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Abstract: Carpooling is a mobility concept that has been showing promising results in reducing single
occupancy use of private cars, which prompted many institutions, namely universities, to implement
carpooling platforms to improve their networks sustainability. Nowadays, currently under a pan-
demic crisis, public transportation must be used with limitations regarding the number of occupants
to prevent the spread of the virus and commuters are turning even more to private cars to perform
their daily trips. Carpooling under a set of precaution rules is a potential solution to help commuters
perform their daily trips while respecting COVID-19 safety recommendations. This research aimed to
develop an analysis of the road traffic and emission impacts of implementing carpooling, with social
distancing measures, in three university campus networks through microscopic traffic simulation
modeling and microscopic vehicular exhaust emissions estimation. Results indicate that employing
carpooling for groups of up to three people to safely commute from their residence area to the
university campus has the potential to significantly reduce pollutant emissions (reductions of 5% and
7% in carbon dioxide and nitrogen oxides can be obtained, respectively) within the network while
significantly improving road traffic performance (average speed increased by 7% and travel time
reduced by 8%).

Keywords: carpooling; post-pandemic mobility; pollutants emissions; traffic performance

1. Introduction

University campuses can be viewed as small cities since they are defined by their own
community with a specific set of behaviors and internal circulation networks, which are
then connected to a corresponding city network and are key traffic attractors and gener-
ators [1,2]. Therefore, university campuses present as good case studies for evaluating
sustainable mobility solutions that can potentially reduce road traffic negative impacts [1].
In fact, previous research works have identified the main issues in the transportation
system in a university campus, which helped afterwards to understand how the level of
sustainability could be improved, and what were the most important aspects that traf-
fic planners should consider when designing a sustainable transportation system for a
university campus [1].

The evaluation and analysis of vehicular exhaust emissions and road traffic perfor-
mance have been extensively addressed by the research community through field mea-
surement campaigns and the application of estimation frameworks, namely, the overall
network emission impacts and road traffic performance in different network sizes and
with different fleet compositions [3,4]. Carpooling is defined as the action of sharing a car
journey, therefore making the car carry more than one occupant and reducing the use of
private vehicles [1]. Furthermore, carpooling has gained interest during the last years and
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has evolved from a fairly unfamiliar concept to a widely discussed trending topic, as one
of the present and future mobility solutions to help the transportation system reduce its
own negative outcomes, that is, pollutants and noise emissions, traffic congestion and road
crashes, and ultimately increase human quality of life [1,5]. In fact, carpooling is a cost-
effective measure to moderate road congestion and vehicular pollutants emissions [1,5].
Olsson et al. [6] assembled 18 research studies regarding carpooling published between
2014 and 2018 and developed a meta-analysis. Results indicated that psychological factors
are becoming more important (money, time, reducing congestion, and environmental
concerns) and that policymakers can increase carpooling by providing cheaper parking
spaces and introducing high-occupancy vehicle lanes (HOVL) [6]. Molina et al. [7] pre-
sented empirical evidence that carpooling is not common when commuting to/from work.
Moreover, Molina et al. [7] stated that carpooling has been used by people trying to avoid
crowded modes of transportation, and also indicated that HOVL can facilitate and increase
carpooling, namely during pandemic circumstances.

The scientific community has been evaluating carpooling impacts on road transporta-
tion and since this commuting approach has shown positive results, the assessment of the
reasons that make people carpool and methodologies to control carpooling platforms have
been explored [1,8–14]. Results suggest that the process should be as simple as possible
so that more people consider themselves to be able to start carpooling [8]. Furthermore,
the creation of trust by allowing people to travel with other known carpoolers is important
and can also be achieved through a carpooling company program [8]. Other effective ways
to promote carpooling are to show that more and more people are carpooling, which en-
courages people to follow, and to emphasize the environmental benefits of carpooling [8].
The main reasons for people to choose carpooling are more frequently related to leisure
trips, followed by shopping and then by work [9]. When carpooling for work, trips usually
present the longest distances traveled [9]. Carpoolers have acknowledged that society
needs to reduce environmental impacts, and one of the main reasons for carpooling is
strategic, that is, by sharing the trip, carpoolers are able to save money [9].

Adopting a lazy user theory, Pinto et al. [10] developed a theoretical model that
was used to understand the motivations that make people choose carpooling over public
transportation when commuting from/to a university campus [10]. Results presented
two main reasons to choose carpooling: (1) carpooling drops commuters closer to their
destination; and (2) the waiting time for carpooling is considerably lower [10].

The analysis of the impacts of different mobility scenarios on a university campus
regarding pollutants emissions, road traffic performance and safety, was previously de-
veloped using a simulation-based framework. The research allowed for the evaluation
of the impacts of alternative road infrastructure solutions, such as roundabouts and
speed humps, in key network locations. The application of VISSIM (“Verkehr In Städten-
SIMulationsmodell”) is common in simulation-based research, and the integration of
pollutant emissions and road safety estimation methodologies, for example, vehicle specific
power (VSP) and the Surrogate Safety Assessment Model (SSAM), have been shown to
return trustworthy results [2].

Coronavirus disease 2019 (COVID-19) has impacted and is still disturbing all sectors
across the world, including transportation [15–17]. Due to the pandemic, people around
the world were forced to quarantine and telework, and vehicle circulation only occurred
when strictly necessary [18,19]. In fact, the analysis of road traffic data collected during the
current pandemic crisis depicts striking effects of the pandemic on the transportation sector,
that is, city movement registered record low values [19]. The world’s most congested cities
registered an average 5–7% city movement during their respective most critical month of
the lockdown [15]. However, such conditions allows to really perceive the extent of the
benefits that can be obtained by having “cleaner” cities, for example, statistically significant
nitrogen dioxide declines in the United States of America (US) were registered (~26%)
when comparing data from January to April 2020 with historical data from 2017–2019 [20].
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The current global health disaster serves as an opportunity to evaluate which as-
pects of modern life are essential, and which are needed to change or improve so that
we can look to achieve more sustainable societies and improve our quality of life [19].
The pandemic showed how today the transportation sector faces several new challenges,
namely: (1) public transportation needs to have a limit regarding the number of users
in order to accomplish social distancing; (2) the use of private vehicles circulating daily
tends to increase; and (3) teleworking decreases the need to commute and the use of public
transportation and private vehicles. Active modes could be a solution, but they are not an
option for many users and are not suitable for all trip distances. Thus, carpooling with one
to two colleagues when commuting, for example to a university campus, can be a mobility
solution that can help to make the road networks more sustainable while maintaining the
necessary social distancing between car occupants.

Some universities have, in fact, adapted their carpooling/vanpooling platforms to
the actual pandemic circumstances by setting some rules and recommendations to be
followed by commuters interested in carpooling/vanpooling, namely: distance to other
vehicle occupants, mouth and nose covering, hand disinfection, car ventilation, and regular
washing and disinfection of the vehicle, but the impacts of implementing carpooling were
not addressed [21].

The main objective of this research is to evaluate the environmental impacts and road
traffic performance of promoting the use of carpooling as a solution to improve university
campus networks’ sustainability while achieving the necessary safety measures to prevent
the spread of the virus. This evaluation was developed by applying a microscopic traffic
simulation tool, which provides second-by-second vehicle activity data that are used
to compute: (1) vehicular exhaust emissions using a microscopic emissions estimation
methodology; and (2) road traffic performance parameters (travel time, average speed,
and distance traveled).

The main contribution of this work is to provide an integrated environmental and
road traffic performance evaluation of carpooling strategies adoption under pandemic or
post-lockdown periods by considering the safety recommendations, which can provide
added value to the scientific community and practitioners since the pandemic does not
have an expected end date. Furthermore, the paper explores how an immediate strategic
solution, such as carpooling, can be implemented and what impact it can have on road
networks, which is an important contribution for the current crisis but also for possible
future crises since the actual pandemic is not the first case in human history.

The paper is organized as follows: Section 2 is devoted to the presentation of the
applied methodology, the addressed case studies, data collection and models description;
Section 3 presents the discussion of the obtained results; and the final section presents the
concluding remarks.

2. Materials and Methods

The framework concept is based on a microsimulation approach to evaluating vehicu-
lar pollutant emissions and traffic performance with high temporal precision. The frame-
work started with a site-exploration to develop its characterization and identify the main
issues within the networks. Afterwards, monitoring campaigns were completed to regis-
ter traffic volumes, vehicle dynamics and site-specific characteristics. The next step was
to code the networks and to perform the calibration and validation of the microscopic
traffic simulation models. The initial site characterization and monitoring campaigns
allowed the identification of the main issues within the networks, and the definition of
the alternative scenario, which would have the potential to improve the sustainability of
the networks. Finally, results regarding the baseline and the carpooling scenarios were
analyzed and compared. Figure 1 depicts the conceptual framework designed to fulfill the
research objectives.
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Figure 1. Methodology overview (AOR—average occupancy ratio; CO2—carbon dioxide; CO—
carbon monoxide; NOx—nitrogen oxides; and HC—hydrocarbons).

2.1. Case Study

The studied site locations correspond to the three campuses that compose the Univer-
sity of Aveiro (Portugal): (1) Campus Universitário de Santiago (CS); (2) Águeda School of
Technology and Management (ESTGA); and (3) Aveiro North School (ESAN).

CS, which is located in the Aveiro City center, has around 15 thousand members.
The main avenue near the campus is characterized by presenting around 10 thousand
vehicles per day [2]. The campus has around 1580 parking spaces divided by 13 parking
lots owned by the university that are established all across the campus, and more parking
spaces can be found in the campus surrounding areas.

The road traffic access to the campus network is achieved through three main roads:
A25 which is a freeway with a posted speed limit of 120 km/h and connects Aveiro to
other cities; and N109 and N235 which are national roads with posted speed limits ranging
50–90 km/h along their path. Besides the use of private car, several lines of public transit
buses usually transport the population across the city, more specifically, two particular
routes that go through the university campus and are the solution for academic community
members commuting from the city’s train station to the university campus.

The second campus is the campus of the ESTGA with around 1500 members and
around 188 parking spaces. ESTGA is located in the city center of Águeda and there is
only one entrance to the campus, which connects the inside of the campus to an urban
road with a posted speed limit of 50 km/h. This specific national road then connects to a
national road where a high school is located which, during peak hours, is also responsible
for attracting and generating road traffic. Additionally, near to the campus (10 min walk)
there is a train station which many students use when travelling to the campus.

The smaller campus of the three, ESAN, is located in the vicinity of Oliveira de
Azeméis and has around 500 members and 120 parking spaces. The campus has a single
entrance point which is connected to a steep rural road (with a maximum gradient of 14%)
with a posted speed limit of 50 km/h; however, due to the mentioned road grade and the
usual state of traffic free flow, drivers tend to drive their vehicle well over the speed limit



Sustainability 2021, 13, 5512 5 of 22

(speeds over 90 km/h were observed). There is also a public transit bus lane that connects
the city center to the campus.

Further details regarding the case studies’ networks will be explored in the follow-
ing sections.

2.2. Field Data Collection

A well-established data sample is needed to calibrate and validate a microsimulation
traffic model. The monitoring campaigns were completed during two typical weekdays
at each case study location to be applied as two different sets of data to calibrate and
validate the developed models. The campaigns took place during the months of April and
May 2019.

2.2.1. Campus Santiago

Figure 2 displays the 24 key locations defined to collect traffic volumes (pedestrians,
cyclists, and motor vehicles) and vehicle AOR during the morning peak hour between
8:45 and 9:45 a.m. (most traffic congested period). These monitoring zones resulted in a
total of 103 monitoring points. Traffic volumes were recorded through manual counting
(5-min interval) or video recording, while AOR was assessed via manual counting in
two of the main entrances to the campus. A total of over 50 h of video recordings were
thoroughly analyzed.

Monitoring campaigns at CS to acquire vehicle dynamics data (speed and acceleration
on a second-by-second basis) and assess site-specific characteristics were developed by
completing 6 different routes. The established routes were covered by driving a typical
midsized (D-segment) light duty passenger vehicle with the following characteristics:
(1) 1.9 L diesel engine; (2) gross vehicle weight-1342 kg; and (3) transmission type–5
speed manual gearbox. The vehicle was equipped with a Global Positioning System (GPS)
travel recorder (accuracy ~5 m) and an On-Board Diagnostics scan tool (OBD-II ELM327
Bluetooth). Vehicle dynamics monitoring campaigns encompassed a total traveled distance
over 80 km throughout the 6 covered routes.

2.2.2. Campus ESTGA

Figure 3 shows 8 monitoring zones that resulted in 38 monitoring points that were
defined to register traffic volumes (pedestrians, cyclists and motor vehicles) and vehicle
AOR during the afternoon peak hour between 5:45 and 6:45 p.m. (most traffic congest
period). In total, more than 15 h of video footage data were recorded. The vehicles’ AOR
was measured at the entrance of the campus.

The experimental data collection developed at ESTGA to obtain vehicle dynamics
data and evaluate site-specific characteristics was completed using the same experimental
setup described for CS. Vehicle dynamics monitoring campaigns resulted in a total traveled
distance of 50 km throughout the 6 covered routes.

2.2.3. Campus ESAN

Figure 4 presents the 2 monitoring zones defined to collect traffic volumes (pedestrians,
cyclists and motor vehicles) and vehicle AOR during the afternoon peak hour between
5:45 and 6:45 p.m. (most traffic congested period). These monitoring zones resulted in a
total of 10 monitoring points. Traffic volumes (pedestrians, cyclists and motor vehicles)
were recorded through video recordings, while AOR was assessed via manual counting
at the entrance of the campus. In this campus, approximately 10 h of video recordings
were gathered.

The routes completed during the experimental data collection developed at ESAN
followed the same experimental setup described for the other campuses and resulted in a
total traveled distance of 30 km throughout the 2 covered routes.
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Figure 2. Traffic volumes and AOR recording locations at CS (background source: OpenStreetMap).
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Figure 3. Traffic volumes and AOR recording locations at ESTGA (background source: OpenStreetMap).

Figure 4. Traffic volumes and AOR recording locations at ESAN (background source: Open-
StreetMap).
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2.3. Microscopic Traffic Simulation Model

The microscopic traffic simulation tool VISSIM 2020 was used to code the network
because it allows to: (1) retrieve fully disaggregated vehicle trajectory files that can be used
to evaluate the network traffic performance and pollutant emissions impacts; (2) model a
set of driving behavior parameters according to road and vehicle type, and ultimately are
able to characterize site-specific drivers behaviors; (3) identify pollutant emissions hotspots
with high spatial and temporal resolution; (4) test carpooling scenarios, and has shown to
be a successful microsimulation for completing this task; and (5) simulate different vehicle
AOR [2,4,22,23].

The Wiedemann 74 and 99 models were used to characterize the psychophysical
dynamics of each entity of road traffic and each cyclist, respectively. Only a few links in the
CS network are characterized as highway links, hence, the primary driving behavior model
used in the 3 networks is the Wiedemann 74, which is, according to the literature review,
the appropriate model to represent road traffic in urban areas [4,20]. The Wiedemann
99 model was applied using the default settings for vehicles to represent highway driving
behavior as suggested by the literature review [4,22]. Furthermore, during the calibra-
tion and validation process, both models were shown to correctly represent site-specific
driving behaviors.

The microscopic traffic models were calibrated and validated for a one-hour period,
from 8:45 to 9:45 a.m., and a fitting warm-up period was used for each network (according
to their size): (1) 30 min warm-up for CS (8:15–8:45 a.m.); (2) 15 min warm-up period
for ESTGA (5:30–5:45 p.m.); and (3) 5 min warm-up period for ESAN (5:40–5:45 p.m.).
The calibration and validation of microscopic traffic simulation models is an iterative
trial and error process, which can be defined following the next steps: (1) traffic volumes
calibration; (2) travel times calibration; and (3) traffic volumes and travel times validation.
To pinpoint the vehicle dynamics at each link, initially vehicle speed distributions across
the network were modeled according to the identified ranges at each specific zone of
the network. Traffic volumes and vehicles travel times’ calibration and validation were
completed by adjusting the simulation models’ vehicle inputs, vehicle types speed across all
network links and driving behavior parameters [2,4]. The following Wiedemann 74 driving
behavior parameters were adjusted: average standstill distance, additive part of safety
distance and multiplicative part of safety distance, whilst for the rest of the parameters,
the default values were maintained. Furthermore, two of the conflict areas’ parameters
were adjusted in some key locations. These parameters were the front and rear gaps which
change how the driver behaves in conflict areas. The methods to evaluate whether the
calibration and validation was successful are described below.

VISSIM was set to run stochastically to obtain the most realistic model possible
and, consequently, all results accomplished are the average of 10 simulation outputs,
as suggested in the literature [4,24]. The initial simulation random seed value was 1
with an increment equal to 3, and both scenarios were compared using the same random
seed simulations.

The criterion used to perform the calibration and validation of the traffic volumes
was the Geoffrey E. Havers (GEH) statistic. GEH is an empirical formula which allows the
evaluation of the goodness-of-fit between measured traffic volumes against the estimated
traffic volumes obtained with the microscopic traffic model [25]. For the model to be
considered calibrated, at least 85% of the monitoring points need to have GEH value below
5 [25].

The calibration of the model travel times was developed by creating the routes trav-
eled during the field measurements into the model to be completed by a suitable number
of floating vehicles [4,26]. Afterwards, estimated travel times were tested against observed
travel times for each route and are deemed calibrated when a high level of statistical signif-
icance is found for a significance level of 5% [4,26]. The validation centered in comparing
the estimated traffic demand and tested routes’ travel times of the calibrated model with
different sets of data of real-world traffic demand and routes travel times [4,25,26].



Sustainability 2021, 13, 5512 9 of 22

2.4. Exhaust Emissions Microscopic Evaluation

The evaluation of the vehicular pollutants emissions was performed through the
application of the vehicle-specific power (VSP) methodology. The VSP approach has been
widely applied and has been shown to be a suitable tool for estimating vehicle exhaust
emissions for the following reasons: (1) it provides estimates with high resolution of
time (second-by-second); (2) considers aerodynamic drag, speed, acceleration, road grade
and rolling distance effects; and (3) has shown a high correlation with the variability of
emissions on light passenger gasoline and diesel vehicles, light commercial diesel vehicles
and diesel buses [27–29]. The emissions of CO2, CO, NOx, and HC were estimated for light
duty passenger vehicles (LDPV), light duty commercial vehicles (LDCV) and buses [27,28].
LDPV comprise all vehicles that are used to transport passengers and present a length
lower than 6 m, while the considered LDCV consist of vehicles used to transport cargo,
commonly known as vans, which present a gross vehicle weight rating (GVWR) lower than
3.5 metric tons [30,31]. The estimates for LDPV and LDCV are provided by the following
mathematical expression [32]:

VSP = v × [1.1 × a + 9.81 × sin(arctan(grade)) + 0.132] + 0.000302 × v3, (1)

where v is the vehicle instantaneous speed m/s, a is the vehicle instantaneous acceleration
in m/s2 and grade is the topographic slope assessed as a decimal fraction [32]. The VSP
estimate is comprehended in one of the 14 VSP modes for LDPVs and LDCVs (ranging
from −50 to +50 kW/ton) which correspond to the respective CO2, CO, NOx and HC
emission rates [27,28]. The VSP estimate for buses is concurrently given by the following
expression [32]:

VSP = v × [a + 9.81 × sin(grade) + 0.092] + 0.00021 × v3. (2)

Distinctly, VSP modes are categorized in 8 modes for buses (ranging from −30 to
+30 kW/ton) [29].

A graphical user interface (GUI) developed via MATLAB was conceived to ana-
lyze second-by-second vehicle dynamic data provided by VISSIM output (approximately
10 million, 1 million and 2 thousand registers for the CS, ESTGA and ESAN networks,
respectively) and perform the evaluation of the data sample to provide the estimates of
exhaust pollutants emissions and traffic performance parameters by vehicle type and
network link segment.

Monitoring campaigns allowed the determination of the fleet composition present in
the network regarding LDPVs, LDCVs and transit buses. LDPVs were categorized as 51%
being light duty diesel vehicles and 49% being light duty gasoline vehicles, according to
the Portuguese fleet composition [4].

3. Results

The present section provides a discussion concerning the results obtained during the
calibration/validation of the microsimulation traffic models, pollutant emissions (CO2, CO,
NOx, and HC) and traffic performance. Furthermore, results from the carpooling scenarios
are analyzed and compared to the respective baseline scenario.

3.1. Traffic Models Calibration and Validation

The end-result of the calibration and validation of the estimated traffic volumes and
travel times for the baseline scenario is presented in Table 1, more specifically, the percent-
age of traffic volumes’ monitoring points that obtained a GEH value lower than 5 and a
coefficient of determination (R2) between estimated and observed traffic volumes datasets,
and the average relative difference and average p-value (Student’s t-test) between observed
and estimated travel times.
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Table 1. Calibration and validation parameter results for each case study network.

Campus Santiago

Traffic volumes

GEH < 5-Calibration 93%
GEH < 5–Validation 89%

R2–Calibration
R2–Validation

94%
87%

Travel times

ARD–Calibration 11% ± 4%
ARD–Validation 13% ± 5%

Average p-value (<0.05)–Calibration 0.83
Average p-value (<0.05)–Validation 0.76

Campus ESTGA

Traffic volumes

GEH < 5–Calibration 98%
GEH < 5–Validation 92%

R2–Calibration 98%
R2–Validation 90%

Travel times

ARD–Calibration 7% ± 3%
ARD–Validation 8% ± 3%

Average p-value (<0.05)–Calibration 0.88
Average p-value (<0.05)–Validation 0.82

Campus ESAN

Traffic volumes

GEH < 5–Calibration 100%
GEH < 5–Validation 100%

R2–Calibration 99%
R2–Validation 97%

Travel times

ARD–Calibration 2% ± 1%
ARD–Validation 2% ± 1%

Average p-value (<0.05)–Calibration 0.91
Average p-value (<0.05)–Validation 0.89

The calibration of traffic volumes in the CS network obtained a coefficient of deter-
mination (R2) of 94%, which shows the estimated traffic volumes to present a good fit
compared to observed traffic volumes and are in accordance with suggested calibration
criteria for traffic flows by presenting more than 93% of monitoring points with GEH
values lower than 5, in fact, 88% of monitoring points achieved a GEH value lower than
4. The validation of traffic volumes applying a different set of data to be compared to the
estimated traffic volumes also obtained a good coefficient of determination (87%), and 85%
of the monitoring points attained a GEH value lower than 4.

The travel times of the six routes performed during the monitoring campaigns
achieved simulated travel times, completed by each route respective floating vehicles,
which were statistically significant compared to the observed travel times for both the
calibration and validation datasets. The average relative difference (ARD) between the
estimated and observed travel times was 11% and 13%, respectively, with a maximum
value of 16% being observed when comparing to the validation dataset.

The estimated traffic volumes in ESTGA network achieved a good fit by accomplishing
98% and 80% coefficients of determination for the calibration and validation datasets,
respectively. GEH value between estimated and observed traffic volumes fulfilled the
requirements and 98% and 92% of monitoring points obtained a value below 5, respectively
(94% and 88% of monitoring points obtained a value below 4). Estimated travel times of
the six routes completed during the monitoring campaigns were statistically significant
compared to the observed travel times for both the calibration and validation datasets.
The maximum relative difference between estimated and observed travel times was 11%
during the validation phase.

Traffic volumes estimated in the ESAN network had an almost perfect fit, that is,
99% and 97% coefficients of determination were obtained when compared to the observed
traffic volumes of the calibration and validation datasets, respectively. Additionally, 100%
of the monitoring points achieved a GEH value lower than 5 between estimated traffic
volumes and the calibration and validation datasets. In fact, 100% of the monitoring points
achieved a GEH value lower than 4 during the calibration and validation. The estimated
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travel times of the two routes during the vehicle dynamics data collection were statistically
significant compared to the observed travel times, for both the calibration and validation
sets of data. The average relative difference was 2% with a standard deviation of 1% for
both the calibration and validation datasets.

3.2. Definition of the Operational Scenarios

Direct observations and walk-in audits performed across CS show a recurrent issue,
the excessive volume of road traffic circulating across the campus, which results in the lack
of parking spaces and is obviously a major opportunity to improve the network sustain-
ability performance. Furthermore, previous surveys indicate a significant use of private
cars to commute to the university campus and low carpooling levels [33]. Observations
in the other two campuses were also shown to be characterized by low carpooling levels,
and although both do not suffer from the problems mentioned above, the implementation
of carpooling under safety measures may result in a positive outcome.

The present research pursues the development of a comparison between three dif-
ferent networks’ current conditions scenarios with the implementation of carpooling in
each one of the respective networks. Therefore, the baseline scenarios correspond to the
current traffic conditions concerning each case study during their most traffic congested
period, that is, the morning peak hour in CS, and the afternoon peak hour in ESTGA and
ESAN campuses. Carpooling scenarios were designed following a set of assumptions,
as follows: (1) vehicles commute with up to three occupants (including driver) to comply
with COVID-19 recommendations; (2) 10% of campus parking spaces are reserved for
carpoolers; (3) carpooling parking spaces are exclusive to the academic community; and (4)
all reserved parking spaces were considered to be filled during the simulations by vehicles
either with two or three occupants, more specifically, half of the parking spaces are filled
with vehicles with two occupants and the other half with vehicles with three occupants.
Additionally, it was also assumed that people will commute with people from the same
household or those who usually spend the day together and where all vehicle occupants
have the same destination, such as the respective campuses. Carpoolers would arrange the
“rides” by simply communicating with each other since they live together or usually spend
the day together, and no virtual platform would, therefore, be needed for the purpose of
organizing the “rides” itself.

Network traffic volumes and vehicle AOR at campus entrances are based on field
measurements developed before the start of the COVID-19 pandemic. Therefore, the base-
line scenario vehicle AOR was adapted to meet the safety recommendations and have
a maximum of three occupants per vehicle while maintaining the same total number of
people travelling. The “surplus” of vehicle occupants (more than three occupants) were
distributed into other vehicles while maintaining the ratio weight of vehicles with one,
two or three occupants in the baseline vehicle AOR distribution matrix at each site location.
The COVID-19 pandemic also impacted the use of public transit buses and, for the purpose
of this research, during the baseline and carpooling scenarios it was assumed that public
transit buses traveled with half occupation. Hence, considering these factors, the traffic
volumes were adjusted to create the baseline scenarios, which were designed to represent
pandemic scenarios with even more critical traffic conditions than the observed during the
COVID-19 pandemic, that is, higher traffic volumes. Table 2 presents the vehicle AOR used
during the baseline (adapted from pre-pandemic circumstances) and carpooling scenarios
in each network, and the respective reduction of vehicles being injected into the networks.
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Table 2. Vehicle AOR for each case study in the baseline and carpooling scenarios, and the respective
reduction of vehicles entering the carpooling networks compared to the baseline.

Case Study Baseline Carpooling

Campus Santiago 1.31 1.39 (less 150 vehicles)
Campus ESTGA 1.34 1.64 (less 25 vehicles)
Campus ESAN 1.34 1.72 (less 15 vehicles)

3.3. Comparison of Typical Conditions with the Implementation of Carpooling

The present research completed an analysis regarding exhaust pollutant emissions
and traffic performance at a university campus on the following scenarios: (1) university
campus under pandemic circumstances-baseline; and (2) implementation of carpooling.

3.3.1. Campus Santiago

Figure 5a presents the percentual variation concerning vehicular pollutant emissions
between the carpooling and the baseline scenarios in CS.

Figure 5. Carpooling scenario percentual change comparatively to the baseline scenario in CS: (a) pollutants emissions;
and (b) traffic performance parameters.

The carpooling scenario resulted in statistically significant variations of CO2, NOx and
HC emissions compared to the baseline scenario with reductions of 5% for CO2 and 7%
for NOx and HC. Moreover, CO2 emissions per unit distance (by coded link) were also
statistically significant with an average reduction of almost 6%.
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Inside campus road segments presented a reduction in associated pollutants emissions,
that is, absolute emissions and emissions per unit distance of CO2 and absolute emissions
of NOx decreased by 3%, 9% and 4%, respectively.

Figure 5b depicts the percentual variation regarding road traffic performance pa-
rameters, comparing the implementation of carpooling with the baseline scenario in CS.
Results show that road traffic performance parameters experienced statistically significant
variations with the implementation of the carpooling scenario. The reduction of circu-
lating vehicles prompted lower congestion levels across the network and, consequently,
the average speed increased (7%) and the remaining vehicles were able to circulate faster
(8% lower travel time) and complete a higher percentage of the respective trips (5% more
distance covered).

Figure 6a,b exhibits the CO2 emissions hotspots of both the baseline and carpooling
scenarios in CS. The carpooling scenario was able to reduce the network average CO2
emissions per kilometer by around 6%, and it can be noticed that some road segments
became “greener”, particularly in the main avenue that provides access to the campus and
inside the campus.

Figure 6. CO2 emissions hotspot maps in grams per kilometer, per vehicle: (a) CS baseline; (b) CS carpooling. Back-
ground map source [Bing Maps].

Results show relatively high values of emissions of CO2 per kilometer (per vehicle),
that is, the average values were approximately 173 and 170 g.km−1.veh-1 for the baseline
and carpooling scenarios, respectively. It must be noted that 10% of circulating vehicles are
LDCV. Furthermore, the emission factors applied were based on the literature as stated
in Section 2.4 and are relative to older vehicles, which tended to emit higher quantities of
pollutants, but since the same emission factors were applied for both scenarios, what must
be considered is the impact of implementing a carpooling platform compared to the
baseline scenario.
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Figure 7a,b depicts the NOx emissions hotspots of both the baseline and carpooling
scenarios in CS. Carpooling achieved lower average NOx emissions per kilometer (<7%);
nevertheless, the carpooling hotspot map is characterized by fewer red road segments.

Figure 7. NOx emissions hotspots maps in milligrams per kilometer, per vehicle: (a) CS baseline; and (b) CS carpooling.
Background map source [Bing Maps].

As would be expected, the most critical road segments regarding pollutant emissions
are located near roundabouts, unsignalized and signalized intersections. In the baseline
scenario, these road segments accounted for near 20% of CO2 and NOx total network
emissions. The carpooling scenario was able to reduce the impact of these road segments
on the overall network emissions regarding CO2 (<3%) and NOx (<4%).

3.3.2. Campus ESTGA

Figure 8a,b presents the percentual variation concerning vehicular pollutants emis-
sions between the carpooling and the baseline scenarios and the percentual variation
regarding road traffic performance parameters, comparing the implementation of carpool-
ing with the baseline scenario in ESTGA, respectively.
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Figure 8. Carpooling scenario percentual change comparatively to the baseline scenario in ESTGA campus: (a) pollutants
emissions; and (b) traffic performance parameters.

Results suggest that a positive outcome is to be expected from the implementation of
carpooling in the ESTGA campus, that is, reductions in pollutant emissions (−1% of CO2
and NOx) and the improvement of road traffic performance (−0.4% in travel time and 0.4%
in average speed). However, during the period of simulation, the carpooling scenario was
not able to have a statistically significant impact on the network regarding vehicle exhaust
emissions and road traffic performance. This network is characterized by lower traffic
volumes, which explains why no significant impacts were obtained; however, considering
that the simulation period corresponds to one hour, the results indicate that interesting
outcomes can be achieved with the implementation of carpooling in this network.

Figure 9a,b exhibits the CO2 emissions hotspots of both the baseline and carpooling
scenarios in ESTGA. Although impacts were not statistically significant during the sim-
ulation period, the carpooling scenario improved the network environmental impacts,
more specifically, there were clear improvements at intersections.
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Figure 9. CO2 emissions hotspot maps in grams per kilometer, per vehicle: (a) ESTGA baseline; and
(b) ESTGA carpooling. Background map source [Bing Maps].

Figure 10a,b depicts the NOx emissions hotspots of both the baseline and carpooling
scenarios in ESTGA. CO2 carpooling also achieved lower average NOX emissions per
kilometer and, although not significant, the hotspot map is characterized by fewer red
road segments.

Intersections accommodated the road segments with higher emissions (approximately
13% of total emissions), and the carpooling scenario was able to reduce such impacts by 1%
regarding CO2 and NOx.

3.3.3. Campus ESAN

In the ESAN campus, results indicate that reductions in pollutant emissions (−7% and
−4% for CO2 and NOx, respectively) and the improvement of road traffic performance
(−6% in travel time and 2% in average speed) can be achieved by implementing carpooling
with up to three people per vehicle in the network, as can be observed in Figure 11a,b.
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Figure 10. NOx emissions hotspots maps in milligrams per kilometer, per vehicle: (a) ESTGA baseline;
and (b) ESTGA carpooling. Background map source [Bing Maps].

Figure 11. Cont.
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Figure 11. Carpooling scenario percentual change comparatively to the baseline scenario in ESAN
campus: (a) pollutants emissions; and (b) traffic performance parameters.

These results derive from the fact that the rural road, which provides access to the
campus entrance, is characterized by permanent free flow conditions, and by promoting
carpooling there are fewer vehicles entering the campus, resulting in fewer vehicles driving
at lower speeds (vehicles that would enter the campus inside area), which increases the
average speed and decreases the travel time. Moreover, the mentioned rural road was found
to account for 70% and 40% of the CO2 and NOx total network emissions. The carpooling
scenario was able to reduce the impacts of CO2 and NOx emissions on this road by around
4% since fewer vehicles need to cross it to enter the campus.

It can be noted that HC was the pollutant with lower variation from the baseline to
the carpooling scenario, while in the ESTGA network CO was the pollutant with lower
variation. For this research, the assumed fleet composition was based on the Portuguese
vehicle fleet which, for these networks, translates to 51% of all light duty vehicles being
fueled by diesel and the remaining 49% by gasoline, and all light commercial vehicles are
fueled by diesel.

Diesel vehicles usually present lower emissions of CO and, in the case of ESTGA,
the vehicle count developed during the field campaigns resulted in the simulation model
presenting 54% of the vehicles being powered by diesel engines. Furthermore, CO emis-
sions were generally very low across the network in the baseline scenario since speeds are
generally low (20 to 50 km/h) and at these speeds CO tends to be emitted more or less
at the same level but with a small rise as speed increases (at this speed range) since CO
emissions usually result from engines operating under rich mixture and/or incomplete
fuel combustion [34]. With the reduction of circulating vehicles in the carpooling scenario,
the emissions of CO did not present a significant reduction since the emissions were very
low across the network and the small decrease in its emission from the reduction of total
vehicles in the network was somewhat contradicted by the increase of the average speed in
the network.

Regarding the ESAN campus, since this network is characterized by very low road
traffic congestion, the two existing transit buses, which are the main vehicle type emitting
HC (96% of total HC network emissions) in both the baseline and carpooling scenarios,
suffer no change regarding their trip which results in a lower variation of HC. Furthermore,
since light duty passenger and commercial vehicles travel with practically no stops along
their route, the emissions of NOx in the carpooling scenario suffer a lower variation
compared to CO2 and CO because vehicles are almost always travelling at cruise speed
and so the occurrence of significant accelerations is very low. CO emissions present a
higher variation between scenarios compared to the ESTGA network because in the ESAN
network speeds are generally higher (~90 km/h) and for this speed range CO emissions
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are considerably higher [34,35]. At this speed range, CO emissions actually follow a
declining trend as speed rises which helps, together with the small decrease in the number
of circulating vehicles, to explain the variation in its emissions from the baseline to the
carpooling scenario [34,35].

Figure 12a–d exhibits the CO2 and NOx emissions hotspots of both the baseline and
carpooling scenarios in ESAN. Although carpooling did not have a statistically significant
impact during the simulation period, improvements were found across the network. For
example, the campus access rural road experienced improvements in some segments which
reduced its impacts on the network pollutants emissions as mentioned previously.

Figure 12. CO2 emissions hotspot maps in grams per kilometer, per vehicle: (a) ESAN baseline; (b) ESAN carpooling;
and NOx emissions hotspots maps in milligrams per kilometer, per vehicle: (c) ESAN baseline; and (d) ESAN carpooling.
Background map source [Bing Maps].

4. Conclusions and Policy Recommendations

University campuses are similar to small cities and serve as perfect case studies for
assessing sustainability measures to be implemented and have the execution details re-
touched to improve the adoption procedure for greater case studies. Currently, in a world
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living under pandemic conditions, the transportation sector needs to adapt to these circum-
stances and provide solutions that both give health safety and reliability while commuting
without compromising the principle of sustainability. From this perspective, the developed
research assessed the impacts on pollutant emissions and road traffic performance of imple-
menting a carpooling platform under the pandemic safety norms, that is, considering some
actions that university campuses should take to successfully provide a mobility system for
the academic community to commute safely and improve their network sustainability at
the same time.

Findings from the present research demonstrate that promoting the use of carpooling
in university campuses (as well as in similarly organized institutions), while under public
health threats, as an immediate transport strategy can provide a suitable and safe way
to commute while helping the networks to become more sustainable. The promotion of
carpooling achieved positive outcomes regarding vehicle pollutant emissions and road
traffic performance. Furthermore, these positive results were observed in three different
campuses with different network dimensions and road traffic volumes.

Public health threats can impact the use of public transportation which in turn in-
creases the use of private vehicles and worsens transportation related externalities regard-
ing traffic congestion, greenhouse gas and human health (NOx). Therefore, carpooling can
be a promising solution to minimize the impacts of such externalities.

Strategies to implement carpooling under public health threats should contemplate
the following points: (1) to set vehicle occupation limits for carpoolers (max. three people
per vehicle, including driver); (2) vehicle occupants have to ensure that the distance to
other occupants is maintained, use mouth and nose covering, hand disinfection and keep
good vehicle ventilation; (3) vehicles need to follow a set of rules of regular washing and
disinfection for the safety of all occupants; and (4) carpoolers have access to carpooling
dedicated parking spaces. The implementation of carpooling under this set of constraints
and propositions as an immediate transportation strategy can improve university campus
networks’ overall traffic performance and reduce the associated environmental impacts.

The results from the present research evaluating the implementation of carpooling
under pandemic circumstances were promising, however, the analysis of how carpooling
parking spaces could be attributed was not considered, nor was the risk of some members
pretending to be carpoolers to get a free parking space. Additionally, the present research
was developed considering the COVID-19 pandemic circumstances, more specifically, the
known COVID-19 variants up to March 2021 and, with that in mind, similar strategies
may need improvements if developed under pandemics related to diseases with higher
infection rates.

Future work will address the network and campus impacts regarding road safety and
noise emissions. Furthermore, a wider analysis of traffic performance parameters should
be considered, different percentages of vehicle AOR should be tested, and questionnaires
can help to better understand how the networks evolved during the pandemic and how to
better implement this type of strategy.
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