dependent. To avoid this, a self-adaptive parameter updating
process is introduced here, and the mean value and the standard deviation can be updated
in a self-adaptive way. This self-adaptive updating process can be implemented as follows
at iteration k:

µ(k + 1) = µ(k + 1) (51)

β = 0.382× rand (52)

ς(k + 1) = βς(k + 1) + (1− β)ς(k) (53)

where rand represents a random value ranging from 0 and 1. Considering the widespread
use of the self-adaptive thinking in real-life optimization, Equation (50) can be reformu-
lated as Equation (52). From the listed formula above, we can see that the mean value
and standard deviation are self-adaptive after initialization and avoid the trouble of set-
ting parameters in advance. The test functions below can demonstrate the validity and
effectiveness of the method.

3.2.2. Crossover Operator

To increase the diversity and expand the search range, the crossover operator is
introduced. The genetic information of elite individuals in the external archive is introduced
to guide the evolution. First, the random individuals Xi and Xj are chosen from the present
population P and the external archive, respectively. Second, part of the code of the two
individuals is exchanged, generating two new individuals. The above operation is repeated
until a new population P new with Np individuals is generated, where Np is the size of the
population. This operation can be described as follows:

xnew
i =

{
xn

j , rand < Pc

xn
i , else

, xnew
j =

{
xn

i , rand < Pc
xn

j , else (54)

where xnew
i and xnew

j are the corresponding n-dimension encoding after the crossover
operation. rand is a random number between 0 and 1; Pc is the probability of crossover.

Figure 5 presents the flowchart of the proposed algorithm.
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Figure 5. Flowchart of the proposed algorithm.

3.3. Implementation of MMOCE for EED

This subsection presents the proposed MMOCE procedure for solving the EED prob-
lems with renewable energy in detail.

• Step 1. Input data. The feasible range of control variables, the population size Np, the
maximum number of function evaluations Max_FES, the maximum size of external
archive Armax, and the probability of crossover Pc.

• Step 2. Initialization. The initial population P is formed by normal distribution. It is
assumed that the dimension n over ranges [Xmin, Xmax], which denote the lower and
upper limit, is assigned based on N

(
µn, σ2

n
)
, where µ n is a random number between

the lower and upper limit and ς n is set to 10 · (Xmax−Xmin), and FES = 0.
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• Step 3. The mean value µ and standard deviation ς are updated by Equations (51)–(53).
The endpoint value method is used as the boundary constraints handling strategy for
the population P.

• Step 4. The objective function values are calculated and coupled with a fast non-
dominated sorting approach and crowding–distance metric to get the external archive.

• Step 5. The crossover operator is carried out by Equation (54).
• Step 6. The elite set Xelite is selected from the external archive and the different

parameter evolutionary mechanisms are applied to update the mean value µ and
standard deviation ς. FES = FES + Np.

• Step 7. Step 2 to Step 6 are repeated. If the termination criterion is met, i.e., Max_FES
is reached, the above procedure is stopped.

4. Experimental Results
4.1. Experiments Based on Benchmark Functions

In order to verify the optimization performance of the proposed algorithm, eight
medium–large scale test functions ZDT1-3, UF1-3, and WFG1-2 are selected. Meanwhile,
five representative multi-objective evolutionary algorithms (NSGAII, MOEA/D, MOPSO,
PESA2, MODE [51]) are also tested for comparison purposes. In addition, the DCE and
FCE are both extended to multi-objective algorithms, denoted as DMOCE and FMOCE.
The differences between the proposed algorithm and conventional CE variants are mainly
reflected in the choice of smoothing parameters. Thus, four different multi-objective cross
entropy optimization algorithms (DMOCE, FMOCE, MOO CEM [39], SMOCE [52]) are
also implemented for comparison purposes. Moreover, this paper adopts the widely-used
inverted generation distance and MaxSpread as performance indicators in multi-objective
evolutionary algorithms. The inverted generation distance (IGD) calculates the Euclidean
distance of the nearest Pareto optimal solution to the nearest Pareto optimal solution set,
while MaxSpread (MS) is used to evaluate the coverage degree of the non-dominated
solution obtained by the algorithm to Pareto theory optimal solution set. Their definitions
are as follows:

4.1.1. Inverted Generation Distance (IGD)

GD =

√
∑
|Q|
i=1 d2

i

|Q| (55)

di = min

{√
∑
(

f (i)j − f ∗(k)j

)2
}

, k = 1, 2, . . . , |Q∗| (56)

where Q denotes the Pareto optimal solution set obtained by the algorithm, |Q| is the num-
ber of non-dominated solutions in Q, Q∗ denotes the theoretical Pareto optimal solution
set, |Q∗| denotes the number of non-dominated solutions, and f (i)j and f ∗(k)j represent the
j-th objective function value of the i-th solution in Q and the j-th objective function value of
the k-th solution, respectively.

4.1.2. MaxSpread (MS)

MS =

√√√√ 1
n

n

∑
i=1

(
min(max( fi), max(Fi)) − max(min( fi), min(Fi))

max(Fi) − min(Fi)

)2
(57)

where fi represents the value of the i-th objective function achieved by the algorithm
corresponding to the solution and Fi represents the objective value of the i-th objective of
the theoretical optimal solution. If MS = 1, it means that the non-dominated solution found
by the algorithm can completely cover the Pareto theoretical optimal solution.
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In this paper, each algorithm runs 30 times independently to obtain the average values.
The population size of each algorithm is set to 100, which is the same as [53–55], and
the max function evaluations (FES) of each test function are 15,000 for all algorithms.
The external archive set size is set to 100. The crossover probability of MMOCE is 0.9
and elite set size is set as 10. For NSGAII, the crossover probability is 0.9, the mutation
probability is 0.1, and the mutation distribution index is 20. The mutation scale factors and
crossover probability of MODE are 0.5 and 0.3, respectively. The probability of crossover
and mutation of PESA2 is both 0.5 and the number of grids is 7. Finally, MOPSO uses the
following parameters: the number of grids is set to 7, the probability of mutation is 0.1,
both the individual and the global learning factors are 1 and 2 respectively, and the inertia
weight is 0.5. All the simulations are run using MATLAB 2016a and on a 2.4 GHZ and
8 GM RAM computer in Windows 10.

Tables 1 and 2 are a summary of the influence of different constants in Equation (52)
on the optimization performance of the proposed algorithm. IGD denotes the proximity
between the non-dominated solution and the optimal Pareto front end, and MS can evaluate
the coverage of the non-dominated solution to the optimal solution. It is evident that when
the constant is 0.382, the proposed algorithm can achieve overall better optimization
performance compared to other values. When the constant is 1.0, it is clear that the
optimization performance of the algorithm deteriorates dramatically. The primary reason
is the lack of perturbation, and the diversity of solutions decreases sharply and premature
convergence occurs. Therefore, the diversity of solutions is of great significance to further
improving the searching ability of the algorithm. Compared to other values, when the
constant is set to 0.382, the eight test functions with different characteristics show better
optimization performance.

Table 1. Comparison of influences on IGD indicators of various constant values.

ZDT1 ZDT2 ZDT3 UF1 UF2 UF3 WFG1 WFG2

0.1 3.23 × 10−4 4.43 × 10−4 4.02E × 10−4 0.0051 0.0039 0.0226 0.0362 0.0257
0.2 2.64 × 10−4 2.62 × 10−4 2.89E × 10−4 0.0051 0.0030 0.0222 0.0352 0.0258
0.3 2.58 × 10−4 2.59 × 10−4 2.90E × 10−4 0.0052 0.0029 0.0225 0.0352 0.0257

0.382 2.57 × 10−4 2.58 × 10−4 2.85 × 10−4 0.0052 0.0029 0.0223 0.0351 0.0247
0.5 2.59 × 10−4 2.58 × 10−4 2.89 × 10−4 0.0052 0.0030 0.0234 0.0349 0.0271
0.6 2.65 × 10−4 2.65 × 10−4 2.99 × 10−4 0.0053 0.0032 0.0222 0.0348 0.0298
0.7 2.78 × 10−4 2.87 × 10−4 3.48 × 10−4 0.0055 0.0033 0.0224 0.0348 0.0284
0.8 2.97 × 10−4 0.0026 3.26 × 10−4 0.0055 0.0033 0.0248 0.0346 0.0287
0.9 2.94 × 10−4 0.0060 0.0010 0.0055 0.0035 0.0229 0.0347 0.0305
1.0 0.0013 0.0135 0.0017 0.0057 0.0040 0.0240 0.0346 0.0293

Table 2. Comparison of influences on MS indicators of various constant values.

ZDT1 ZDT2 ZDT3 UF1 UF2 UF3 WFG1 WFG2

0.1 1 1 0.9974 0.9955 0.9754 0.8170 0.6574 0.8072
0.2 1 1 0.9994 0.9987 0.9854 0.7510 0.6612 0.7899
0.3 1 1 0.9996 0.9991 0.9854 0.7518 0.6623 0.7814

0.382 1 1 0.9997 0.9994 0.9857 0.8602 0.6650 0.7800
0.5 0.9996 0.9998 0.9994 0.9991 0.9853 0.7160 0.6649 0.7493
0.6 0.9999 0.9990 0.9986 0.9985 0.9856 0.7351 0.6651 0.7463
0.7 0.9993 0.9979 0.9978 0.9958 0.9832 0.5762 0.6654 0.7227
0.8 0.9990 0.9438 0.9979 0.9930 0.9817 0.6401 0.6658 0.6888
0.9 0.9986 0.8798 0.9914 0.9957 0.9761 0.5692 0.6649 0.6783
1.0 0.9866 0.8222 0.9845 0.9934 0.9570 0.5633 0.6669 0.6730

Tables 3 and 4 present the IGD data of MMOCE and other algorithms. It can be
observed from the tables that the MMOCE has better IGD characteristics than other algo-
rithms for the function ZDT1-3 and WFG1-2, and it has the second best IGD for UF1-2
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after MODE. Although not as good as other algorithms for UF3, it is obvious that the
proposed algorithm is generally better than other algorithms on the IGD index. It implies
that the non-dominated solutions obtained by the proposed algorithm is the closest to the
theoretical optimal frontier.

Table 3. Comparison of various evolutionary algorithms IGD indicators.

MODE MOEA/D MOPSO NSGAII PESAII MMOCE

ZDT1 0.0065 0.0072 0.0021 0.0263 0.0047 2.57 × 10−4

ZDT2 0.0590 0.0569 0.0305 0.0524 0.0071 2.58 × 10−4

ZDT3 0.0215 0.0157 0.0051 0.0322 0.0056 2.85 × 10−4

UF1 0.0048 0.0178 0.0169 0.0178 0.0082 0.0052
UF2 0.0024 0.0065 0.0099 0.0065 0.0059 0.0030
UF3 0.0174 0.0225 0.0273 0.0271 0.0214 0.0223

WFG1 0.0722 0.0352 0.0376 0.0440 0.0372 0.0351
WFG2 0.0308 0.0540 0.0473 0.0529 0.0365 0.0247

Table 4. Comparison of various multi-objective cross entropy algorithms IGD indicators.

FMOCE DMOCE MOO CEM SMOCE MMOCE

ZDT1 0.0031 3.4564E-04 0.0109 0.0192 2.5709 × 10−4

ZDT2 0.0269 8.5574E-04 0.0015 0.0462 2.5821 × 10−4

ZDT3 0.0046 4.6270E-04 0.0154 0.0162 2.8454 × 10−4

UF1 0.0058 0.0053 0.0079 0.0077 0.0052
UF2 0.0043 0.0030 0.0072 0.0046 0.0029
UF3 0.0243 0.0211 0.0137 0.0186 0.0223

WFG1 0.0358 0.0353 0.0937 0.0803 0.0351
WFG2 0.0301 0.0289 0.0635 0.0452 0.0247

Tables 5 and 6 compare the performance of MMO CE algorithm and the MS index
with other algorithms. It can be seen from the tables that the MMOCE outperforms other
algorithm on the MS index, which implies that the proposed algorithm has the maximum
coverage of the non-dominated solution to the optimal solution. Meanwhile, it indicates
that the MMOCE has the best diversity among all the algorithm. Additionally, Table 7
lists the simulation time of different algorithms on benchmark functions. It is obvious that
MMOCE has certain advantages that benefit from its simple structure.

Table 5. Comparison of various evolutionary algorithms MS indicators.

MODE MOEA/D MOPSO NSGAII PESAII MMOCE

ZDT1 0.9091 0.8825 0.9830 0.7267 0.9066 0.9999
ZDT2 0.7507 0.9269 0.9583 0.5724 0.8386 1.0000
ZDT3 0.9264 0.7465 0.9414 0.6296 0.9429 0.9996
UF1 0.8108 0.3753 0.8954 0.7695 0.7783 0.9994
UF2 0.9398 0.6874 0.8911 0.9092 0.8606 0.9837
UF3 0.5529 0.1912 0.4928 0.5289 0.4153 0.8602

WFG1 0.1796 0.5308 0.5819 0.3302 0.6397 0.6650
WFG2 0.6554 0.4462 0.5437 0.4455 0.6282 0.7800



Sustainability 2021, 13, 5386 17 of 33

Table 6. Comparison of various multi-objective cross entropy algorithms MS indicators.

FMOCE DMOCE MOO CEM SMOCE MMOCE

ZDT1 0.9947 0.9989 0.9712 0.7461 0.9999
ZDT2 0.8573 0.9811 0.9693 0.7446 1.0000
ZDT3 0.9680 0.9972 0.9350 0.8211 0.9996
UF1 0.9909 0.9990 0.7454 0.8489 0.9994
UF2 0.9464 0.9724 0.9349 0.8679 0.9837
UF3 0.4954 0.5511 0.7204 0.5759 0.8602

WFG1 0.6631 0.6621 0.2891 0.2589 0.6650
WFG2 0.7146 0.6942 0.4726 0.5242 0.7800

Table 7. Comparison of various multi-objective cross entropy algorithms on average simulation time.

MODE MOEA/D MOPSO NSGAII PESAII MMOCE

ZDT1 32.94 124.91 25.95 2.85 52.72 2.69
ZDT2 31.67 124.56 4.16 5.71 42.26 3.08
ZDT3 31.75 127.96 8.19 3.78 44.60 5.28
UF1 31.67 128.73 6.70 6.02 29.42 10.38
UF2 44.40 130.96 9.69 3.69 55.84 5.93
UF3 40.87 139.01 18.26 3.79 50.44 11.19

WFG1 55.59 131.20 20.48 4.46 70.60 3.21
WFG2 52.88 126.48 6.66 4.53 41.68 8.19

4.2. Simulation Results on Combined Heat, Emission, and Economic Dispatch (CHEED)

This section discusses the implementation of the proposed MMOCE algorithm on
the combined heat, emission, and economic dispatch problem in [56]. In this work, it is
assumed that wind and solar energy each account for 5% of the total load requirements in
all test cases. In this section, two power systems are used to examine the superiority of this
proposed algorithm in solving the CHEED problems considering renewable energy sources.
The first power system is composed of four conventional thermal units, two cogeneration
units, and one heat-only unit. Pd and Hd are set to 600 and 150 MWth, respectively. Note
that this power system considers the power losses. The second power system consists of
one conventional thermal unit, three cogeneration units, and one heat only unit, and two
scenarios are considered. In the first scenario Pd and Hd are set to 300 MWth and 150 MWth,
while in the second scenario, Pd and Hd are set to 250 MW and 175 MWth, respectively. The
detail data of both power systems can be referred to in [42].

In order to confirm the feasibility and effectiveness of the proposed algorithm, the
simulated results are employed to compare with one newly proposed MSFLA [56]. For
coping with the given optimization model, the MSFLA introduces the price penalty factor
(PPF) to combine the total cost and total emission into a single objective optimization model.
The PPF in this paper is set to 35,863.1065 $/kg in the first system and 28,297.8499 $/kg
in the second system. Thus, for convenient comparison, the best solution of the MMOCE
(termed as Sn) is selected from the Pareto front according to minF = Ct + ΛEt [56]. The
maximum number of iterations is 100, and the FES for all the algorithms is set to 5000.
Tables 8–10 list the detailed results of the two power systems derived from MMOCE. It
can be observed that these results obtained by MMOCE are clearly more environmental
and cost-efficient, which demonstrates the effectiveness and superiority of the method
over MSFLA [56], GA [57], SFLA [58], TLBO [59], and ISFLA [60]. For the first system, the
fuel cost and emission are 16,286.4264 $/ and 5.0793 $/h, respectively, by using MMOCE,
and the total cost is 135178.144 $/h compared with the minimum total cost in MSFLA,
which gives 154,574.6139 $/h. Similarly for the second system, the proposed MMOCE
obtains the great reduction in total cost over GA, SFLA, TLBO, ISFLA, and MSFLA with
58,355.0346 $/h, 57,025.0000 $/h, 56,940.3826 $/h, 56,847.1008, $/h and 56,761.0001 $/h, re-
spectively, for Scenario 1 of the second power system and 45,110.0000 $/h, 44,691.5777 $/h,
44,665.9095 $/h, 44,552.4498 $/h, and 44,393.269 6 $/h, respectively, for Scenario 2 of the
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second power system. There is no doubt that in terms of fuel cost, emission, and total cost,
the proposed algorithm enjoys a significant edge.

Table 8. Results of various methods for the first system of the first EED model.

Method

GA [57] SFLA [58] TLBO [59] ISFLA [60] MSFLA [56] MMOCE

P1 38.8755 48.3207 40.0649 39.3109 40.3650 35.6071
P2 53.7749 38.3751 51.0577 51.0506 51.0577 31.4136
P3 63.1298 61.5122 51.7601 51.9601 50.6388 47.6949
P4 58.3387 65.9934 72.4301 72.9411 72.0309 77.4051
P5 219.8752 219.8752 217.2403 217.4305 219.8752 245.8501
H5 75.9912 75.9912 74.9801 74.9731 75.9912 0.0000
P6 112.5602 112.5602 113.9616 113.8016 112.5602 108.4909
H6 69.4130 69.4130 69.1130 69.1030 69.4130 71.1467
H7 4.5957 4.5957 5.9071 5.9244 4.5957 78.8533
PL 6.5532 6.5440 6.5104 6.4942 6.4926 6.4818

Fuel Cost 16,345.2433 16,351.3678 16,314.2368 16,312.2403 16,344.6539 16,286.4264
Emission 6.0373 6.0021 5.9616 5.9572 5.9054 5.0793
Total Cost 157,660.9862 156,844.7707 155,859.8997 155,752.9672 154,574.6139 135,178.7443

Table 9. Results of various methods for Scenario 1 in the second system of the first EED model.

Method

GA [57] SFLA [58] TLBO [59] ISFLA [60] MSFLA [56] MMOCE

P1 36.2567 35.0000 35.1000 35.0400 35.0000 35.0327
P2 120.7361 105.7361 104.1568 104.3659 105.7361 107.2488
H2 65.5581 80.0100 91.7052 91.8122 92.0100 99.4770
P3 24.6440 47.7440 44.2212 44.0821 42.7440 22.7183
H3 44.0943 42.0943 42.3921 42.3844 42.0943 50.5230
P4 88.3632 81.5200 86.5220 86.5120 86.5200 105.0000
H4 40.3476 27.9037 15.9027 15.8034 15.9037 0.0000
H5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fuel Cost 15,891.4751 15,955.0000 15,883.9895 15,886.4598 15,889.0000 15,716.8701
Emission 1.1840 1.1452 1.1448 1.1421 1.1397 1.1199
Total Cost 58,355.0346 57,025.0000 56,940.3826 56,847.1008 56,761.0001 55,879.9631

Table 10. Results of various methods for Scenario 2 in the second system of the first EED model.

Method

GA [57] SFLA [58] TLBO [59] ISFLA [60] MSFLA [56] MMOCE

P1 35.0356 35.0356 35.1688 35.2656 35.0356 35.0000
P2 95.0011 112.0611 112.5303 112.5013 112.0611 87.4635
H2 101.8674 107.8674 107.5905 107.8003 107.8674 112.6999
P3 38.4637 17.8637 10.4471 10.3338 10.4640 10.7293
H3 42.8607 38.8607 38.8596 38.8596 38.8607 40.3126
P4 56.5000 59.5000 66.8542 66.8993 66.8993 91.8075
H4 28.2738 28.2738 28.5500 28.3401 28.2738 21.9875
H5 2.0000 0.0002 0.0000 0.0000 0.0002 0.0000

Fuel Cost 14,421.0000 14,464.6435 14,389.7481 14,392.9789 14,397.6852 14,064.4171
Emission 1.0845 1.0681 1.0699 1.0658 1.0600 1.0449
Total Cost 45,110.0000 44,691.5777 44,665.9095 44,552.4498 44,393.2696 43,632.8405

Moreover, to further verify the effectiveness and superiority of the proposed MMOCE,
three other multi-objective cross entropy (DMOCE, FMOCE, and MOO CEM) methods and
two classic meta-heuristic multi-objective algorithms (NSGAII and MOPSO) are also used
for comparison. Figure 6 show the Pareto optimal solutions of other algorithms in contrast
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to the proposed method, respectively, in the first system. There are two explicit points: first,
the Pareto optimal front is distinctly superior to other several multi-objective algorithms.
Second, the Pareto solutions obtained by MMOCE are more evenly distributed, and the
diversity is also excellent. Table 11 gives all the compromise solutions of all the algorithms
in comparison. The solutions obtained by MMOCE acquire 12,714.9326 $/h in fuel cost
and 10.1900 Kg/h in emission, which is reduced at least by 139.2994 $/h and 0.0644 Kg/h
compared with other algorithms. Similarly, Figures 7 and 8 show the Pareto optimal
solutions of different algorithms, and Tables 12 and 13 present all the compromise solutions
of two scenarios in the second system of all the algorithms in comparison. Additionally,
Figure 9 shows the comparison between the proposed MMOCE and other algorithms
regrading to the total cost and emission for all scenarios. It can be clearly seen that overall
the solutions obtained by MMOCE are better in convergence and diversity than those of
other algorithms.
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Table 11. Comparison of the compromise solutions obtained by all algorithms in the first system of
the first EED model.

Algorithms Fuel Cost ($/h) Emission (Kg/h)

MMOCE 12,714.9326 10.1900
FMOCE 12,854.2320 10.5354
DMOCE 12,979.9436 10.3582

MOO CEM 12,929.2931 10.5643
NSGAII 12,855.0487 10.5610
MOPSO 13,319.9367 10.2544
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Table 12. Comparison of the compromise solutions obtained by all algorithms for Scenario 1 in the
second system of the first EED model.

Algorithms Fuel Cost ($/h) Emission (Kg/h)

MMOCE 14,059.9237 4.3645
FMOCE 14,106.7250 4.3783
DMOCE 14,129.1889 4.4418

MOO CEM 14,205.7126 4.3789
NSGAII 14,099.5992 4.4725
MOPSO 14,089.1572 4.3871

Table 13. Comparison of the compromise solutions obtained by all algorithms for Scenario 2 in the
second system of the first EED model.

Algorithms Fuel Cost ($/h) Emission (Kg/h)

MMOCE 12,252.9253 5.1305
FMOCE 12,267.3198 5.4654
DMOCE 12,278.0982 5.3153

MOO CEM 12,255.3025 5.2858
NSGAII 12,368.6973 5.2289
MOPSO 12,254.4826 5.1332
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4.3. Simulation Results on IEEE 30-Bus with Six-Generator System

In this section, three different cases of IEEE 30-bus with a six-generator system with
renewable resources [61] are introduced, aiming to investigate the performance of the
proposed MMOCE. In Case 1, the system incorporates stochastic wind and solar power.
The Case 2 is a solar-free stochastic wind power system, while the third system is solar-only.
Simultaneously, in order to verify the feasibility and validity of the proposed MMOCE,
the CMOPEO-EED [61] method and CNSGAII-EED [50,62] method are selected as the
competitors to participate in the optimization of three cases. Especially in Case 1, the results
are also used to make comparison with that of the SHADE method in the literature [45]. The
details of the three different cases of IEEE 30-bus with a six-generator system, renewable
resources, and adjustable parameters of CMOPEO-EED and CNSGAII-EED can be found
in [61]. The population size of the MMOCE is 60, and the maximum number of function
evaluations is set to 24000, which is the same as that in the literature.

4.3.1. Case 1: System Incorporating Stochastic Wind and Solar

In this case study, the IEEE 30-bus system contains two wind farms and one solar PV
array to generate electricity. In other words, this system considers the influence of stochastic
wind and solar power at the same time. Firstly, the SHADE is used to make a comparison
with the proposed MMOCE, as it treats the problem as a single-objective optimization
problem. In order to highlight the outperformance of the MMOCE in contrast to the
SHADE, the three optimal solutions (termed as S1∼S3) are extracted from the MMOCE on
the basis of F = F1 + CtaxF2. Table 14 lists the results of the MMOCE and the SHADE in
detail, and the possible range of each unit is also included. It is evident that the two Pareto
solutions (i.e., S1, S3) obtained by the MMOCE are found to be superior to the optimal
solution of the SHADE. S1 has a total cost of 809.060 $/h and an emission of 0.833 t/h,
S3 has a total cost of 809.655 $/h and an emission of 0.744 t/h, while the SHADE has a
total cost of 810.346 $/h and an emission of 0.891 t/h. It is not difficult to discover that the
proposed MMOCE yields lower total cost and emission than SHADE. The Pareto front of
MMOCE is shown in Figure 10.

Table 14. Simulation results of three solutions from MMOCE and solution of SHADE in Case 1.

Control
Variables

Min Max
MMOCE

SHADE [45]
S1 S1 S1

PTG1 (MW) 50 140 122.352 128.012 120.35 123.525
PTG2 (MW) 20 80 32.955 31.274 32.955 33.047
PTG3 (MW) 10 35 10 10 10.124 10
Pws1 (MW) 0 75 45.898 43.969 45.898 37.336
Pws1 (MW) 0 60 38.43 37.663 40.203 46.021
Pss (MW) 0 50 38.998 38.022 38.998 38.748
V1 (p.u.) 0.95 1.10 1.067 1.067 1.067 1.071
V2 (p.u.) 0.95 1.10 1.052 1.053 1.053 1.057
V5 (p.u.) 0.95 1.10 1.035 1.032 1.035 1.036
V8 (p.u.) 0.95 1.10 1.10 1.1 1.1 1.04
V11 (p.u.) 0.95 1.10 1.10 1.1 1.1 1.099
V13 (p.u.) 0.95 1.10 1.067 1.061 1.067 1.056

QTG1
(MW) −20 150 −0.492 −4.186 −7.608 2.678

QTG2
(MW) −20 60 0.2381 9.35 8.031 12.319

QTG3
(MW) −15 40 40 40 40 35.27

Qws1 (MW) −30 35 24.184 21.62 23.429 22.964
Qws2 (MW) −25 30 30 30 30 30
Qss (MW) −20 25 21.871 19.797 21.859 17.779
Ctax ($/h) 17.83 17.83 17.83 17.83
Cost ($/h) 794.231 788.802 796.386 /

Emission (t/h) 0.833 1.16 0.744 0.891
Tatal Cost ($/h) 809.060 809.478 809.655 810.346
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Figure 10. The Pareto front of MMOCE in Case 1.

In this paper, to compare with other two multi-objective algorithm CMOPEO-EED
and CNSGAII-EED proposed in the literature, three different solutions (termed as A0, B0,
and C0 in Figure 10) of the MMOCE are chosen from the Pareto front. As stated in [61],
because of the preference to cost, A0 can be named cost solution. Similarly, B0 can be
named emission solution, and C0 can be named as compromise solution. Table 15 lists the
results of the three solutions in detail. It is shown that compared with other two algorithms,
the result obtained from the proposed MMOCE is better as it achieves a decrease in both
the cost and emission simultaneously in terms of cost solution and compromise solution.
Though for emission solution, the MMOCE fails to show distinct superiority comparing
with CMOPEO-EED, the proposed MMOCE still exhibits excellent convergence as a whole.

Table 15. Simulation results obtained by MMOCE, CMOPEO-EED, and CNSGAII-EED in Case 1.

Control
Variables

Cost-Solution (A0, A1, A2) Emission-Solution (B0, B1, B2) Compromise-Solution (C0, C1, C2)

MMOCE
CMOEO-

EED
[61]

CNSGAII-
EED
[62]

MMOCE
CMOEO-

EED
[61]

CNSGAII-
EED
[62]

MMOCE
CMOEO-

EED
[61]

CNSGAII-
EED
[62]

PTG1 (MW) 133.9071 134.2443 135.0588 69.1754 67.8734 72.1327 112.9751 113.6415 116.5484
PTG2 (MW) 26.9556 22.7365 24.0749 55.7616 52.4909 41.8570 37.0689 39.3716 36.2704
PTG3 (MW) 10 10.3261 16.8847 19.1664 14.3867 21.0405 10 10 16.6980
Pws1 (MW) 43.9685 44.4640 44.5520 54. 2363 54.7671 63.3223 49.9448 45.5167 45.0197
Pws1 (MW) 36.0219 39.3188 31.4980 46.6161 49.2786 46.7542 39.5683 38.7017 37.4236
Pss (MW) 38.2984 37.4988 37.4310 41.9088 48.0108 41.8268 38.6851 41.2587 36.9400
V1 (p.u.) 1.0699 1.0749 1.0783 1.0665 1.0581 1.0783 1.0637 1.0581 1.0784
V2 (p.u.) 1.0522 1.0606 0.9976 1.0413 1.0470 0.9917 1.0527 1.0516 0.9971
V5 (p.u.) 1.0335 1.1000 1.0933 1.0323 1.1000 1.0933 1.0390 1.1000 1.0933
V8 (p.u.) 1.1000 1.0453 1.1000 1.1000 1.0412 1.1000 1.0988 1.0341 1.0999
V11 (p.u.) 1.0994 1.1000 1.0012 1.0994 1.1000 0.9868 1.0999 1.1000 0.9869
V13 (p.u.) 1.0644 1.0084 1.1000 1.0567 1.1000 1.1000 1.0621 1.0637 1.0964

QTG1
(MW) 2.1452 −1.2440 35.9874 20.7012 1.5847 35.2648 −7.8702 −17.8574 38.7056

QTG2
(MW) 0.3507 16.2791 −20 −20 −14.1580 −20 5.6642 16.9428 −20

QTG3
(MW) 40 40 40 40 40 40 40 40 40

Qws1 (MW) 23.7233 31.1651 35 21.7630 29.7936 35 26.6124 24.9220 35
Qws2 (MW) 29.8159 30 1.2666 30 30 −3.6728 30 30 −2.2033
Qss (MW) 20.9158 1.4444 25 19.0388 25 25 20.0658 21.5430 25
Cost ($/h) 783.3389 784.0305 789.4062 846.5224 846.5317 848.2084 804.2061 804.5355 805.5781
Emission 1.6573 1.6931 1.7783 0.1168 0.1152 0.1215 0.4994 0.5167 0.6018

Furthermore, DMOCE, FMOCE, MOO CEM, NSGAII, and MOPSO are also tested for
comparison purpose with the proposed MMOCE. Figure 11 compares the Pareto fronts
between MMOCE and the above competitor algorithms. The compromise solutions of
those algorithms are picked out and listed in Table 16. Apparently, the optimal solutions
obtained by MMOCE unfold better convergence performance than MOO CEM, NSGAII,
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and MOPSO. In comparison to FMOCE and DMOCE, the best Pareto fronts are visually
close to each other. However, by means of the compromise solutions, it is clearly shown
that MMOCE produces the cost of 804.2061 $/h and emission of 0.4994 t/h, which is
the lowest among these algorithms. In summary, the proposed algorithm MMOCE has
demonstrated the superior performance in the optimization of this case.
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Table 16. Comparison of the compromise solutions obtained by all algorithms in Case 1.

MMOCE DMOCE FMOCE MOO CEM NSGAII MOPSO

PTG1 (MW) 112.9751 113.0508 113.2180 113.9853 114.3649 113.5886
PTG2 (MW) 37.0689 38.9045 34.0862 30.6144 41.1093 40.9433
PTG3 (MW) 10 10 10 10.4010 11.1905 10.0105
Pws1 (MW) 49.9448 47.3610 50.4035 51.6109 42.2642 49.0710
Pws1 (MW) 39.5689 39.3637 41.8038 41.5601 43.9396 36.1924
Pss (MW) 36.6851 39.6871 38.7534 40.3542 35.7173 38.7900
V1 (p.u.) 1.0637 1.0647 1.0735 1.0553 1.0646 1.0776
V2 (p.u.) 1.0527 1.0509 0.9567 0.9702 0.9807 1.0267
V5 (p.u.) 1.0390 1.0294 1.0350 1.0365 1.0856 1.0830
V8 (p.u.) 1.0988 1.0361 1.0988 1.0323 1.0858 1.0952
V11 (p.u.) 1.0999 1.1000 1.0848 1.0329 1.0999 1.0664
V13 (p.u.) 1.0621 1.0490 1.0585 1.0243 1.0862 1.0198

QTG1
(MW) −7.8702 0.2431 22.7539 27.1743 6.5293 29.8476

QTG2
(MW) 5.6642 8.4721 −20 −20 −20 −20

QTG3
(MW) 40 37.6685 40 40 40 40

Qws1 (MW) 26.6124 21.6926 25.7524 35 35 35
Qws2 (MW) 30 30 26.0320 17.1734 30 22.964
Qss (MW) 20.0658 17.2351 20.1288 17.6723 25 8.0319
Cost ($/h) 804.2061 804.3160 804.4383 805.7037 806.0331 804.8684

Emission (t/h) 0.4994 0.5011 0.5016 0.5273 0.5362 0.5151
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4.3.2. Case 2: The System Only Incorporating Stochastic Wind

In this case study, the test system only contains two wind farms and does not include
solar PV. For the sake of detailed comparison with two methods presented in literature [61],
three different solutions of MMOCE are selected, and the simulation results are listed in
Table 17. It is clear that the proposed MMOCE can find the lowest values of cost and
emission, which means it can find better solutions than CMOPEO-EED and CNSGAII-EED.
Figure 12 compares the Pareto fronts between MMOCE and competitor algorithms, and
the compromise solutions are listed in Table 18. The data curves show that the proposed
MMOCE converges closer to optimal solutions than other algorithms. Furthermore, the
result obtained by MMOCE, with 834.5583 $/h in cost and 0.5896 t/h in emission, stands
out from all algorithms.

Table 17. Simulation results obtained by MMOCE, CMOPEO-EED, and CNSGAII-EED in Case 2.

Control
Variables

Cost-Solution (A0, A1, A2) Emission-Solution (B0, B1, B2) Compromise-Solution (C0, C1, C2)

MMOCE
CMOEO-

EED
[61]

CNSGAII-
EED
[62]

MMOCE
CMOEO-

EED
[61]

CNSGAII-
EED
[62]

MMOCE
CMOEO-

EED
[61]

CNSGAII-
EED
[62]

PTG1 (MW) 133.0246 133.4204 136.1377 70.7194 66.0442 71.0043 114.3254 114.3152 117.6553
PTG2 (MW) 41.6542 36.4690 32.7275 58.6058 60.0168 57.9792 55.9144 49.4717 48.4645
PTG3 (MW) 10 11.0759 20.4909 24.2350 35 31.2133 10.3215 11.3607 22.6222
PTG4 (MW) 12 12 13.1202 23.6914 12 21.8278 12 12 13.1951
Pws1 (MW) 49.5673 52.6521 50.1389 60.8875 62.1738 57.9794 52.9072 57.7254 50.1389
Pws2 (MW) 42.9147 43.4150 36.7650 48.4544 51.1847 46.9542 43.0633 43.4150 36.7531
V1 (p.u.) 1.0720 1.0638 1.0903 1.0652 1.0626 1.0817 1.0694 1.0667 1.0903
V2 (p.u.) 1.0591 1.0530 0.9701 1.0587 1.0530 0.9705 1.0558 1.0584 0.9712
V5 (p.u.) 1.0388 1.1000 1.0944 1.0396 1.1000 1.1000 1.0379 1.1000 1.0837
V8 (p.u.) 1.0553 1.0650 0.9875 1.0565 1.0497 0.9905 1.0574 1.0585 0.9855
V11 (p.u.) 1.0800 1.0359 1.0726 1.0926 1.0424 1.0737 1.1000 1.0441 1.0727
V13 (p.u.) 1.0511 1.1000 1.0555 1.0510 1.1000 1.0574 1.0510 1.1000 1.0567

QTG1
(MW) −4.0466 −11.6123 45.3146 −4.2832 2.9649 38.4253 1.3983 −11.3175 44.8153

QTG2
(MW) 15.6637 13.3567 −20 11.4685 −3.9619 −20 3.8894 12.5536 −20

QTG3
(MW) 40 40 40 40 40 40 40 40 40

QTG4
(MW) 18.2106 23.0313 −1.6361 16.0053 16.6208 −1.9824 17.5542 19.1638 −2.8490

Qws1 (MW) 24.1201 23.7141 35 18.9026 25.1861 35 23.8134 25.3184 35
Qws2 (MW) 24.2296 30 20.0770 27.9365 30 20.2949 30 29.8266 20.0146
Cost ($/h) 810.3276 810.6380 814.6888 888.5777 888.5999 888.9853 834.5583 834.6694 835.5906
Emission 1.6216 1.6618 1.9532 0.1645 0.1664 0.1706 0.5896 0.5899 0.6924

Table 18. Comparison of the compromise solutions obtained by all algorithms in Case 2.

MMOCE DMOCE FMOCE MOO CEM NSGAII MOPSO

PTG1 (MW) 114.3254 114.6435 114.4487 114.6034 117.1215 114.9084
PTG2 (MW) 55.9144 57.6041 50.0948 50.9100 42.1368 53.3999
PTG3 (MW) 10.3215 10 13.4001 15.1987 17.4805 10.0105
PTG4 (MW) 12 12 12 12 16.3096 12.7678
Pws1 (MW) 52.9072 51.6911 55.0908 50.1419 51.6231 52.8663
Pws2 (MW) 43.0633 42.7644 43.4177 46.0267 43.8745 44.7722

V1 (p.u.) 1.0694 1.0718 1.0737 1.0511 1.0543 1.1000
V2 (p.u.) 1.0558 1.0138 0.9647 1.0385 1.0298 1.0741
V5 (p.u.) 1.0379 1.0457 1.0556 1.0337 1.0506 1.0556
V8 (p.u.) 1.0574 1.1000 1.0828 1.0500 1.0765 1.0899
V11 (p.u.) 1.1000 1.0917 1.0958 0.9836 1.0723 1.0126
V13 (p.u.) 1.0510 1.0639 1.0304 1.0408 1.0637 1.0419

QTG1
(MW) 1.3983 13.6363 20.6437 1.8182 10.1473 36.0754

QTG2 (MW) 3.8894 −20 −20 14.1036 −20 −6.2083
QTG3

(MW) 40 40 40 40 40 40
QTG4

(MW) 17.5542 22.2206 10.8751 37.3132 27.5411 15.4431
Qws1 (MW) 23.8134 33.8238 35 35 35 29.3385
Qws2 (MW) 30 27.2668 30 1.7752 24.8045 1.4720
Cost ($/h) 834.5583 834.7172 834.9402 836.5329 834.8781 834.6457

Emission (t/h) 0.5896 0.5990 0.5919 0.5960 0.6710 0.6056
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4.3.3. Case 3: The System Only Incorporating Stochastic Solar PV

The test system in this case contains only solar PV. Similar to the above two cases, the
compromise solution of the proposed MMOCE is selected to compared with the algorithms
in [63], and Table 19 lists the results clearly. Figure 13 depicts the Pareto front of MMOCE
and other algorithms in Case 3. It is not hard to see that MMOCE still has the merits in
convergence and effectiveness.
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Table 19. Simulation results obtained by MMOCE, CMOPEO-EED and CNSGAII-EED in Case 3.

Control
Variables

Cost-Solution (A0, A1, A2) Emission-Solution (B0, B1, B2) Compromise-Solution (C0, C1, C2)

MMOCE
CMOEO-

EED
[61]

CNSGAII-
EED
[62]

MMOCE
CMOEO-

EED
[61]

CNSGAII-
EED
[62]

MMOCE
CMOEO-

EED
[61]

CNSGAII-
EED
[62]

PTG1 (MW) 134.0754 134.0858 139.4682 87.1357 88.4465 89.6932 117.5678 117.9506 119.7446
PTG2 (MW) 61.5611 60.6874 57.1434 66.5074 77.4796 75.9446 63.4474 70.2428 67.2314
PTG3 (MW) 20.6333 13.9832 10.1346 22.7809 35 26.7500 21.0568 21.4771 19.5729
PTG4 (MW) 15 21.5477 20.2378 50 25.1678 29.9591 23.1620 21.5477 19.4187
PTG5 (MW) 10 11.5842 17.4797 12.4370 12.7764 19.9521 14.6247 10 17.4850
Pss (MW) 49.7022 49.0552 47.1022 49.7600 50 46.8430 50 49.0552 47.2479
V1 (p.u.) 1.0686 1.0658 1.0654 1.0607 1.0629 1.0654 0.9789 1.0658 1.0654
V2 (p.u.) 1.0578 1.0537 0.9932 1.0530 1.0532 0.9945 1.1000 1.0537 0.9944
V5 (p.u.) 1.0307 1.1000 1.0410 1.0280 1.1000 1.0291 1.0379 1.1000 1.0409
V8 (p.u.) 1.0403 1.0258 1.0413 1.0408 1.0317 1.0519 1.1000 1.0306 1.0513
V11 (p.u.) 1.1000 1.1000 1.0324 1.0994 1.1000 1.0326 1.0713 1.1000 1.0324
V13 (p.u.) 1.0738 1.0752 1.0946 1.0773 1.1000 1.0914 1.1000 1.1000 1.0977

QTG1
(MW) −11.3892 −9.2501 14.6380 −7.5218 −4.5573 15.9405 1.6784 −5.8103 8.3678

QTG2
(MW) 16.9285 12.4732 −20 11.6874 −0.4635 −20 −20 3.7074 −20

QTG3
(MW) 26.7988 40 40 26.4980 40 28.4233 40 40 40

QTG4
(MW) 36.5410 24.5279 53.3713 29.9588 27.1887 56.3327 62.5000 28.2403 58.4254

QTG5
(MW) 29.0576 29.5347 10.7791 29.0230 28.0240 9.7916 6.8007 28.7868 8.7660

Qss (MW) 24.1922 25 25 25 30 25 23.5308 25 25
Cost ($/h) 811.7028 812.1683 813.8361 876.5106 877.6596 883.3316 836.1290 836.2670 836.4149
Emission 1.7444 1.7453 2.4089 0.2429 0.2539 0.2576 0.7172 0.7246 0.7897
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Furthermore, the comparison between MMOCE and other competitor algorithms is
conducted to verify the superiority of MMOCE while the results are listed in Table 20.
Though it does not demonstrate evident advantage over MOO CEM with 836.1867 $/h in
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cost and 0.7107 t/h in emission in terms of performance, a satisfactory result obtained by
MMOCE is better than other algorithms.

Table 20. Comparison of the compromise solutions obtained by all algorithms in Case 3.

MMOCE DMOCE FMOCE MOO CEM NSGAII MOPSO

PTG1 (MW) 117.5678 118.1924 117.9340 117.6791 122.5261 118.1972
PTG2 (MW) 63.4474 64.6039 71.7869 65.0059 51.5835 68.4740
PTG3 (MW) 21.0568 17.8186 21.4148 21.6037 23.0837 18.7274
PTG4 (MW) 23.1620 27.5397 19.8652 20.1938 46.0255 23.7451
Pws1 (MW) 14.6247 12.4316 10 15.4506 11.9970 11.2675
Pws2 (MW) 50 49.7286 49.5265 50 34.5972 50

V1 (p.u.) 0.9789 1.0679 1.0648 1.1000 1.0687 1.0686
V2 (p.u.) 1.1000 0.9500 1.0519 1.0164 1.0309 0.9635
V5 (p.u.) 1.0379 1.1000 1.0159 1.0798 1.0308 1.0971
V8 (p.u.) 1.1000 1.0387 1.0927 1.1000 1.0409 1.0446
V11 (p.u.) 1.0713 1.1000 1.0593 1.0663 1.0999 1.0998
V13 (p.u.) 1.1000 1.0995 1.0453 1.0714 1.0137 1.0654

QTG1
(MW) 1.6784 11.5304 −2.6881 9.5990 20.7913 8.1282

QTG2 (MW) −20 −20 10.6724 −20 −20 −20
QTG3

(MW) 40 40 15.8632 40 35.9355 40
QTG4

(MW) 62.5000 34.1579 62.5000 62.5000 44.5888 42.1869
Qws1 (MW) 6.8007 29.6849 17.1431 8.3374 33.3207 29.0461
Qws2 (MW) 23.5308 25 16.7957 14.8923 4.6421 21.0298
Cost ($/h) 836.1290 836.7103 836.9941 836.1867 836.4888 836.3250

Emission (t/h) 0.7172 0.7303 0.7241 0.7107 0.9077 0.7322

4.4. Combined Emission Economic Dispatch Problems with Wind Penetration

In this paper, the test system in this section consists of 40 thermal units and a wind
conversion device. The characteristic data of the 40-unit system are given in [64]. The B
matrix coefficients are taken from [63], since the transmission loss is taken into considera-
tion. The wind power penetration is set to 10%, and Pd is 10,500MW. As the system grows
in size, the optimization becomes more difficult. In this paper, several multi-objective
algorithms (i.e., MMOCE, DMOCE, FMOCE, NSGAII, MOPSO, MOO CEM) are employed
to optimize this system. Figure 14 presents the optimal Pareto solutions obtained by these
multi-objective algorithms, and the compromise solution obtained by MMOCE is listed in
Table 21. Table 22 shows the comparison performance between the compromise solutions
obtained by these algorithms.

Figure 14. The Pareto front of various algorithms for 40-unit system.
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Table 21. The compromise solution obtained by MMOCE.

Unit Output (MW) Unit Output (MW) Unit Output (MW) Unit Output (MW)

1 113.8225 11 164.8471 21 438.6464 31 179.5618
2 114 12 94.6529 22 495.7881 32 185.4391
3 120 13 398.4712 23 441.9609 33 187.7371
4 179.4560 14 401.3060 24 434.6433 34 199.9304
5 97 15 390.9459 25 495.3594 35 193.1095
6 105.9222 16 394.2235 26 437.4695 36 200
7 300 17 488.5986 27 12.5754 37 98.2511
8 289.0161 18 401.9877 28 10.5770 38 110
9 286.9929 19 423.0220 29 12.5574 39 109.9946
10 205.0808 20 424.7560 30 87.5222 40 503.9188

Table 22. Comparison of the compromise solutions obtained by all algorithms in the third model.

Algorithms Fuel Cost ($/h) Emission (Kg/h)

MMOCE 122,018.6133 207,075.3120
FMOCE 122,292.4613 207,228.6658
DMOCE 122,453.2896 207,206.8501

MOO CEM 126,478.3572 237,218.5618
NSGAII 125,509.5808 212,384.3552
MOPSO 123,163.8923 258,994.9946

From Figure 14, it is shown that the proposed MMOCE is superior to all other competi-
tor algorithms in terms of the convergence. Table 22 lists their compromise solutions, and it
is clearly shown that the solution obtained by MMOCE represents a cost of 122,018.6133 $/h
and emission of 207,075.3012 Kg/h, which is better than other solutions obtained by other
algorithms. It implies that when it is applied to large scale optimization systems, MMOCE
is still able to exhibit good convergence and has the potential to provide a competitive
solution for the decision maker. Compared with other multi-objective cross entropy meth-
ods, the proposed MMOCE dramatically improves the global search ability for large scale
systems and exhibits excellent competitiveness.

To examine the convergence performance of the proposed method, the convergence
trends for the minimum cost and minimum emissions of MMOCE and other algorithms
are shown in Figure 15. The max function evaluation is set to 20,000. According to
Figure 15a, the minimum cost of MMOCE decreases quickly in the first 410 iterations, and
it tends to be stable after 800. In Figure 15b, the minimum emission of MMOCE decreases
quickly in the first 180 iterations. The emission tends to be stable after 200 iterations. Based
on Figure 15a,b, MMOCE converges faster than other methods.
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5. Conclusions

In this paper, a modified multi-objective cross entropy algorithm is proposed based
on the conventional cross entropy method. The drawbacks of the conventional CE method
have been effectively tackled, and the optimal performance is improved to a great extent. To
evaluate its performance, the proposed method is tested on eight well-known benchmark
functions. The numerical results are compared with the different heuristic optimization
algorithms, which confirms the performance of the proposed method in terms of the
convergence and diversity. In addition, the proposed algorithm is used to optimize three
different EED problems with renewable energy sources.

The first two models (i.e., CHEED system and the modified IEEE 30-bus and six-
generator system) consider the availability of wind and solar power, and the comparisons
with other optimization methods reveal that the proposed method significantly outper-
formed other methods in all cases, confirming that the proposed method is capable of
enhancing the convergence and seeking the optimal global solution. The third 40-unit
system uses wind power as negative loads, and the numerical results also exhibit better
convergence characteristics for large-scale test systems. In summary, the test results confirm
the feasibility and superiority of the proposed MMOCE method.

The future work will include further simplification of the parameters used in the
conventional CE method and improvement of the scalability of the method for optimizing
multi-objective engineering optimization problems. Additionally, in this paper, three
different types of EED model are tested. However, the renewable sources of the first
model and the third model are deterministic and are only regarded as negative loads. This
handling approach for renewable sources is simple and neglects the stochastic nature of the
renewable resources. The future work will explore EED model considering the stochastic
characteristics of various intermittent energy sources.
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Nomenclature
The following abbreviations are used in this manuscript:
Ctotal Total production cost
Etotal Total emission
Ci(Pi) Production cost of thermal power unit i
Cj

(
Pj, Hj

)
Production cost of cogeneration unit j

Ck(Hk) Production cost of heat-only unit k
Epi(Pi) Emission of thermal power unit i

Ecj

(
Pj, Hj

)
Emission of cogeneration unit j

Ehk(Hk) Emission of heat-only unit k
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Pd, PL Load demand and transmission loss
Pwind, Psolar Wind power and solar power
HD Total heat demand
Pi

max, Pmin
i Power capacity limits of thermal power unit i

Hk
max, Hmin

k Heat capacity limits of heat-only unit k
Np Number of thermal power units
Nc Number of cogeneration units
Nh Number of heat-only units
ai, bi, di Cost coefficients for thermal power unit i
mi, ni, li, xi, yi, zi Cost coefficients for cogeneration unit j
αk, βk, γk Cost coefficients for heat-only unit k
δi, εi, ξi Emission coefficients for thermal power unit i
µj Emission coefficients for cogeneration unit j
σk Emission coefficients for heat-only unit k
NTU Total number of thermal power units
PTU Power produced by generating unit j
αj, β j, γj Cost coefficients for thermal power unit j
dj, ej Valve effect coefficients for thermal power unit j
PTU

min Minimum power of thermal power unit j
hi Cost constant of wind power unit i
Psw,i Scheduled wind power from unit i
KRC,i Reverse cost coefficient of wind unit i
Pwa,i Actual available power of wind unit i
fwp(Pw,i) Wind power probability function of wind unit i
KPC,i Penalty cost coefficient of wind unit i
Prw,i Rated output power of wind unit i
Vout, Vr, Vin Cut out wind speed, nominal wind speed, and cut in wind speed
Prw Rated power
v Current wind speed
gi Cost constant of solar power unit j
Pss,j Scheduled solar power from unit j
KSR,j Reverse cost coefficient of solar power unit j
Psa,j Actual available power of solar power unit j
KPS,j Penalty cost coefficient of solar power unit j
pi, qi, ri, si, ti Emission coefficients for thermal power unit i
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